Difference between revisions of "CNF Example Meshes"

From crtc.cs.odu.edu
Jump to: navigation, search
(phase_space_000)
Line 5: Line 5:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 30,949 triangles
 
* Uniform case: 30,949 triangles
* Adapted case:  3,788 triangles
+
* Adaptive case:  3,788 triangles
  
 
<gallery mode="packed" heights=300px>
 
<gallery mode="packed" heights=300px>
Line 18: Line 18:
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk  --output Gaussian_me_10_uniform.vtk --uniform --min-edge=10
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk  --output Gaussian_me_10_uniform.vtk --uniform --min-edge=10
 
</pre>
 
</pre>
'''Adapted :''' [https://odu.box.com/s/1omr8szilea3r6fde39w49gu7u5xyui8 Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/1omr8szilea3r6fde39w49gu7u5xyui8 Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk  --output Gaussian_me_10_wl_1e-1.vtk --weight-limit=0.05 --min-edge=10
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk  --output Gaussian_me_10_wl_1e-1.vtk --weight-limit=0.05 --min-edge=10
Line 28: Line 28:
 
* Input distribution size : 10,000 cells
 
* Input distribution size : 10,000 cells
 
* Uniform case: 7,587 triangles
 
* Uniform case: 7,587 triangles
* Adapted (min edge = 2)  case:  623  triangles
+
* Adaptive (min edge = 2)  case:  623  triangles
* Adapted (min edge = 0.5) case:  1,409 triangles
+
* Adaptive (min edge = 0.5) case:  1,409 triangles
 
 
  
 
<gallery mode="packed" heights=300px>
 
<gallery mode="packed" heights=300px>
Line 45: Line 44:
 
</pre>
 
</pre>
  
'''Adapted (min edge = 2):''' [https://odu.box.com/s/3yp9jod0hcjxipfu81ywk0jrxphonasa Output Mesh]
+
'''Adaptive (min edge = 2):''' [https://odu.box.com/s/3yp9jod0hcjxipfu81ywk0jrxphonasa Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
Line 51: Line 50:
  
  
'''Adapted (min edge = 0.5):''' [https://odu.box.com/s/7zuszll7jn8tt8bpge6vau2tkbatkihz Output Mesh]
+
'''Adaptive (min edge = 0.5):''' [https://odu.box.com/s/7zuszll7jn8tt8bpge6vau2tkbatkihz Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_0.5_wl_1e-1.vtk --min-edge=0.5 --weight-limit=0.1
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_0.5_wl_1e-1.vtk --min-edge=0.5 --weight-limit=0.1
Line 61: Line 60:
 
* Input distribution size : 10,000 cells
 
* Input distribution size : 10,000 cells
 
* Uniform case: 7,587 triangles
 
* Uniform case: 7,587 triangles
* Adapted case:  1,038  triangles
+
* Adaptive case:  1,038  triangles
  
 
The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519
 
The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519
Line 78: Line 77:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/oytjqxeque11wvbxu62fhwc3830fbpcy Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/oytjqxeque11wvbxu62fhwc3830fbpcy Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk  --output NT_140519_X50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk  --output NT_140519_X50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
Line 86: Line 85:
 
* Input distribution size : 10,000 cells
 
* Input distribution size : 10,000 cells
 
* Uniform case: 7,587 triangles
 
* Uniform case: 7,587 triangles
* Adapted case:  1,018  triangles
+
* Adaptive case:  1,018  triangles
  
 
The 2D case created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU
 
The 2D case created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU
Line 102: Line 101:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/8369kd2q52weqp76811h6p54sax3nj37 Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/8369kd2q52weqp76811h6p54sax3nj37 Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
 
docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
Line 113: Line 112:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted (min edge = 1) case: 273,716 tetrahedra
+
* Adaptive (min edge = 1) case: 273,716 tetrahedra
* Adapted (min edge = 2) case:  67,935 tetrahedra
+
* Adaptive (min edge = 2) case:  67,935 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 129: Line 128:
 
