Difference between revisions of "Medical Imaging Example Meshes"

From crtc.cs.odu.edu
Jump to: navigation, search
(COVID-19-Spike-Glycoprotein-6vsb)
Line 1: Line 1:
 
__TOC__
 
__TOC__
=2D Example Meshes=
 
The directory containing the 2D input data is located in the 2D folder of [https://odu.box.com/s/wd0i18giti2zo330y19xhkqu8wjzgf7j Medical_Imaging_Data].
 
 
==COVID-19-23354==
 
* Input image : Dimensions (3,000x2,000) with spacing (1x1)
 
* Uniform with Min-Edge = 15: 82,981 triangles
 
* Adaptive with Min-Edge = 15: 67,920 triangles
 
 
<gallery mode="packed" heights=250px>
 
File:COVID-19-23354,uniform,e=15,suface.png
 
File:COVID-19-23354,uniform,e=15,triangulation.png
 
File:COVID-19-23354,uniform,e=15,triangulation,zoom.png
 
</gallery>
 
<gallery mode="packed" heights=250px>
 
File:COVID-19-23354,w=0.1,e=15,suface.png
 
File:COVID-19-23354,w=0.1,e=15,triangulation.png
 
File:COVID-19-23354,w=0.1,e=15,triangulation,zoom.png
 
</gallery>
 
 
Commands to generate meshes :
 
 
'''Uniform with Min-Edge = 15:''' [https://odu.box.com/s/g1ujcqm76q0oxa0cm9dderp9tf5hqubt Output Mesh]
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23354.tif --uniform --min-edge 15 --output ./COVID-19-23354,uniform,e=15.vtk
 
</pre>
 
 
'''Adaptive with Min-Edge = 15:''' [https://odu.box.com/s/bf0w2cfh7ww8wsm45e9yfxahiwb1m864 Output Mesh]
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23354.tif --min-edge 15 --output ./COVID-19-23354,w=0.1,e=15.vtk
 
</pre>
 
 
Mesh generated based on the images published at [https://phil.cdc.gov//PHIL_Images/23354/23354.tif Centers for Disease Control and Prevention]. For the uniform meshes, the edge-size corresponds to 15 pixels. The adaptive meshes were created by controlling the size of the elements based on the difference in the intensity of the pixels.
 
 
==COVID-19-23311==
 
* Input image : Dimensions (2,460x2,460) with spacing (1x1)
 
* Uniform with Min-Edge = 20: 47,028 triangles
 
* Adaptive with Min-Edge = 20: 34,080 tetrahedra
 
 
<gallery mode="packed" heights=250px>
 
File:COVID-19-23311,uniform,e=20,suface.png
 
File:COVID-19-23311,uniform,e=20,triangulation.png
 
File:COVID-19-23311,uniform,e=20,triangulation,zoom.png
 
</gallery>
 
<gallery mode="packed" heights=250px>
 
File:COVID-19-23311,w=0.1,e=20,suface.png
 
File:COVID-19-23311,w=0.1,e=20,triangulation.png
 
File:COVID-19-23311,w=0.1,e=20,triangulation,zoom.png
 
</gallery>
 
 
Commands to generate meshes :
 
 
'''Uniform with Min-Edge = 20:''' [https://odu.box.com/s/dkv6271ky0cxvk4lio2bvw6jv9zw5iaf Output Mesh]
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23311.tif --uniform --min-edge 20 --output ./COVID-19-23311,uniform,e=20.vtk
 
</pre>
 
 
'''Adaptive with Min-Edge = 20:''' [https://odu.box.com/s/jeqmz2c8dsssl8zujkywl2v3bjaby8gc Output Mesh]
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23311.tif --min-edge 20 --output ./COVID-19-23311,w=0.1,e=20.vtk
 
</pre>
 
 
Mesh generated based on the images published at [https://phil.cdc.gov//PHIL_Images/23311/23311.tif Centers for Disease Control and Prevention]. For the uniform meshes, the edge-size corresponds to 20 pixels. The adaptive meshes were created by controlling the size of the elements based on the difference in the intensity of the pixels.
 
