Difference between revisions of "CNF Example Meshes"

From crtc.cs.odu.edu
Jump to: navigation, search
(GPDGK16Numerical_140519)
(NT_140519)
Line 179: Line 179:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 253,965 tetrahedra
+
* Adapted (min edge = 1) case: 253,965 tetrahedra
 +
* Adapted (min edge = 2) case: 120,168 tetrahedra
  
 +
[[File:NT_140519,d=5,wl=0.07,me=1.png|500px|NT_140519,d=5,wl=0.07,me=2.png]]
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
 
File:NT_140519,d=1,uniform.png
 
File:NT_140519,d=1,uniform.png
Line 193: Line 195:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/1gviwtmh053fzqixo4thaueshjhgqdnq Output Mesh]
+
'''Adapted (min edge = 1):''' [https://odu.box.com/s/1gviwtmh053fzqixo4thaueshjhgqdnq Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf --weight-limit 0.07 --min-edge 1 --output ./NT_140519,d=5,wl=0.07,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf --weight-limit 0.07 --min-edge 1 --output ./NT_140519,d=5,wl=0.07,me=1.vtk
 +
</pre>
 +
 +
'''Adapted (min edge = 2):''' [https://odu.box.com/s/ddllau93m3itsax55pcb9ifhljp7bd3u Output Mesh]
 +
<pre>
 +
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf --weight-limit 0.07 --min-edge 2 --output ./NT_140519,d=5,wl=0.07,me=2.vtk
 
</pre>
 
</pre>
  

Revision as of 16:35, 26 February 2020

2D Example Meshes

The directory containing the 2D input data is located in the 2D folder of CNF_Data.

Synthetic Gaussian Data

  • Input distribution size : 1,000,000 cells
  • Uniform case: 30,949 triangles
  • Adapted case: 3,788 triangles

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk  --output Gaussian_me_10_uniform.vtk --uniform --min-edge=10

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk  --output Gaussian_me_10_wl_1e-1.vtk --weight-limit=0.05 --min-edge=10

GPDGK16Numerical_140519

The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) GPDGK16Numerical_140519

  • Input distribution size : 10,000 cells
  • Uniform case: 7,587 triangles
  • Adapted (min_edge = 2) case: 623 triangles
  • Adapted (min_edge = 0.5) case: 1,409 triangles


Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_uniform.vtk --min-edge=2 --uniform

Adapted (min_edge = 2): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1


Adapted (min_edge = 0.5): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_0.5_wl_1e-1.vtk --min-edge=0.5 --weight-limit=0.1

Note: By using min-edge less than 1 we are essentially generating triangles with an edge smaller than the input pixels. Using values much smaller than 1 is not expected to help the discretization since we are essentially packing more element into a pixel which has a constant value.

NT_140519

  • Input distribution size : 10,000 cells
  • Uniform case: 7,587 triangles
  • Adapted case: 1,038 triangles

The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519


Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk  --output NT_140519_X50_me_2_uniform.vtk --min-edge=2 --uniform

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk  --output NT_140519_X50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1

OBS_ALU_Y50

  • Input distribution size : 10,000 cells
  • Uniform case: 7,587 triangles
  • Adapted case: 1,018 triangles

The 2D case created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_uniform.vtk --min-edge=2 --uniform

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1

3D Example Meshes

The directory containing the 3D input data is located in the 3D folder of CNF_Data.

CFF_14052019

GPDGK16Numerical_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 273,716 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d -i ../../Data/3D/CNF_SHARE/CFF_14052019/GPDGK16Numerical_140519.nrrd --image-segmentation --linear-interpolation --output ./GPDGK16Numerical_140519,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=1.vtk

GPDMMS13_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 264,762 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --image-segmentation --linear-interpolation --output ./GPDMMS13_140519,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf --weight-limit 0.05 --min-edge 1 --output ./GPDMMS13_140519,d=5,wl=0.05,me=1.vtk

GPDVGG99_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 261,485 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --image-segmentation --linear-interpolation --output ./GPDVGG99_140519,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf --weight-limit 0.05 --min-edge 1 --output ./GPDVGG99_140519,d=5,wl=0.05,me=1.vtk

NT_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted (min edge = 1) case: 253,965 tetrahedra
  • Adapted (min edge = 2) case: 120,168 tetrahedra

NT_140519,d=5,wl=0.07,me=2.png

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --image-segmentation --linear-interpolation --output ./NT_140519,d=1,uniform.vtk

Adapted (min edge = 1): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf --weight-limit 0.07 --min-edge 1 --output ./NT_140519,d=5,wl=0.07,me=1.vtk