</pre>
 
</pre>
  
'''Adapted (min edge = 1):''' [https://odu.box.com/s/zvuuq7e6bx1cqxqbna5rpfnxfaqezgqa Output Mesh]
+
'''Adaptive (min edge = 1):''' [https://odu.box.com/s/zvuuq7e6bx1cqxqbna5rpfnxfaqezgqa Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=1.vtk
 
</pre>
 
</pre>
  
'''Adapted (min edge = 2):''' [https://odu.box.com/s/ddyvbwcdqykta5b1nxi3gwxjzgdzz8yk Output Mesh]
+
'''Adaptive (min edge = 2):''' [https://odu.box.com/s/ddyvbwcdqykta5b1nxi3gwxjzgdzz8yk Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --min-edge 2 --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --min-edge 2 --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=2.vtk
Line 142: Line 141:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 264,762 tetrahedra
+
* Adaptive case: 264,762 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 156: Line 155:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/bcg7aw4lv9rvp4531va7pqg7j2os7tny Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/bcg7aw4lv9rvp4531va7pqg7j2os7tny Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf-adaptive --weight-limit 0.05 --output ./GPDMMS13_140519,d=5,wl=0.05,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf-adaptive --weight-limit 0.05 --output ./GPDMMS13_140519,d=5,wl=0.05,me=1.vtk
Line 164: Line 163:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 261,485 tetrahedra
+
* Adaptive case: 261,485 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 178: Line 177:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/51rvexl5t83zr4svn2xuw221v16jmtph Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/51rvexl5t83zr4svn2xuw221v16jmtph Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf-adaptive --weight-limit 0.05 --output ./GPDVGG99_140519,d=5,wl=0.05,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf-adaptive --weight-limit 0.05 --output ./GPDVGG99_140519,d=5,wl=0.05,me=1.vtk
Line 186: Line 185:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted (min edge = 1) case: 253,965 tetrahedra
+
* Adaptive (min edge = 1) case: 253,965 tetrahedra
* Adapted (min edge = 2) case: 120,168 tetrahedra
+
* Adaptive (min edge = 2) case: 120,168 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 202: Line 201:
 
</pre>
 
</pre>
  
'''Adapted (min edge = 1):''' [https://odu.box.com/s/1gviwtmh053fzqixo4thaueshjhgqdnq Output Mesh]
+
'''Adaptive (min edge = 1):''' [https://odu.box.com/s/1gviwtmh053fzqixo4thaueshjhgqdnq Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --output ./NT_140519,d=5,wl=0.07,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --output ./NT_140519,d=5,wl=0.07,me=1.vtk
 
</pre>
 
</pre>
  
'''Adapted (min edge = 2):''' [https://odu.box.com/s/ddllau93m3itsax55pcb9ifhljp7bd3u Output Mesh]
+
'''Adaptive (min edge = 2):''' [https://odu.box.com/s/ddllau93m3itsax55pcb9ifhljp7bd3u Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --min-edge 2 --output ./NT_140519,d=5,wl=0.07,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --min-edge 2 --output ./NT_140519,d=5,wl=0.07,me=2.vtk
Line 215: Line 214:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 259,269 tetrahedra
+
* Adaptive case: 259,269 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 229: Line 228:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/gei8k0bjh7k090vr568xo30fulslnpi5 Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/gei8k0bjh7k090vr568xo30fulslnpi5 Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf-adaptive --weight-limit 0.13 --output ./OBS_ALU_140519,d=5,wl=0.13,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf-adaptive --weight-limit 0.13 --output ./OBS_ALU_140519,d=5,wl=0.13,me=1.vtk
Line 237: Line 236:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case:  25,168 tetrahedra
+
* Adaptive case:  25,168 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 251: Line 250:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/j9zpcjp6fchtr82r6xk0dynf0qfkgi4d Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/j9zpcjp6fchtr82r6xk0dynf0qfkgi4d Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf-adaptive --weight-limit 0.01 --output ./OBS_CS_140519,d=5,wl=0.01,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf-adaptive --weight-limit 0.01 --output ./OBS_CS_140519,d=5,wl=0.01,me=1.vtk
Line 260: Line 259:
 
