Difference between revisions of "CNF Example Meshes"
Spyridon97 (talk | contribs)  (→Synthetic Gaussian Data)  | 
				Spyridon97 (talk | contribs)   (→OBS_ALU_Y50)  | 
				||
| (8 intermediate revisions by the same user not shown) | |||
| Line 572: | Line 572: | ||
'''Adaptive:''' [https://odu.box.com/s/946ll0p0qd65ahhm4s2zgnc7xjszrf0w Output Mesh]  | '''Adaptive:''' [https://odu.box.com/s/946ll0p0qd65ahhm4s2zgnc7xjszrf0w Output Mesh]  | ||
<pre>  | <pre>  | ||
| − | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk --weight-limit  | + | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/Gaussian2.vtk --cnf-adaptive --weight-limit 0.05  | 
</pre>  | </pre>  | ||
| Line 581: | Line 581: | ||
* Input distribution size: 10,000 cells  | * Input distribution size: 10,000 cells  | ||
* Uniform: 7,587 triangles  | * Uniform: 7,587 triangles  | ||
| − | * Adaptive   | + | * Adaptive:  1,208   triangles  | 
| − | |||
<gallery mode="packed" heights=300px>  | <gallery mode="packed" heights=300px>  | ||
File:GPDGK16Numerical 140519 X50 me2 uniform.png  | File:GPDGK16Numerical 140519 X50 me2 uniform.png  | ||
File:GPDGK16Numerical 140519 X50 me2 wl 1e-1.png  | File:GPDGK16Numerical 140519 X50 me2 wl 1e-1.png  | ||
| − | |||
</gallery>  | </gallery>  | ||
| Line 594: | Line 592: | ||
'''Uniform:''' [https://odu.box.com/s/jgqtydxkdf33iji5c125j70xx5mvi7n6 Output Mesh]  | '''Uniform:''' [https://odu.box.com/s/jgqtydxkdf33iji5c125j70xx5mvi7n6 Output Mesh]  | ||
<pre>  | <pre>  | ||
| − | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --  | + | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --cnf-uniform --area 2  | 
</pre>  | </pre>  | ||
| − | '''Adaptive   | + | '''Adaptive:''' [https://odu.box.com/s/e6ghjq0in1w3m9usvbhdye21wlraq271 Output Mesh]  | 
<pre>  | <pre>  | ||
| − | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --  | + | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --cnf-adaptive  | 
</pre>  | </pre>  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
===NT_140519===  | ===NT_140519===  | ||
| Line 616: | Line 606: | ||
* Input distribution size: 10,000 cells  | * Input distribution size: 10,000 cells  | ||
* Uniform: 7,587 triangles  | * Uniform: 7,587 triangles  | ||
| − | * Adaptive:  1,  | + | * Adaptive:  1,181   triangles  | 
<gallery mode="packed" heights=300px>  | <gallery mode="packed" heights=300px>  | ||
| Line 627: | Line 617: | ||
'''Uniform:''' [https://odu.box.com/s/87wruxwbks5k9q5wst9d7rx6z4eycwyz Output Mesh]  | '''Uniform:''' [https://odu.box.com/s/87wruxwbks5k9q5wst9d7rx6z4eycwyz Output Mesh]  | ||
<pre>  | <pre>  | ||
| − | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk   | + | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk --cnf-uniform --area 2  | 
</pre>  | </pre>  | ||
| − | '''Adaptive:''' [https://odu.box.com/s/  | + | '''Adaptive:''' [https://odu.box.com/s/dovy2udxoor8l51hndq4nh7yalg6g52y Output Mesh]  | 
<pre>  | <pre>  | ||
| − | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk   | + | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/NT_140519_50_X.vtk --cnf-adaptive --min-edge 1  | 
</pre>  | </pre>  | ||
| Line 652: | Line 642: | ||
'''Uniform:''' [https://odu.box.com/s/irrcuttg0ceogzgnn4x86mgf9eskk1wg Output Mesh]  | '''Uniform:''' [https://odu.box.com/s/irrcuttg0ceogzgnn4x86mgf9eskk1wg Output Mesh]  | ||
<pre>  | <pre>  | ||
| − | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --  | + | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --cnf-uniform --area 2  | 
</pre>  | </pre>  | ||
| − | '''Adaptive:''' [https://odu.box.com/s/  | + | '''Adaptive:''' [https://odu.box.com/s/h177u63uk3us6pm8k3m4swv9qxnd2a45 Output Mesh]  | 
<pre>  | <pre>  | ||
| − | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --  | + | docker run -v $(pwd):/data/ crtc_i2m tessellate2d  --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --cnf-adaptive --min-edge 1  | 
</pre>  | </pre>  | ||
Latest revision as of 20:44, 23 July 2020
Contents
3D Example Meshes
The directory containing the 3D input data is located in the 3D folder of CNF_Data.
Summer 2020
GPDGK16
GPDGK16_uH_img
- Input Image
 - Input distribution size: 1,000 cells
 -  Adaptive Meshes which deal with the input as an image:
- (PODM) delta = 2, min edge = 0.85, weight limit = 0.12, max edge = 0.2 * diagonal: 1,208 tetrahedra, Output Mesh
 - (PODM) delta = 1, min edge = 0.2, weight limit = 0.1, max edge = 0.2 * diagonal: tetrahedra 8,690, Output Mesh
 