  
 
=3D Example Meshes=
 
=3D Example Meshes=
Line 199: Line 137:
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Ircad2.nrrd --delta 1 --threads 6 --volume-grading --output ./Ircad2,d=1,graded.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Ircad2.nrrd --delta 1 --threads 6 --volume-grading --output ./Ircad2,d=1,graded.vtk
 
</pre>
 
</pre>
 +
 +
=2D Example Meshes=
 +
The directory containing the 2D input data is located in the 2D folder of [https://odu.box.com/s/wd0i18giti2zo330y19xhkqu8wjzgf7j Medical_Imaging_Data].
 +
 +
==COVID-19-23354==
 +
* Input image : Dimensions (3,000x2,000) with spacing (1x1)
 +
* Uniform with Min-Edge = 15: 82,981 triangles
 +
* Adaptive with Min-Edge = 15: 67,920 triangles
 +
 +
<gallery mode="packed" heights=250px>
 +
File:COVID-19-23354,uniform,e=15,suface.png
 +
File:COVID-19-23354,uniform,e=15,triangulation.png
 +
File:COVID-19-23354,uniform,e=15,triangulation,zoom.png
 +
</gallery>
 +
<gallery mode="packed" heights=250px>
 +
File:COVID-19-23354,w=0.1,e=15,suface.png
 +
File:COVID-19-23354,w=0.1,e=15,triangulation.png
 +
File:COVID-19-23354,w=0.1,e=15,triangulation,zoom.png
 +
</gallery>
 +
 +
Commands to generate meshes :
 +
 +
'''Uniform with Min-Edge = 15:''' [https://odu.box.com/s/g1ujcqm76q0oxa0cm9dderp9tf5hqubt Output Mesh]
 +
<pre>
 +
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23354.tif --uniform --min-edge 15 --output ./COVID-19-23354,uniform,e=15.vtk
 +
</pre>
 +
 +
'''Adaptive with Min-Edge = 15:''' [https://odu.box.com/s/bf0w2cfh7ww8wsm45e9yfxahiwb1m864 Output Mesh]
 +
<pre>
 +
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23354.tif --min-edge 15 --output ./COVID-19-23354,w=0.1,e=15.vtk
 +
</pre>
 +
 +
Mesh generated based on the images published at [https://phil.cdc.gov//PHIL_Images/23354/23354.tif Centers for Disease Control and Prevention]. For the uniform meshes, the edge-size corresponds to 15 pixels. The adaptive meshes were created by controlling the size of the elements based on the difference in the intensity of the pixels.
 +
 +
==COVID-19-23311==
 +
* Input image : Dimensions (2,460x2,460) with spacing (1x1)
 +
* Uniform with Min-Edge = 20: 47,028 triangles
 +
* Adaptive with Min-Edge = 20: 34,080 tetrahedra
 +
 +
<gallery mode="packed" heights=250px>
 +
File:COVID-19-23311,uniform,e=20,suface.png
 +
File:COVID-19-23311,uniform,e=20,triangulation.png
 +
File:COVID-19-23311,uniform,e=20,triangulation,zoom.png
 +
</gallery>
 +
<gallery mode="packed" heights=250px>
 +
File:COVID-19-23311,w=0.1,e=20,suface.png
 +
File:COVID-19-23311,w=0.1,e=20,triangulation.png
 +
File:COVID-19-23311,w=0.1,e=20,triangulation,zoom.png
 +
</gallery>
 +
 +
Commands to generate meshes :
 +
 +
'''Uniform with Min-Edge = 20:''' [https://odu.box.com/s/dkv6271ky0cxvk4lio2bvw6jv9zw5iaf Output Mesh]
 +
<pre>
 +
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23311.tif --uniform --min-edge 20 --output ./COVID-19-23311,uniform,e=20.vtk
 +
</pre>
 +
 +
'''Adaptive with Min-Edge = 20:''' [https://odu.box.com/s/jeqmz2c8dsssl8zujkywl2v3bjaby8gc Output Mesh]
 +
<pre>
 +
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23311.tif --min-edge 20 --output ./COVID-19-23311,w=0.1,e=20.vtk
 +
</pre>
 +
 +
Mesh generated based on the images published at [https://phil.cdc.gov//PHIL_Images/23311/23311.tif Centers for Disease Control and Prevention]. For the uniform meshes, the edge-size corresponds to 20 pixels. The adaptive meshes were created by controlling the size of the elements based on the difference in the intensity of the pixels.

Revision as of 01:06, 16 March 2020

3D Example Meshes

The directory containing the 3D input data is located in the 3D folder of Medical_Imaging_Data.