Adapted (min edge = 2): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf --weight-limit 0.07 --min-edge 2 --output ./NT_140519,d=5,wl=0.07,me=2.vtk

OBS_ALU_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 259,269 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --image-segmentation --linear-interpolation --output ./OBS_ALU_140519,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf --weight-limit 0.13 --min-edge 1 --output ./OBS_ALU_140519,d=5,wl=0.13,me=1.vtk

OBS_CS_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 25,168 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --image-segmentation --linear-interpolation --output ./OBS_CS_140519,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf --weight-limit 0.01 --min-edge 1 --output ./OBS_CS_140519,d=5,wl=0.01,me=1.vtk

CFF_DATA

cff_E.data_IM

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adapted case: 1,668,140 tetrahedra
  • Adapted case: 1,668,140 tetrahedra (other side of the same adapted case)

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --image-segmentation --linear-interpolation --output ./cff_E.data_IM,d=2,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf --weight-limit 0.01 --min-edge 1 --output ./cff_E.data_IM,d=10,wl=0.01,me=1.vtk

cff_E.data_REAL

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adapted case: 1,433,247 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --image-segmentation --linear-interpolation --output ./cff_E.data_REAL,d=2,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./cff_E.data_REAL,d=10,wl=0.1,me=1.vtk

cff_H.data_IM

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adapted case: 1,379,521 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --image-segmentation --linear-interpolation --output ./cff_H.data_IM,d=2,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf --weight-limit 0.05 --min-edge 1 --output ./cff_H.data_IM,d=10,wl=0.05,me=1.vtk

cff_H.data_REAL

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adapted case: 1,699,757 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --image-segmentation --linear-interpolation --output ./cff_H.data_REAL,d=2,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./cff_H.data_REAL,d=10,wl=0.1,me=1.vtk

cff_Ht.data_IM

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adapted case: 1,594,872 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --image-segmentation --linear-interpolation --output ./cff_Ht.data_IM,d=2,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./cff_Ht.data_IM,d=10,wl=0.1,me=1.vtk

cff_Ht.data_REAL

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adapted case: 1,821,299 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --image-segmentation --linear-interpolation --output ./cff_Ht.data_REAL,d=2,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./cff_Ht.data_REAL,d=10,wl=0.1,me=1.vtk

DATA_04252019

CFF_E_im

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 236,512 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --image-segmentation --linear-interpolation --output ./CFF_E_im,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf --weight-limit 0.04 --min-edge 1 --output ./CFF_E_im,d=5,wl=0.04,me=1.vtk

CFF_E_re

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 260,349 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --image-segmentation --linear-interpolation --output ./CFF_E_re,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf --weight-limit 0.08 --min-edge 1 --output ./CFF_E_re,d=5,wl=0.08,me=1.vtk

CFF_H_im

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 263,040 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --image-segmentation --linear-interpolation --output ./CFF_H_im,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf --weight-limit 0.06 --min-edge 1 --output ./CFF_H_im,d=5,wl=0.06,me=1.vtk

CFF_H_re

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 249,257 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --image-segmentation --linear-interpolation --output ./CFF_H_re,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf --weight-limit 0.13 --min-edge 1 --output ./CFF_H_re,d=5,wl=0.13,me=1.vtk

GPD_H_down

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 300,117 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --image-segmentation --linear-interpolation --output ./GPD_H_down,d=1,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./GPD_H_down,d=5,wl=0.1,me=1.vtk

GPD_H_up

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adapted case: 295,671 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --image-segmentation --linear-interpolation --output ./GPD_H_up,d=1,uniform.vtk

Adapted :Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./GPD_H_up,d=5,wl=0.1,me=1.vtk

OBS_ALU

  • Input distribution size : 1,000,000 cells
  • Uniform case: 301,772 tetrahedra
  • Adapted case: 279,721 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --image-segmentation --background-value 0 --linear-interpolation --output ./OBS_ALU,d=1,bv=0,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf --background-value 0 --weight-limit 0.07 --min-edge 1 --output ./OBS_ALU,d=5,bv=0,wl=0.07,me=1.vtk

phase_space_000

phase_space_000

  • Input distribution size : 15,625 cells
  • Uniform case: 26,410 tetrahedra
  • Adapted case: 21,392 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 0.5 --image-segmentation --background-value 0 --linear-interpolation --output ./phase_space_000,d=0.5,bv=0,uniform.vtk

Adapted : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 1.5 --cnf --background-value 0 --weight-limit 0.004 --min-edge 1 --output ./phase_space_000,d=1.5,bv=0,wl=0.004,me=1.vtk