Difference between revisions of "CNF Example Meshes"
Spyridon97 (talk | contribs) (→2D Example Meshes) |
Spyridon97 (talk | contribs) |
||
Line 2: | Line 2: | ||
=3D Example Meshes= | =3D Example Meshes= | ||
− | The directory containing the 3D input data is located in the 3D folder of [https://odu.box.com/s/sr60emxeep20smr3itpecsaiorskp8o5 CNF_Data]. | + | The directory containing the 3D input data is located in the 3D folder of [https://odu.box.com/s/sr60emxeep20smr3itpecsaiorskp8o5 CNF_Data]. |
− | ==CFF_14052019== | + | ==Fall 2019== |
− | ===GPDGK16Numerical_140519=== | + | ===CFF_14052019=== |
+ | ====GPDGK16Numerical_140519==== | ||
* [https://odu.box.com/s/xix6kb0jrzvn9dect2d2akdsie4vsu2i Input Image] | * [https://odu.box.com/s/xix6kb0jrzvn9dect2d2akdsie4vsu2i Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 34: | Line 35: | ||
</pre> | </pre> | ||
− | ===GPDMMS13_140519=== | + | ====GPDMMS13_140519==== |
* [https://odu.box.com/s/1tznkuz92u7vrl5ldkp6ikas7579ahrp Input Image] | * [https://odu.box.com/s/1tznkuz92u7vrl5ldkp6ikas7579ahrp Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 57: | Line 58: | ||
</pre> | </pre> | ||
− | ===GPDVGG99_140519=== | + | ====GPDVGG99_140519==== |
* [https://odu.box.com/s/o0o24vtbp895ow4kje442jbq6sqh9n7z Input Image] | * [https://odu.box.com/s/o0o24vtbp895ow4kje442jbq6sqh9n7z Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 80: | Line 81: | ||
</pre> | </pre> | ||
− | ===NT_140519=== | + | ====NT_140519==== |
* [https://odu.box.com/s/m1qu1ocseyiltswmj9smd2n1tr6rvcsh Input Image] | * [https://odu.box.com/s/m1qu1ocseyiltswmj9smd2n1tr6rvcsh Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 110: | Line 111: | ||
</pre> | </pre> | ||
− | ===OBS_ALU_140519=== | + | ====OBS_ALU_140519==== |
* [https://odu.box.com/s/5mnepdpzeu3d17pagg22vwxs9wa6qqbg Input Image] | * [https://odu.box.com/s/5mnepdpzeu3d17pagg22vwxs9wa6qqbg Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 133: | Line 134: | ||
</pre> | </pre> | ||
− | ===OBS_CS_140519=== | + | ====OBS_CS_140519==== |
* [https://odu.box.com/s/qbctvffvjvc7qh61xqcmua9o4vdydg0a Input Image] | * [https://odu.box.com/s/qbctvffvjvc7qh61xqcmua9o4vdydg0a Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 156: | Line 157: | ||
</pre> | </pre> | ||
− | ==CFF_DATA== | + | ===CFF_DATA=== |
− | ===cff_E.data_IM=== | + | ====cff_E.data_IM==== |
* [https://odu.box.com/s/d34bcmi2w6f5uh57ni0l16ghf3peo9yz Input Image] | * [https://odu.box.com/s/d34bcmi2w6f5uh57ni0l16ghf3peo9yz Input Image] | ||
* Input distribution size: 8,000,000 cells | * Input distribution size: 8,000,000 cells | ||
Line 182: | Line 183: | ||
</pre> | </pre> | ||
− | ===cff_E.data_REAL=== | + | ====cff_E.data_REAL==== |
* [https://odu.box.com/s/ptjjqi8p1psg69ah00ikkcux5mxgvs41 Input Image] | * [https://odu.box.com/s/ptjjqi8p1psg69ah00ikkcux5mxgvs41 Input Image] | ||
* Input distribution size: 8,000,000 cells | * Input distribution size: 8,000,000 cells | ||
Line 205: | Line 206: | ||
</pre> | </pre> | ||
− | ===cff_H.data_IM=== | + | ====cff_H.data_IM==== |
* [https://odu.box.com/s/78eg0jujg4koeei5re96imanvlejkslq Input Image] | * [https://odu.box.com/s/78eg0jujg4koeei5re96imanvlejkslq Input Image] | ||
* Input distribution size: 8,000,000 cells | * Input distribution size: 8,000,000 cells | ||
Line 228: | Line 229: | ||
</pre> | </pre> | ||
− | ===cff_H.data_REAL=== | + | ====cff_H.data_REAL==== |
* [https://odu.box.com/s/ethp2uvks6od9hel9bl8tczjbew2ae1f Input Image] | * [https://odu.box.com/s/ethp2uvks6od9hel9bl8tczjbew2ae1f Input Image] | ||
* Input distribution size: 8,000,000 cells | * Input distribution size: 8,000,000 cells | ||
Line 251: | Line 252: | ||
</pre> | </pre> | ||
− | ===cff_Ht.data_IM=== | + | ====cff_Ht.data_IM==== |
* [https://odu.box.com/s/ogbelxa3nyhj061a2u001wfr1fdyn0v6 Input Image] | * [https://odu.box.com/s/ogbelxa3nyhj061a2u001wfr1fdyn0v6 Input Image] | ||
* Input distribution size: 8,000,000 cells | * Input distribution size: 8,000,000 cells | ||
Line 274: | Line 275: | ||
</pre> | </pre> | ||
− | ===cff_Ht.data_REAL=== | + | ====cff_Ht.data_REAL==== |
* [https://odu.box.com/s/sp4p98s6nhb1tgoz6gjbs0cj9amzxjez Input Image] | * [https://odu.box.com/s/sp4p98s6nhb1tgoz6gjbs0cj9amzxjez Input Image] | ||