 -  Meshes which deal with the input as a CAD geometry:
- (Constrained Mesher) quality = 2, min edge = 0.5, weight limit = 0.2, max edge = 0.2 * diagonal: 641 tetrahedra, Output Mesh
 - (CDT3D): 535 tetrahedra, Output Mesh
 - (CDT3D): 1032 tetrahedra, Output Mesh
 - (CDT3D): 1205 tetrahedra, Output Mesh
 
 
Adaptive ((PODM) delta = 2, min edge = 0.85, weight limit = 0.12, max edge = 0.2 * diagonal):
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/GPDGK16/GPDGK16_uH_img.nrrd --cnf-adaptive --delta 2 --min-edge = 0.85 --weight-limit 0.12 --output ./GPDGK16_uH_img-d_2-e_0.85-w_0.12-maxEdge_0.2diagonal.vtk
Adaptive ((PODM) delta = 1, min edge = 0.2, weight limit = 0.1, max edge = 0.2 * diagonal):
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/GPDGK16/GPDGK16_uH_img.nrrd --cnf-adaptive --delta 1 --min-edge = 0.2 --weight-limit 0.1 --output ./GPDGK16_uH_img-d_1-e_0.2-w_0.1-maxEdge_0.2diagonal.vtk
GPDGK16_uH_img_nxi=211
- [ Input Image]
 - Input distribution size: 21,100 cells
 - Number of bins: Xi=211 t=20 Q^2=5
 -  Adaptive Meshes which deal with the input as an image:
- (PODM) delta = 2, min edge = 0.85, weight limit = 0.12: 11964 tetrahedra
 - (PODM) delta = 1, min edge = 0.2, weight limit = 0.1: 124608 tetrahedra
 