* Input distribution size : 8,000,000 cells
 
* Input distribution size : 8,000,000 cells
 
* Uniform case: 745,291 tetrahedra
 
* Uniform case: 745,291 tetrahedra
* Adapted case: 358,637 tetrahedra
+
* Adaptive case: 358,637 tetrahedra
* Adapted case: 358,637 tetrahedra (other side of the same adapted case)
+
* Adaptive case: 358,637 tetrahedra (other side of the same adaptive case)
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 276: Line 275:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/byo618ec2140sh6jopidyy1358nmk7ch Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/byo618ec2140sh6jopidyy1358nmk7ch Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf-adaptive --weight-limit 0.01 --output ./cff_E.data_IM,d=10,wl=0.01,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf-adaptive --weight-limit 0.01 --output ./cff_E.data_IM,d=10,wl=0.01,me=2.vtk
Line 284: Line 283:
 
* Input distribution size : 8,000,000 cells
 
* Input distribution size : 8,000,000 cells
 
* Uniform case: 745,291 tetrahedra
 
* Uniform case: 745,291 tetrahedra
* Adapted case: 314,990 tetrahedra
+
* Adaptive case: 314,990 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 298: Line 297:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/m7kn4kcmatmx86mofb06f37j8kkc35e4 Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/m7kn4kcmatmx86mofb06f37j8kkc35e4 Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf-adaptive --output ./cff_E.data_REAL,d=10,wl=0.1,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf-adaptive --output ./cff_E.data_REAL,d=10,wl=0.1,me=2.vtk
Line 306: Line 305:
 
* Input distribution size : 8,000,000 cells
 
* Input distribution size : 8,000,000 cells
 
* Uniform case: 745,291 tetrahedra
 
* Uniform case: 745,291 tetrahedra
* Adapted case: 289,855 tetrahedra
+
* Adaptive case: 289,855 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 320: Line 319:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/ilbviax5y7vrji1anf3a4g8nd8v1wbdw Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/ilbviax5y7vrji1anf3a4g8nd8v1wbdw Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf-adaptive --weight-limit 0.05 --output ./cff_H.data_IM,d=10,wl=0.05,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf-adaptive --weight-limit 0.05 --output ./cff_H.data_IM,d=10,wl=0.05,me=2.vtk
Line 328: Line 327:
 
* Input distribution size : 8,000,000 cells
 
* Input distribution size : 8,000,000 cells
 
* Uniform case: 745,291 tetrahedra
 
* Uniform case: 745,291 tetrahedra
* Adapted case: 372,016 tetrahedra
+
* Adaptive case: 372,016 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 342: Line 341:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/3ww0semcpqqd36xk9eysczxzajwz56uu Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/3ww0semcpqqd36xk9eysczxzajwz56uu Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf-adaptive --output ./cff_H.data_REAL,d=10,wl=0.1,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf-adaptive --output ./cff_H.data_REAL,d=10,wl=0.1,me=2.vtk
Line 350: Line 349:
 
* Input distribution size : 8,000,000 cells
 
* Input distribution size : 8,000,000 cells
 
* Uniform case: 745,291 tetrahedra
 
* Uniform case: 745,291 tetrahedra
* Adapted case: 337,772 tetrahedra
+
* Adaptive case: 337,772 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 364: Line 363:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/2g7n0thzu4uov8zhskykct9kohosqtzm Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/2g7n0thzu4uov8zhskykct9kohosqtzm Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf-adaptive --output ./cff_Ht.data_IM,d=10,wl=0.1,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf-adaptive --output ./cff_Ht.data_IM,d=10,wl=0.1,me=2.vtk
Line 372: Line 371:
 