* Input distribution size: 8,000,000 cells | * Input distribution size: 8,000,000 cells | ||
Line 297: | Line 298: | ||
</pre> | </pre> | ||
− | ==DATA_04252019== | + | ===DATA_04252019=== |
− | ===CFF_E_im=== | + | ====CFF_E_im==== |
* [https://odu.box.com/s/sg3trope39jtxliowy3hgoun34mtxic4 Input Image] | * [https://odu.box.com/s/sg3trope39jtxliowy3hgoun34mtxic4 Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 321: | Line 322: | ||
</pre> | </pre> | ||
− | ===CFF_E_re=== | + | ====CFF_E_re==== |
* [https://odu.box.com/s/liknum84lzdann15vtuppq0sfsgk8qpc Input Image] | * [https://odu.box.com/s/liknum84lzdann15vtuppq0sfsgk8qpc Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 344: | Line 345: | ||
</pre> | </pre> | ||
− | ===CFF_H_im=== | + | ====CFF_H_im==== |
* [https://odu.box.com/s/09q1lgj9zjd3pxgonl3izzb9lvhiynre Input Image] | * [https://odu.box.com/s/09q1lgj9zjd3pxgonl3izzb9lvhiynre Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 367: | Line 368: | ||
</pre> | </pre> | ||
− | ===CFF_H_re=== | + | ====CFF_H_re==== |
* [https://odu.box.com/s/qz4ob9up67hwxdhmc3vk3m0pgauu5i7s Input Image] | * [https://odu.box.com/s/qz4ob9up67hwxdhmc3vk3m0pgauu5i7s Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 390: | Line 391: | ||
</pre> | </pre> | ||
− | ===GPD_H_down=== | + | ====GPD_H_down==== |
* [https://odu.box.com/s/c4of5f4pz4y71x6mtskfek5mpdbieonj Input Image] | * [https://odu.box.com/s/c4of5f4pz4y71x6mtskfek5mpdbieonj Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 413: | Line 414: | ||
</pre> | </pre> | ||
− | ===GPD_H_up=== | + | ====GPD_H_up==== |
* [https://odu.box.com/s/bvh5hhh8zaoz1gj0rmzxgnl7num58e88 Input Image] | * [https://odu.box.com/s/bvh5hhh8zaoz1gj0rmzxgnl7num58e88 Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 436: | Line 437: | ||
</pre> | </pre> | ||
− | ===OBS_ALU=== | + | ====OBS_ALU==== |
* [https://odu.box.com/s/e5kzeqmtpx5loayh6ymtloo5vhrene8t Input Image] | * [https://odu.box.com/s/e5kzeqmtpx5loayh6ymtloo5vhrene8t Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 478: | Line 479: | ||
entries are excluded from mesh generation. This allows reducing the number of cells by 70% for the uniform case and 30% for the adaptive. | entries are excluded from mesh generation. This allows reducing the number of cells by 70% for the uniform case and 30% for the adaptive. | ||
− | |||
===phase_space_000=== | ===phase_space_000=== | ||
+ | ====phase_space_000==== | ||
* [https://odu.box.com/s/7e66j3gnr0ffyj8mixe9akh6cftaujq1 Input Image] | * [https://odu.box.com/s/7e66j3gnr0ffyj8mixe9akh6cftaujq1 Input Image] | ||
* Input distribution size: 15,625 cells | * Input distribution size: 15,625 cells | ||
Line 504: | Line 505: | ||
=2D Example Meshes= | =2D Example Meshes= | ||
The directory containing the 2D input data is located in the 2D folder of [https://odu.box.com/s/sr60emxeep20smr3itpecsaiorskp8o5 CNF_Data]. | The directory containing the 2D input data is located in the 2D folder of [https://odu.box.com/s/sr60emxeep20smr3itpecsaiorskp8o5 CNF_Data]. | ||
− | == Synthetic Gaussian Data == | + | ==Fall 2019 |
+ | ===Synthetic Gaussian Data=== | ||
* [https://odu.box.com/s/quykwjks6ib6501y95cmyv6ctgf8elhq Input Image] | * [https://odu.box.com/s/quykwjks6ib6501y95cmyv6ctgf8elhq Input Image] | ||
* Input distribution size: 1,000,000 cells | * Input distribution size: 1,000,000 cells | ||
Line 526: | Line 528: | ||
</pre> | </pre> | ||
− | == GPDGK16Numerical_140519 == | + | ===GPDGK16Numerical_140519=== |
The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) GPDGK16Numerical_140519 | The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) GPDGK16Numerical_140519 | ||
Line 561: | Line 563: | ||
'''Note: ''' By using ''min-edge'' less than 1 we are essentially generating triangles with an edge smaller than the input pixels. Using values much smaller than 1 is not expected to help the discretization since we are essentially packing more element into a pixel which has a constant value. | '''Note: ''' By using ''min-edge'' less than 1 we are essentially generating triangles with an edge smaller than the input pixels. Using values much smaller than 1 is not expected to help the discretization since we are essentially packing more element into a pixel which has a constant value. | ||