COVID-19-Spike-Glycoprotein-6vsb

  • Input image : Dimensions (220x223x314) with spacing (0.551042x0.551042x0.551042)
  • Uniform with Delta = 0.5: 5,731,833 tetrahedra
  • Graded with Delta = 0.4: 3,794,223 tetrahedra

Commands to generate meshes :

Uniform with Delta = 0.4: Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/COVID-19-Spike-Glycoprotein-6vsb.nrrd --delta 0.4 --output ./COVID-19-Spike-Glycoprotein-6vsb,d=0.4.vtk

Graded with Delta = 0.4: Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/COVID-19-Spike-Glycoprotein-6vsb.nrrd --delta 0.4 --volume-grading --output ./COVID-19-Spike-Glycoprotein-6vsb,d=0.4,graded.vtk

A tetrahedral mesh of the surface of the COVID-19 spike glycoprotein. Bioassembly data was retrieved from molecule 6vsb from the Protein Data Bank

Head-Neck

  • Input image : Dimensions (255x255x229) with spacing (0.976562x0.976562x1.40002)
  • Uniform with Delta = default: 205,510 tetrahedra
  • Uniform with Delta = 1.5: 767,393 tetrahedra

Commands to generate meshes :

Uniform with Delta = default : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Head-Neck.mha --output ./Head-Neck,d=2.49023.vtk

Uniform with Delta = 1.5 : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Head-Neck.mha --delta 1.5 --output ./Head-Neck,d=1.5.vtk

Brain-With-Tumor-Case17

  • Input image : Dimensions (448x512x176) with spacing (0.488281x0.488281x1)
  • Uniform with Delta = default: 222,540 tetrahedra
  • Graded with Delta = default: 94,383 tetrahedra

Commands to generate meshes :

Uniform with Delta = default : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Brain-With-Tumor-Case17.nii --output ./Brain-With-Tumor-Case17,d=1.76001.vtk

Graded with Delta = default : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Brain-With-Tumor-Case17.nii --volume-grading --output ./Brain-With-Tumor-Case17,d=1.76001,graded.vtk

Knee-Char

  • Input image : Dimensions (512x512x119) with spacing (0.27734x0.27734x1)
  • Uniform with Delta = default : 386,869 tetrahedra
  • Graded with Delta = default : 274,309 tetrahedra

Commands to generate meshes :

Uniform with Delta = default : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Knee-Char.mha --output ./Knee-Char,d=1.19.vtk

Graded with Delta = default : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Knee-Char.mha --volume-grading --output ./Knee-Char,d=1.19,graded.vtk

Ircad2

  • Input image : Dimensions (512x512x219) with spacing (0.976562x0.976562x1.40002)
  • Uniform with Delta = 2: 5,031,442 tetrahedra (#elements for each execution might differ due to the usage of more than one thread)
  • Graded with Delta = 1: 6,072,751 tetrahedra (#elements for each execution might differ due to the usage of more than one thread)

Commands to generate meshes :

Uniform with Delta = 2 : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Ircad2.nrrd --delta 2 --threads 6 --output ./Ircad2,d=2.vtk

Graded with Delta = 1 : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./Medical_Imaging_Data/3D/Ircad2.nrrd --delta 1 --threads 6 --volume-grading --output ./Ircad2,d=1,graded.vtk

2D Example Meshes

The directory containing the 2D input data is located in the 2D folder of Medical_Imaging_Data.

COVID-19-23354

  • Input image : Dimensions (3,000x2,000) with spacing (1x1)
  • Uniform with Min-Edge = 15: 82,981 triangles
  • Adaptive with Min-Edge = 15: 67,920 triangles

Commands to generate meshes :

Uniform with Min-Edge = 15: Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23354.tif --uniform --min-edge 15 --output ./COVID-19-23354,uniform,e=15.vtk

Adaptive with Min-Edge = 15: Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23354.tif --min-edge 15 --output ./COVID-19-23354,w=0.1,e=15.vtk

Mesh generated based on the images published at Centers for Disease Control and Prevention. For the uniform meshes, the edge-size corresponds to 15 pixels. The adaptive meshes were created by controlling the size of the elements based on the difference in the intensity of the pixels.

COVID-19-23311

  • Input image : Dimensions (2,460x2,460) with spacing (1x1)
  • Uniform with Min-Edge = 20: 47,028 triangles
  • Adaptive with Min-Edge = 20: 34,080 tetrahedra

Commands to generate meshes :

Uniform with Min-Edge = 20: Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23311.tif --uniform --min-edge 20 --output ./COVID-19-23311,uniform,e=20.vtk

Adaptive with Min-Edge = 20: Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./Medical_Imaging_Data/2D/COVID-19-23311.tif --min-edge 20 --output ./COVID-19-23311,w=0.1,e=20.vtk

Mesh generated based on the images published at Centers for Disease Control and Prevention. For the uniform meshes, the edge-size corresponds to 20 pixels. The adaptive meshes were created by controlling the size of the elements based on the difference in the intensity of the pixels.