 
Fall 2019
CFF_14052019
GPDGK16Numerical_140519
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive (min edge = default): 277,701 tetrahedra
 - Adaptive (min edge = 1): 92,216 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-uniform
Adaptive (min edge = default): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive
Adaptive (min edge = 1): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --min-edge 1
GPDMMS13_140519
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 270,453 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf-adaptive --weight-limit 0.05
GPDVGG99_140519
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 266,731 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf-adaptive --weight-limit 0.05
NT_140519
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive (min edge = default): 257,041 tetrahedra
 - Adaptive (min edge = 1): 140,527 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-uniform
Adaptive (min edge = default): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07
Adaptive (min edge = 1): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --min-edge 1
OBS_ALU_140519
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 262,055 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf-adaptive --weight-limit 0.13
OBS_CS_140519
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 25,476 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf-adaptive --weight-limit 0.01
CFF_DATA
cff_E.data_IM
- Input Image
 - Input distribution size: 8,000,000 cells
 - Uniform: 745,291 tetrahedra
 - Adaptive: 362,804 tetrahedra
 - Adaptive: 362,804 tetrahedra (other side of the same adaptive case)
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf-adaptive --weight-limit 0.01
cff_E.data_REAL
- Input Image
 - Input distribution size: 8,000,000 cells
 - Uniform: 745,291 tetrahedra
 - Adaptive: 318,128 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf-adaptive
cff_H.data_IM
- Input Image
 - Input distribution size: 8,000,000 cells
 - Uniform: 745,291 tetrahedra
 - Adaptive: 293,560 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf-adaptive --weight-limit 0.05
cff_H.data_REAL
- Input Image
 - Input distribution size: 8,000,000 cells
 - Uniform: 745,291 tetrahedra
 - Adaptive: 375,705 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf-adaptive
cff_Ht.data_IM
- Input Image
 - Input distribution size: 8,000,000 cells
 - Uniform: 745,291 tetrahedra
 - Adaptive: 341,159 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf-adaptive
cff_Ht.data_REAL
- Input Image
 - Input distribution size: 8,000,000 cells
 - Uniform: 745,291 tetrahedra
 - Adaptive: 398,937 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf-adaptive
DATA_04252019
CFF_E_im
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 240,150 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf-adaptive --weight-limit 0.04
CFF_E_re
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 261,918 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf-adaptive --weight-limit 0.08
CFF_H_im
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 266,306 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf-adaptive --weight-limit 0.06
CFF_H_re
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 251,186 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf-adaptive --weight-limit 0.13
GPD_H_down
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 307,082 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf-adaptive
GPD_H_up
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 768,033 tetrahedra
 - Adaptive: 301,979 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf-adaptive
OBS_ALU
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform with background-value = 0: 301,772 tetrahedra
 - Adaptive with background-value = 0: 282,102 tetrahedra
 - Uniform with background-value = default: 768,033 tetrahedra
 - Adaptive with background-value = default: 286,978 tetrahedra
 
Commands to generate meshes:
Uniform with background-value = 0: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-uniform --background-value 0
Adaptive with background-value = 0: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-adaptive --background-value 0 --weight-limit 0.07
Uniform with background-value = default: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-uniform
Adaptive with background-value = default: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-adaptive --weight-limit 0.07
Note: In this case, we want to exclude the entries with value 0 (lower part, see figure) since they are not of interest. Using the flag --background-value 0, the entries are excluded from mesh generation. This allows reducing the number of cells by 70% for the uniform case and 30% for the adaptive.
phase_space_000
phase_space_000
- Input Image
 - Input distribution size: 15,625 cells
 - Uniform: 17,961 tetrahedra
 - Adaptive: 11,494 tetrahedra
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 0.25 --cnf-uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 2 --cnf-adaptive --weight-limit 0.02 --min-edge 2 --max-edge 20
2D Example Meshes
The directory containing the 2D input data is located in the 2D folder of CNF_Data.
Fall 2019
Synthetic Gaussian Data
- Input Image
 - Input distribution size: 1,000,000 cells
 - Uniform: 30,949 triangles
 - Adaptive: 7,509 triangles
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/Gaussian2.vtk --cnf-uniform --area 50
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/Gaussian2.vtk --cnf-adaptive --weight-limit 0.05
GPDGK16Numerical_140519
The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) GPDGK16Numerical_140519
- Input Image
 - Input distribution size: 10,000 cells
 - Uniform: 7,587 triangles
 - Adaptive: 1,208 triangles
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --cnf-uniform --area 2
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --cnf-adaptive
NT_140519
The 2D image was created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519
- Input Image
 - Input distribution size: 10,000 cells
 - Uniform: 7,587 triangles
 - Adaptive: 1,181 triangles
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/NT_140519_50_X.vtk --cnf-uniform --area 2
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/NT_140519_50_X.vtk --cnf-adaptive --min-edge 1
OBS_ALU_Y50
The 2D image was created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU
- Input Image
 - Input distribution size: 10,000 cells
 - Uniform: 7,587 triangles
 - Adaptive: 1,018 triangles
 
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --cnf-uniform --area 2
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --cnf-adaptive --min-edge 1


























































