Difference between revisions of "Isotropic Mesh Generation"

From crtc.cs.odu.edu
Jump to: navigation, search
(nacelle, rocket, and lv2b pg. 122-124)
(nacelle, rocket, and lv2b pg. 122-124)
Line 103: Line 103:
 
|-
 
|-
 
!    !! colspan=2 | AFLR !! colspan=2 | 0.30 !! colspan=2 | 0.7 !! colspan=2 | 2 !! colspan=2 | 3 !! colspan=2 | 0.5 !! colspan=2 | 1 !! colspan=2 | 2 !! colspan=2 | 165° !! colspan=2 | 120° !! colspan=2 | 0
 
!    !! colspan=2 | AFLR !! colspan=2 | 0.30 !! colspan=2 | 0.7 !! colspan=2 | 2 !! colspan=2 | 3 !! colspan=2 | 0.5 !! colspan=2 | 1 !! colspan=2 | 2 !! colspan=2 | 165° !! colspan=2 | 120° !! colspan=2 | 0
 +
|}
 +
 +
{| class="wikitable"
 +
|+ Evaluation results on unstructured grid generation. CDT3D is compared with state-of-the-art technology AFLR v 16.9.19 [132]. CDT3D's runs are performed with 1 and 12 hardware cores. AFLR is a sequential code. Table 18 lists the parameters of the evaluation. The sliver elements have a dihedral angle smaller than 2° or larger than 178°. Initial grid includes Delaunay tetrahedralization and Boundary Recovery. The I/O time is not included. The experiments were performed on a Dell workstation with Linux Ubuntu 12.10, a 12-core Intel Xeon X5690@3.47 GHz CPU, and 96 GB RAM.
 +
|-
 +
!  colspan=2 |  !! colspan=2 | %Slivers<br>(w/o improv.)<br>(x10<sup>-3</sup>) !! colspan=2 | #Tets<br>(w/ improv.)<br>(M) !! colspan=2 | Min/Max Angle<br>(w/ improv.)<br>(deg) !! colspan=4 | Time
 +
|-
 +
!  Case  !! colspan=2 | Software !! colspan=2 | #Cores !! colspan=2 |  !! colspan=2 | 1261 !! colspan=2 | 3860 !! colspan=2 | 9644
 +
|-
 +
!  #edges  !! colspan=2 | 8340 !! colspan=2 | 4158 !! colspan=2 | 8433 !! colspan=2 | 3921 !! colspan=2 | 11574 !! colspan=2 | 28926
 +
|-
 +
!  #faces  !! colspan=2 | 5560 !! colspan=2 | 2772 !! colspan=2 | 5622 !! colspan=2 | 2614 !! colspan=2 | 7716 !! colspan=2 | 19284 
 +
|-
 +
! scope="rowspan=2" | Software
 +
| TetGen || CDT3D || TetGen || CDT3D || TetGen || CDT3D || TetGen || CDT3D || TetGen || CDT3D || TetGen || CDT3D 
 +
|-
 +
! scope="row" | #Stpts (boundary)
 +
| 0 || 0 || 0 || 0 || 0 || 0 || 1 || 0 || - || 0 || 0 || 0
 +
|-
 +
! scope="row" | #Stpts (volume)
 +
|  7 || 2 || 0 || 0 || 8 || 5 || 59 || 28 || - || 0 || 0 || 0
 +
|-
 +
! scope="row" | Time (sec)
 +
|  0.18 || 0.29 || 0.08 || 0.11 || 0.11 || 0.09 || 0.18 || 2.6 || - || 0.36 || 0.02 || 0.20
 
|}
 
|}
  

Revision as of 12:19, 27 March 2018

Sphere and Two Blades with Merging Wakes and a Symmetry Plane

  • (a) Input Surface
  • (b) cdfm: 0; #tets: 57K
  • (c) cdfm: 0.2; #tets: 58K
  • (d) cdfm: 0.6; #tets: 129K
  • (e) cdfm: 0.8; #tets: 854K
  • (f) cdfm: 0.9; #tets: 7.68M

Cuts of tetrahedral grids of a sphere generated for varied cdfm ∈ [0, 1]. Blue corresponds to larger values of the distribution function. Red corresponds to smaller values
of the distribution function.





