Difference between revisions of "CNF Example Meshes"
Spyridon97 (talk | contribs) (Undo revision 5107 by Spyridon97 (talk)) |
Spyridon97 (talk | contribs) (→CFF_DATA) |
||
Line 260: | Line 260: | ||
* Input distribution size : 8,000,000 cells | * Input distribution size : 8,000,000 cells | ||
* Uniform case: 745,291 tetrahedra | * Uniform case: 745,291 tetrahedra | ||
− | * Adapted case: | + | * Adapted case: 358,637 tetrahedra |
− | * Adapted case: | + | * Adapted case: 358,637 tetrahedra (other side of the same adapted case) |
+ | [[File:cff_E.data_IM,d=10,wl=0.01,me=2.png|500px|cff_E.data_IM,d=10,wl=0.01,me=2.png]] | ||
+ | [[File:cff_E.data_IM,d=10,wl=0.01,me=2,OtherSide.png|500px|cff_E.data_IM,d=10,wl=0.01,me=2,OtherSide.png]] | ||
<gallery mode="packed" heights=350px> | <gallery mode="packed" heights=350px> | ||
File:cff_E.data_IM,d=2,uniform.png | File:cff_E.data_IM,d=2,uniform.png | ||
− | |||
− | |||
</gallery> | </gallery> | ||
Line 278: | Line 278: | ||
'''Adapted :''' [https://odu.box.com/s/w9v0ytna6rh81gitrji1qo16lqp6lctz Output Mesh] | '''Adapted :''' [https://odu.box.com/s/w9v0ytna6rh81gitrji1qo16lqp6lctz Output Mesh] | ||
<pre> | <pre> | ||
− | docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf --weight-limit 0. | + | docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf --weight-limit 0.01 --output ./cff_E.data_IM,d=10,wl=0.01,me=2.vtk |
</pre> | </pre> | ||
Revision as of 16:35, 27 February 2020
Contents
2D Example Meshes
The directory containing the 2D input data is located in the 2D folder of CNF_Data.
Synthetic Gaussian Data
- Input distribution size : 1,000,000 cells
- Uniform case: 30,949 triangles
- Adapted case: 3,788 triangles
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/Gaussian2.vtk --output Gaussian_me_10_uniform.vtk --uniform --min-edge=10
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/Gaussian2.vtk --output Gaussian_me_10_wl_1e-1.vtk --weight-limit=0.05 --min-edge=10
GPDGK16Numerical_140519
The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) GPDGK16Numerical_140519
- Input distribution size : 10,000 cells
- Uniform case: 7,587 triangles
- Adapted (min edge = 2) case: 623 triangles
- Adapted (min edge = 0.5) case: 1,409 triangles
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_uniform.vtk --min-edge=2 --uniform
Adapted (min edge = 2): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
Adapted (min edge = 0.5): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_0.5_wl_1e-1.vtk --min-edge=0.5 --weight-limit=0.1
Note: By using min-edge less than 1 we are essentially generating triangles with an edge smaller than the input pixels. Using values much smaller than 1 is not expected to help the discretization since we are essentially packing more element into a pixel which has a constant value.
NT_140519
- Input distribution size : 10,000 cells
- Uniform case: 7,587 triangles
- Adapted case: 1,038 triangles
The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/NT_140519_50_X.vtk --output NT_140519_X50_me_2_uniform.vtk --min-edge=2 --uniform
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/NT_140519_50_X.vtk --output NT_140519_X50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
OBS_ALU_Y50
- Input distribution size : 10,000 cells
- Uniform case: 7,587 triangles
- Adapted case: 1,018 triangles
The 2D case created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_uniform.vtk --min-edge=2 --uniform
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
3D Example Meshes
The directory containing the 3D input data is located in the 3D folder of CNF_Data.