* Input distribution size : 8,000,000 cells
 
* Input distribution size : 8,000,000 cells
 
* Uniform case: 745,291 tetrahedra
 
* Uniform case: 745,291 tetrahedra
* Adapted case: 394,632 tetrahedra
+
* Adaptive case: 394,632 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 386: Line 385:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/laao7ehbda56xyrm17jfn9xw2sz407qi Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/laao7ehbda56xyrm17jfn9xw2sz407qi Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf-adaptive --output ./cff_Ht.data_REAL,d=10,wl=0.1,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf-adaptive --output ./cff_Ht.data_REAL,d=10,wl=0.1,me=2.vtk
Line 395: Line 394:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 236,512 tetrahedra
+
* Adaptive case: 236,512 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 409: Line 408:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/62hvu23fevbylbn8htm2os70adamxl3d Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/62hvu23fevbylbn8htm2os70adamxl3d Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf-adaptive --weight-limit 0.04 --output ./CFF_E_im,d=5,wl=0.04,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf-adaptive --weight-limit 0.04 --output ./CFF_E_im,d=5,wl=0.04,me=1.vtk
Line 417: Line 416:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 260,349 tetrahedra
+
* Adaptive case: 260,349 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 431: Line 430:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/294puxiw7kg9ykeaanuojx7ha071ibn6 Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/294puxiw7kg9ykeaanuojx7ha071ibn6 Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf-adaptive --weight-limit 0.08 --output ./CFF_E_re,d=5,wl=0.08,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf-adaptive --weight-limit 0.08 --output ./CFF_E_re,d=5,wl=0.08,me=1.vtk
Line 439: Line 438:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 263,040 tetrahedra
+
* Adaptive case: 263,040 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 453: Line 452:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/6b8in611r4b0i345ymvpynif45j0pnt2 Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/6b8in611r4b0i345ymvpynif45j0pnt2 Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf-adaptive --weight-limit 0.06 --output ./CFF_H_im,d=5,wl=0.06,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf-adaptive --weight-limit 0.06 --output ./CFF_H_im,d=5,wl=0.06,me=1.vtk
Line 461: Line 460:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 249,257 tetrahedra
+
* Adaptive case: 249,257 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 475: Line 474:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/40loorarxv19xn40qsvlo56hwpaac2xu Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/40loorarxv19xn40qsvlo56hwpaac2xu Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf-adaptive --weight-limit 0.13 --output ./CFF_H_re,d=5,wl=0.13,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf-adaptive --weight-limit 0.13 --output ./CFF_H_re,d=5,wl=0.13,me=1.vtk
Line 483: Line 482:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 300,117 tetrahedra
+
* Adaptive case: 300,117 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 497: Line 496:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/peljqrn1v8gf9mco4qrly85guxhyef0l Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/peljqrn1v8gf9mco4qrly85guxhyef0l Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf-adaptive --output ./GPD_H_down,d=5,wl=0.1,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf-adaptive --output ./GPD_H_down,d=5,wl=0.1,me=1.vtk
Line 505: Line 504:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 768,033 tetrahedra
 
* Uniform case: 768,033 tetrahedra
* Adapted case: 295,671 tetrahedra
+
* Adaptive case: 295,671 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 519: Line 518:
 
</pre>
 
</pre>
  
'''Adapted :'''[https://odu.box.com/s/nxrn5xnia27kd4b0kyditafd86atix7b Output Mesh]
+
'''Adaptive :'''[https://odu.box.com/s/nxrn5xnia27kd4b0kyditafd86atix7b Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf-adaptive --output ./GPD_H_up,d=5,wl=0.1,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf-adaptive --output ./GPD_H_up,d=5,wl=0.1,me=1.vtk
Line 527: Line 526:
 
* Input distribution size : 1,000,000 cells
 
* Input distribution size : 1,000,000 cells
 
* Uniform case: 301,772 tetrahedra
 
* Uniform case: 301,772 tetrahedra
* Adapted case: 279,721 tetrahedra
+
* Adaptive case: 279,721 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 541: Line 540:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/sprttnvtuz5imm3cdrdd34cuasifv4n0 Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/sprttnvtuz5imm3cdrdd34cuasifv4n0 Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-adaptive --background-value 0 --weight-limit 0.07 --output ./OBS_ALU,d=5,bv=0,wl=0.07,me=1.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-adaptive --background-value 0 --weight-limit 0.07 --output ./OBS_ALU,d=5,bv=0,wl=0.07,me=1.vtk
Line 550: Line 549:
 
* Input distribution size : 15,625 cells
 
* Input distribution size : 15,625 cells
 
* Uniform case: 17,961 tetrahedra
 
* Uniform case: 17,961 tetrahedra
* Adapted case: 10,593 tetrahedra
+
* Adaptive case: 10,593 tetrahedra
  
 
<gallery mode="packed" heights=350px>
 
<gallery mode="packed" heights=350px>
Line 564: Line 563:
 