− | == NT_140519 == | + | ===NT_140519=== |
The 2D image was created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519 | The 2D image was created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519 | ||
Line 586: | Line 588: | ||
</pre> | </pre> | ||
− | == OBS_ALU_Y50 == | + | ===OBS_ALU_Y50=== |
The 2D image was created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU | The 2D image was created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU | ||
Revision as of 16:20, 14 July 2020
Contents
3D Example Meshes
The directory containing the 3D input data is located in the 3D folder of CNF_Data.
Fall 2019
CFF_14052019
GPDGK16Numerical_140519
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive (min edge = 1): 273,716 tetrahedra
- Adaptive (min edge = 2): 67,935 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-uniform --output ./GPDGK16Numerical_140519,d=1,uniform.vtk
Adaptive (min edge = 1): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=1.vtk
Adaptive (min edge = 2): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDGK16Numerical_140519.nrrd --cnf-adaptive --min-edge 2 --output ./GPDGK16Numerical_140519,d=5,wl=0.1,me=2.vtk
GPDMMS13_140519
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 264,762 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf-uniform --output ./GPDMMS13_140519,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDMMS13_140519.nrrd --cnf-adaptive --weight-limit 0.05 --output ./GPDMMS13_140519,d=5,wl=0.05,me=1.vtk
GPDVGG99_140519
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 261,485 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf-uniform --output ./GPDVGG99_140519,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/GPDVGG99_140519.nrrd --cnf-adaptive --weight-limit 0.05 --output ./GPDVGG99_140519,d=5,wl=0.05,me=1.vtk
NT_140519
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive (min edge = 1): 253,965 tetrahedra
- Adaptive (min edge = 2): 120,168 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-uniform --output ./NT_140519,d=1,uniform.vtk
Adaptive (min edge = 1): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --output ./NT_140519,d=5,wl=0.07,me=1.vtk
Adaptive (min edge = 2): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/NT_140519.nrrd --cnf-adaptive --weight-limit 0.07 --min-edge 2 --output ./NT_140519,d=5,wl=0.07,me=2.vtk
OBS_ALU_140519
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 259,269 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf-uniform --output ./OBS_ALU_140519,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_ALU_140519.nrrd --cnf-adaptive --weight-limit 0.13 --output ./OBS_ALU_140519,d=5,wl=0.13,me=1.vtk
OBS_CS_140519
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 25,168 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf-uniform --output ./OBS_CS_140519,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_14052019/OBS_CS_140519.nrrd --cnf-adaptive --weight-limit 0.01 --output ./OBS_CS_140519,d=5,wl=0.01,me=1.vtk
CFF_DATA
cff_E.data_IM
- Input Image
- Input distribution size: 8,000,000 cells
- Uniform: 745,291 tetrahedra
- Adaptive: 358,637 tetrahedra
- Adaptive: 358,637 tetrahedra (other side of the same adaptive case)
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf-uniform --output ./cff_E.data_IM,d=2,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_IM.nrrd --cnf-adaptive --weight-limit 0.01 --output ./cff_E.data_IM,d=10,wl=0.01,me=2.vtk
cff_E.data_REAL
- Input Image
- Input distribution size: 8,000,000 cells
- Uniform: 745,291 tetrahedra
- Adaptive: 314,990 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf-uniform --output ./cff_E.data_REAL,d=2,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_E.data_REAL.nrrd --cnf-adaptive --output ./cff_E.data_REAL,d=10,wl=0.1,me=2.vtk
cff_H.data_IM
- Input Image
- Input distribution size: 8,000,000 cells
- Uniform: 745,291 tetrahedra
- Adaptive: 289,855 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf-uniform --output ./cff_H.data_IM,d=2,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_IM.nrrd --cnf-adaptive --weight-limit 0.05 --output ./cff_H.data_IM,d=10,wl=0.05,me=2.vtk