CFF_14052019
GPDGK16Numerical_140519
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted (min edge = 1) case: 273,716 tetrahedra
- Adapted (min edge = 2) case: 67,935 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d -i ../../Data/3D/CNF_SHARE/CFF_14052019/GPDGK16Numerical_140519.nrrd --image-segmentation --linear-interpolation --output ./GPDGK16Numerical_140519,d=1,uniform.vtk
Adapted (min edge = 1): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=1.vtk
Adapted (min edge = 2): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf --weight-limit 0.1 --min-edge 2 --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=2.vtk
GPDMMS13_140519
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 264,762 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --image-segmentation --linear-interpolation --output ./GPDMMS13_140519,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf --weight-limit 0.05 --min-edge 1 --output ./GPDMMS13_140519,d=5,wl=0.05,me=1.vtk
GPDVGG99_140519
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 261,485 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --image-segmentation --linear-interpolation --output ./GPDVGG99_140519,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf --weight-limit 0.05 --min-edge 1 --output ./GPDVGG99_140519,d=5,wl=0.05,me=1.vtk
NT_140519
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted (min edge = 1) case: 253,965 tetrahedra
- Adapted (min edge = 2) case: 120,168 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --image-segmentation --linear-interpolation --output ./NT_140519,d=1,uniform.vtk
Adapted (min edge = 1): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf --weight-limit 0.07 --min-edge 1 --output ./NT_140519,d=5,wl=0.07,me=1.vtk
Adapted (min edge = 2): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf --weight-limit 0.07 --min-edge 2 --output ./NT_140519,d=5,wl=0.07,me=2.vtk
OBS_ALU_140519
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 259,269 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --image-segmentation --linear-interpolation --output ./OBS_ALU_140519,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf --weight-limit 0.13 --min-edge 1 --output ./OBS_ALU_140519,d=5,wl=0.13,me=1.vtk
OBS_CS_140519
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 25,168 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --image-segmentation --linear-interpolation --output ./OBS_CS_140519,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf --weight-limit 0.01 --min-edge 1 --output ./OBS_CS_140519,d=5,wl=0.01,me=1.vtk
CFF_DATA
cff_E.data_IM
- Input distribution size : 8,000,000 cells
- Uniform case: 745,291 tetrahedra
- Adapted case: 358,637 tetrahedra
- Adapted case: 358,637 tetrahedra (other side of the same adapted case)
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --image-segmentation --linear-interpolation --output ./cff_E.data_IM,d=2,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf --weight-limit 0.01 --output ./cff_E.data_IM,d=10,wl=0.01,me=2.vtk
cff_E.data_REAL
- Input distribution size : 8,000,000 cells
- Uniform case: 745,291 tetrahedra
- Adapted case: 1,433,247 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --image-segmentation --linear-interpolation --output ./cff_E.data_REAL,d=2,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./cff_E.data_REAL,d=10,wl=0.1,me=1.vtk
cff_H.data_IM
- Input distribution size : 8,000,000 cells
- Uniform case: 745,291 tetrahedra
- Adapted case: 1,379,521 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --image-segmentation --linear-interpolation --output ./cff_H.data_IM,d=2,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf --weight-limit 0.05 --min-edge 1 --output ./cff_H.data_IM,d=10,wl=0.05,me=1.vtk
cff_H.data_REAL
- Input distribution size : 8,000,000 cells
- Uniform case: 745,291 tetrahedra
- Adapted case: 1,699,757 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --image-segmentation --linear-interpolation --output ./cff_H.data_REAL,d=2,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./cff_H.data_REAL,d=10,wl=0.1,me=1.vtk
cff_Ht.data_IM
- Input distribution size : 8,000,000 cells
- Uniform case: 745,291 tetrahedra
- Adapted case: 1,594,872 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --image-segmentation --linear-interpolation --output ./cff_Ht.data_IM,d=2,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./cff_Ht.data_IM,d=10,wl=0.1,me=1.vtk
cff_Ht.data_REAL
- Input distribution size : 8,000,000 cells
- Uniform case: 745,291 tetrahedra
- Adapted case: 1,821,299 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --image-segmentation --linear-interpolation --output ./cff_Ht.data_REAL,d=2,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./cff_Ht.data_REAL,d=10,wl=0.1,me=1.vtk
DATA_04252019
CFF_E_im
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 236,512 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --image-segmentation --linear-interpolation --output ./CFF_E_im,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf --weight-limit 0.04 --min-edge 1 --output ./CFF_E_im,d=5,wl=0.04,me=1.vtk
CFF_E_re
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 260,349 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --image-segmentation --linear-interpolation --output ./CFF_E_re,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf --weight-limit 0.08 --min-edge 1 --output ./CFF_E_re,d=5,wl=0.08,me=1.vtk
CFF_H_im
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 263,040 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --image-segmentation --linear-interpolation --output ./CFF_H_im,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf --weight-limit 0.06 --min-edge 1 --output ./CFF_H_im,d=5,wl=0.06,me=1.vtk
CFF_H_re
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 249,257 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --image-segmentation --linear-interpolation --output ./CFF_H_re,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf --weight-limit 0.13 --min-edge 1 --output ./CFF_H_re,d=5,wl=0.13,me=1.vtk
GPD_H_down
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 300,117 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --image-segmentation --linear-interpolation --output ./GPD_H_down,d=1,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./GPD_H_down,d=5,wl=0.1,me=1.vtk
GPD_H_up
- Input distribution size : 1,000,000 cells
- Uniform case: 768,033 tetrahedra
- Adapted case: 295,671 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --image-segmentation --linear-interpolation --output ./GPD_H_up,d=1,uniform.vtk
Adapted :Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf --weight-limit 0.1 --min-edge 1 --output ./GPD_H_up,d=5,wl=0.1,me=1.vtk
OBS_ALU
- Input distribution size : 1,000,000 cells
- Uniform case: 301,772 tetrahedra
- Adapted case: 279,721 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --image-segmentation --background-value 0 --linear-interpolation --output ./OBS_ALU,d=1,bv=0,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf --background-value 0 --weight-limit 0.07 --min-edge 1 --output ./OBS_ALU,d=5,bv=0,wl=0.07,me=1.vtk
phase_space_000
phase_space_000
- Input distribution size : 15,625 cells
- Uniform case: 26,410 tetrahedra
- Adapted case: 21,392 tetrahedra
Commands to generate meshes :
Uniform : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 0.5 --image-segmentation --background-value 0 --linear-interpolation --output ./phase_space_000,d=0.5,bv=0,uniform.vtk
Adapted : Output Mesh
docker run -v $(pwd):/data/ crtc_i2m podm3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 1.5 --cnf --background-value 0 --weight-limit 0.004 --min-edge 1 --output ./phase_space_000,d=1.5,bv=0,wl=0.004,me=1.vtk