  • (a) Input Surface
  • (b) Distribution function on the boundary
  • (c) cdfm: 0; #tets: 806K
  • (d) cdfm: 0.1; #tets: 1.41M
  • (e) cdfm: 0.2; #tets: 4.97M
  • (f) cdfm: 0.3; #tets: 16.54M

Cuts of tetrahedral grids of two blades with merging wakes and a symmetry plane enclosed in an outer boundary generated for varied cdfm ∈ [0, 1] (shown in (c)-(f)).
The input surface is depicted in (a)-(b). The wake region is modeled as an embedded/ transparent delete surface.





  • Sphere histogram.png

Element angle distribution (in 5-deg increments) of grids of sphere, for varied cdfm.
The dihedral angle extrema and the element count are reported for each grid.



  • Blades histogram.png

Element angle distribution (in 5-deg increments) of grids of two blades with
merging wakes and a symmetry plane enclosed in an outer boundary, for varied cdfm.
The dihedral angle extrema and the element count are reported for each grid.

nacelle, rocket, and lv2b pg. 122-124

  • Nacelle6.png
  • Nacelle7.png
  • Nacelle8.png
Surface grid of an aircraft nacelle with engine inside a section of wind tunnel.
#points: 27184; #triangles: 54360




  • Rocket8.png
  • Rocket6.png
Surface grid of a rocket with engine, nozzle and transparent internal data surfaces inside flow field.
#points: 20228; #triangles: 40448




  • Lv2b2.png
  • Lv2b6.png
Surface grid of a launch vehicle with solid boosters inside flow field (Lv2b).
#points: 42020; #triangles: 84024




Parameters for unstructured grid generation. Additional parameters only for CDT3D: nthreads : 12 (parallel); nthreads : 1 (sequential); nbuckets : 240; frbtransf : 0.3; cbtransf : 1.0. Additional parameters only for AFLR: mrecrbf : 0.
Geometry Software cdfm cdfn mrecm nqual csmth msmth nsmth angdfs angqual mdbs
Nacelle CDT3D 0.291 0.7 2 3 0.5 1 2 165° 120° 0
AFLR 0.50 0.7 2 3 0.5 1 2 165° 120° 0
Rocket CDT3D 0.20 0.7 2 3 0.5 1 2 165° 120° 0
AFLR 0.60 0.7 2 3 0.5 1 2 165° 120° 0
Lv2b CDT3D 0.234 0.7 2 3 0.5 1 2 165° 120° 0
AFLR 0.30 0.7 2 3 0.5 1 2 165° 120° 0
Evaluation results on unstructured grid generation. CDT3D is compared with state-of-the-art technology AFLR v 16.9.19 [132]. CDT3D's runs are performed with 1 and 12 hardware cores. AFLR is a sequential code. Table 18 lists the parameters of the evaluation. The sliver elements have a dihedral angle smaller than 2° or larger than 178°. Initial grid includes Delaunay tetrahedralization and Boundary Recovery. The I/O time is not included. The experiments were performed on a Dell workstation with Linux Ubuntu 12.10, a 12-core Intel Xeon X5690@3.47 GHz CPU, and 96 GB RAM.
 %Slivers
(w/o improv.)
(x10-3)
#Tets
(w/ improv.)
(M)
Min/Max Angle
(w/ improv.)
(deg)
Time
Case Software #Cores 1261 3860 9644
#edges 8340 4158 8433 3921 11574 28926
#faces 5560 2772 5622 2614 7716 19284
Software TetGen CDT3D TetGen CDT3D TetGen CDT3D TetGen CDT3D TetGen CDT3D TetGen CDT3D
#Stpts (boundary) 0 0 0 0 0 0 1 0 - 0 0 0
#Stpts (volume) 7 2 0 0 8 5 59 28 - 0 0 0
Time (sec) 0.18 0.29 0.08 0.11 0.11 0.09 0.18 2.6 - 0.36 0.02 0.20

more nacelle, rocket, and lv2b pg. 125-127

  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER
  • PLACEHOLDER


  • PLACEHOLDER
  • PLACEHOLDER


  • PLACEHOLDER
  • PLACEHOLDER


  • PLACEHOLDER
  • PLACEHOLDER

aircraft pg. 140-142