</pre>
 
</pre>
  
'''Adapted :''' [https://odu.box.com/s/9k8b3wv9ejkvpf5b7xcbb2lc85zrz3b6 Output Mesh]
+
'''Adaptive :''' [https://odu.box.com/s/9k8b3wv9ejkvpf5b7xcbb2lc85zrz3b6 Output Mesh]
 
<pre>
 
<pre>
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 2 --cnf-adaptive --weight-limit 0.004 --min-edge 2 --output ./phase_space_000,d=2,wl=0.004,me=2.vtk
 
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 2 --cnf-adaptive --weight-limit 0.004 --min-edge 2 --output ./phase_space_000,d=2,wl=0.004,me=2.vtk
 
</pre>
 
</pre>

Revision as of 15:56, 2 March 2020

2D Example Meshes

The directory containing the 2D input data is located in the 2D folder of CNF_Data.

Synthetic Gaussian Data

  • Input distribution size : 1,000,000 cells
  • Uniform case: 30,949 triangles
  • Adaptive case: 3,788 triangles

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk  --output Gaussian_me_10_uniform.vtk --uniform --min-edge=10

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk  --output Gaussian_me_10_wl_1e-1.vtk --weight-limit=0.05 --min-edge=10

GPDGK16Numerical_140519

The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) GPDGK16Numerical_140519

  • Input distribution size : 10,000 cells
  • Uniform case: 7,587 triangles
  • Adaptive (min edge = 2) case: 623 triangles
  • Adaptive (min edge = 0.5) case: 1,409 triangles

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_uniform.vtk --min-edge=2 --uniform

Adaptive (min edge = 2): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1


Adaptive (min edge = 0.5): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_0.5_wl_1e-1.vtk --min-edge=0.5 --weight-limit=0.1

Note: By using min-edge less than 1 we are essentially generating triangles with an edge smaller than the input pixels. Using values much smaller than 1 is not expected to help the discretization since we are essentially packing more element into a pixel which has a constant value.

NT_140519

  • Input distribution size : 10,000 cells
  • Uniform case: 7,587 triangles
  • Adaptive case: 1,038 triangles

The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519


Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk  --output NT_140519_X50_me_2_uniform.vtk --min-edge=2 --uniform

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk  --output NT_140519_X50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1

OBS_ALU_Y50

  • Input distribution size : 10,000 cells
  • Uniform case: 7,587 triangles
  • Adaptive case: 1,018 triangles

The 2D case created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_uniform.vtk --min-edge=2 --uniform

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1

3D Example Meshes

The directory containing the 3D input data is located in the 3D folder of CNF_Data.

CFF_14052019

GPDGK16Numerical_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive (min edge = 1) case: 273,716 tetrahedra
  • Adaptive (min edge = 2) case: 67,935 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d -i ../../Data/3D/CNF_SHARE/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-uniform --output ./GPDGK16Numerical_140519,d=1,uniform.vtk

Adaptive (min edge = 1): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=1.vtk

Adaptive (min edge = 2): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --min-edge 2 --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=2.vtk

GPDMMS13_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 264,762 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf-uniform --output ./GPDMMS13_140519,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf-adaptive --weight-limit 0.05 --output ./GPDMMS13_140519,d=5,wl=0.05,me=1.vtk

GPDVGG99_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 261,485 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf-uniform --output ./GPDVGG99_140519,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf-adaptive --weight-limit 0.05 --output ./GPDVGG99_140519,d=5,wl=0.05,me=1.vtk

NT_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive (min edge = 1) case: 253,965 tetrahedra
  • Adaptive (min edge = 2) case: 120,168 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-uniform --output ./NT_140519,d=1,uniform.vtk

Adaptive (min edge = 1): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --output ./NT_140519,d=5,wl=0.07,me=1.vtk

Adaptive (min edge = 2): Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --min-edge 2 --output ./NT_140519,d=5,wl=0.07,me=2.vtk

OBS_ALU_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 259,269 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf-uniform --output ./OBS_ALU_140519,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf-adaptive --weight-limit 0.13 --output ./OBS_ALU_140519,d=5,wl=0.13,me=1.vtk