cff_H.data_REAL
- Input Image
- Input distribution size: 8,000,000 cells
- Uniform: 745,291 tetrahedra
- Adaptive: 372,016 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf-uniform --output ./cff_H.data_REAL,d=2,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_H.data_REAL.nrrd --cnf-adaptive --output ./cff_H.data_REAL,d=10,wl=0.1,me=2.vtk
cff_Ht.data_IM
- Input Image
- Input distribution size: 8,000,000 cells
- Uniform: 745,291 tetrahedra
- Adaptive: 337,772 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf-uniform --output ./cff_Ht.data_IM,d=2,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_IM.nrrd --cnf-adaptive --output ./cff_Ht.data_IM,d=10,wl=0.1,me=2.vtk
cff_Ht.data_REAL
- Input Image
- Input distribution size: 8,000,000 cells
- Uniform: 745,291 tetrahedra
- Adaptive: 394,632 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf-uniform --output ./cff_Ht.data_REAL,d=2,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/CFF_DATA/cff_Ht.data_REAL.nrrd --cnf-adaptive --output ./cff_Ht.data_REAL,d=10,wl=0.1,me=2.vtk
DATA_04252019
CFF_E_im
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 236,512 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf-uniform --output ./CFF_E_im,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_im.nrrd --cnf-adaptive --weight-limit 0.04 --output ./CFF_E_im,d=5,wl=0.04,me=1.vtk
CFF_E_re
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 260,349 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf-uniform --output ./CFF_E_re,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_E_re.nrrd --cnf-adaptive --weight-limit 0.08 --output ./CFF_E_re,d=5,wl=0.08,me=1.vtk
CFF_H_im
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 263,040 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf-uniform --output ./CFF_H_im,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_im.nrrd --cnf-adaptive --weight-limit 0.06 --output ./CFF_H_im,d=5,wl=0.06,me=1.vtk
CFF_H_re
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 249,257 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf-uniform --output ./CFF_H_re,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/CFF_H_re.nrrd --cnf-adaptive --weight-limit 0.13 --output ./CFF_H_re,d=5,wl=0.13,me=1.vtk
GPD_H_down
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 300,117 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf-uniform --output ./GPD_H_down,d=1,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_down.nrrd --cnf-adaptive --output ./GPD_H_down,d=5,wl=0.1,me=1.vtk
GPD_H_up
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 768,033 tetrahedra
- Adaptive: 295,671 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf-uniform --output ./GPD_H_up,d=1,uniform.vtk
Adaptive:Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/GPD_H_up.nrrd --cnf-adaptive --output ./GPD_H_up,d=5,wl=0.1,me=1.vtk
OBS_ALU
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform with background-value = 0: 301,772 tetrahedra
- Adaptive with background-value = 0: 279,721 tetrahedra
- Uniform with background-value = default: 768,033 tetrahedra
- Adaptive with background-value = default: 284,256 tetrahedra
Commands to generate meshes:
Uniform with background-value = 0: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-uniform --background-value 0 --output ./OBS_ALU,d=1,bv=0,uniform.vtk
Adaptive with background-value = 0: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-adaptive --background-value 0 --weight-limit 0.07 --output ./OBS_ALU,d=5,bv=0,wl=0.07,me=1.vtk
Uniform with background-value = default: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-uniform --output ./OBS_ALU,d=1,uniform.vtk
Adaptive with background-value = default: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/DATA_04252019/OBS_ALU.nrrd --cnf-adaptive --weight-limit 0.07 --output ./OBS_ALU,d=5,wl=0.07,me=1.vtk
Note: In this case, we want to exclude the entries with value 0 (lower part, see figure) since they are not of interest. Using the flag --background-value 0, the entries are excluded from mesh generation. This allows reducing the number of cells by 70% for the uniform case and 30% for the adaptive.