OBS_CS_140519

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 25,168 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf-uniform --output ./OBS_CS_140519,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf-adaptive --weight-limit 0.01 --output ./OBS_CS_140519,d=5,wl=0.01,me=1.vtk

CFF_DATA

cff_E.data_IM

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adaptive case: 358,637 tetrahedra
  • Adaptive case: 358,637 tetrahedra (other side of the same adaptive case)

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf-uniform --output ./cff_E.data_IM,d=2,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf-adaptive --weight-limit 0.01 --output ./cff_E.data_IM,d=10,wl=0.01,me=2.vtk

cff_E.data_REAL

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adaptive case: 314,990 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf-uniform --output ./cff_E.data_REAL,d=2,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf-adaptive --output ./cff_E.data_REAL,d=10,wl=0.1,me=2.vtk

cff_H.data_IM

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adaptive case: 289,855 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf-uniform --output ./cff_H.data_IM,d=2,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf-adaptive --weight-limit 0.05 --output ./cff_H.data_IM,d=10,wl=0.05,me=2.vtk

cff_H.data_REAL

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adaptive case: 372,016 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf-uniform --output ./cff_H.data_REAL,d=2,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf-adaptive --output ./cff_H.data_REAL,d=10,wl=0.1,me=2.vtk

cff_Ht.data_IM

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adaptive case: 337,772 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf-uniform --output ./cff_Ht.data_IM,d=2,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf-adaptive --output ./cff_Ht.data_IM,d=10,wl=0.1,me=2.vtk

cff_Ht.data_REAL

  • Input distribution size : 8,000,000 cells
  • Uniform case: 745,291 tetrahedra
  • Adaptive case: 394,632 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf-uniform --output ./cff_Ht.data_REAL,d=2,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf-adaptive --output ./cff_Ht.data_REAL,d=10,wl=0.1,me=2.vtk

DATA_04252019

CFF_E_im

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 236,512 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf-uniform --output ./CFF_E_im,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf-adaptive --weight-limit 0.04 --output ./CFF_E_im,d=5,wl=0.04,me=1.vtk

CFF_E_re

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 260,349 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf-uniform --output ./CFF_E_re,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf-adaptive --weight-limit 0.08 --output ./CFF_E_re,d=5,wl=0.08,me=1.vtk

CFF_H_im

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 263,040 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf-uniform --output ./CFF_H_im,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf-adaptive --weight-limit 0.06 --output ./CFF_H_im,d=5,wl=0.06,me=1.vtk

CFF_H_re

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 249,257 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf-uniform --output ./CFF_H_re,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf-adaptive --weight-limit 0.13 --output ./CFF_H_re,d=5,wl=0.13,me=1.vtk

GPD_H_down

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 300,117 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf-uniform --output ./GPD_H_down,d=1,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf-adaptive --output ./GPD_H_down,d=5,wl=0.1,me=1.vtk

GPD_H_up

  • Input distribution size : 1,000,000 cells
  • Uniform case: 768,033 tetrahedra
  • Adaptive case: 295,671 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf-uniform --output ./GPD_H_up,d=1,uniform.vtk

Adaptive :Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf-adaptive --output ./GPD_H_up,d=5,wl=0.1,me=1.vtk

OBS_ALU

  • Input distribution size : 1,000,000 cells
  • Uniform case: 301,772 tetrahedra
  • Adaptive case: 279,721 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-uniform --background-value 0 --output ./OBS_ALU,d=1,bv=0,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-adaptive --background-value 0 --weight-limit 0.07 --output ./OBS_ALU,d=5,bv=0,wl=0.07,me=1.vtk

phase_space_000

phase_space_000

  • Input distribution size : 15,625 cells
  • Uniform case: 17,961 tetrahedra
  • Adaptive case: 10,593 tetrahedra

Commands to generate meshes :

Uniform : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 0.25 --cnf-uniform --output ./phase_space_000,d=0.25,uniform.vtk

Adaptive : Output Mesh

docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 2 --cnf-adaptive --weight-limit 0.004 --min-edge 2 --output ./phase_space_000,d=2,wl=0.004,me=2.vtk