phase_space_000
phase_space_000
- Input Image
- Input distribution size: 15,625 cells
- Uniform: 17,961 tetrahedra
- Adaptive: 10,593 tetrahedra
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 0.25 --cnf-uniform --output ./phase_space_000,d=0.25,uniform.vtk
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate3d --input ./CNF_Data/3D/phase_space_000/phase_space_000.nrrd --delta 2 --cnf-adaptive --weight-limit 0.004 --min-edge 2 --output ./phase_space_000,d=2,wl=0.004,me=2.vtk
2D Example Meshes
The directory containing the 2D input data is located in the 2D folder of CNF_Data. ==Fall 2019
Synthetic Gaussian Data
- Input Image
- Input distribution size: 1,000,000 cells
- Uniform: 30,949 triangles
- Adaptive: 3,788 triangles
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/Gaussian2.vtk --output Gaussian_me_10_uniform.vtk --uniform --min-edge=10
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/Gaussian2.vtk --output Gaussian_me_10_wl_1e-1.vtk --weight-limit=0.05 --min-edge=10
GPDGK16Numerical_140519
The 2D case created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) GPDGK16Numerical_140519
- Input Image
- Input distribution size: 10,000 cells
- Uniform: 7,587 triangles
- Adaptive (min edge = 2): 623 triangles
- Adaptive (min edge = 0.5): 1,409 triangles
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_uniform.vtk --min-edge=2 --uniform
Adaptive (min edge = 2): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
Adaptive (min edge = 0.5): Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/GPDGK16Numerical_140519_X50.vtk --output GPDGK16Numerical_140519_me_0.5_wl_1e-1.vtk --min-edge=0.5 --weight-limit=0.1
Note: By using min-edge less than 1 we are essentially generating triangles with an edge smaller than the input pixels. Using values much smaller than 1 is not expected to help the discretization since we are essentially packing more element into a pixel which has a constant value.
NT_140519
The 2D image was created by extracting a 2D slice at X=50 out of the 3D distribution (see 3D case below) NT_140519
- Input Image
- Input distribution size: 10,000 cells
- Uniform: 7,587 triangles
- Adaptive: 1,038 triangles
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/NT_140519_50_X.vtk --output NT_140519_X50_me_2_uniform.vtk --min-edge=2 --uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/NT_140519_50_X.vtk --output NT_140519_X50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1
OBS_ALU_Y50
The 2D image was created by extracting a 2D slice at Y=50 out of the 3D distribution (see 3D case below) OBS_ALU
- Input Image
- Input distribution size: 10,000 cells
- Uniform: 7,587 triangles
- Adaptive: 1,018 triangles
Commands to generate meshes:
Uniform: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_uniform.vtk --min-edge=2 --uniform
Adaptive: Output Mesh
docker run -v $(pwd):/data/ crtc_i2m tessellate2d --input ./CNF_Data/2D/OBS_ALU_Y50.vtk --output OBS_ALU_Y50_me_2_wl_1e-1.vtk --min-edge=2 --weight-limit=0.1