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Abstract Current neurosurgical procedures utilize medical images of 

various modalities to enable the precise location of tumors and critical 

brain structures to plan accurate brain tumor resection. The difficulty of 

using preoperative images during the surgery is caused by the intra-

operative deformation of the brain tissue (brain shift), which introduces 

discrepancies concerning the preoperative configuration. Intra-operative 

imaging allows tracking such deformations but cannot fully substitute for 

the quality of the pre-operative data. Dynamic Data Driven Deformable 

Non-Rigid Registration (D4NRR) is a complex and time-consuming 

image processing operation that allows the dynamic adjustment of the 

pre-operative image data to account for intra-operative brain shift during 

the surgery. This paper summarizes the computational aspects of a 

specific adaptive numerical approximation method and its variations for 

registering brain MRIs. It outlines its evolution over the last 15 years and 

identifies new directions for the computational aspects of the technique.   

 

1. Introduction  

Cancer continues to be a significant cause of death in the USA and 

worldwide. The number of Americans living with brain tumors exceeds 

700,000, surpassing the number of COVID-19 deaths in mid-summer 

2021. Neurosurgical resection is a standard and effective treatment for 

brain tumor patients. Removing as much of the tumor as possible is 

imperative to ensure the best results while preserving healthy brain 

structures. This approach can extend the progression time while reducing 

symptoms and seizures. 

 

One of the main challenges in neurosurgery is identifying critical areas 

of the brain responsible for essential functions, such as the motor cortex. 



These areas are unique to each patient and cannot be located with the 

naked eye. However, medical imaging has proven to be an asset in 

overcoming this hurdle. Over the past two decades, advancements in 

image-guided therapy (Grimson et al., 1999) have allowed surgeons to 

utilize preoperative imaging (Orringer et al., 2012) for neuronavigation. 

With visualization (Kikinis et al., 2014) and quantitative analysis 

software systems (Fedorov et al., 2012), surgeons can safely remove 

tumors, such as gliomas, from sensitive brain areas. These advancements 

have significantly improved neurosurgery's safety and success rates. 

 

Before surgery, a combination of anatomical Magnetic Resonance 

Imaging (MRI) and functional MRI (fMRI) can pinpoint crucial brain 

areas that affect functions such as vision, speech and language, or motor 

control. Moreover, Diffusion Tensor Imaging (DTI) can map out white 

matter tracts that connect to these essential regions and are located near 

or through the tumor. These imaging techniques are essential in ensuring 

the precision of the tumor removal procedure. 

 

  
Figure 1.  Discrepancies between preoperative and intraoperative MR Imaging before and during 

neurosurgery. (Left): preoperative MRI; (Right): intraoperative MRI acquired after a part of the 

tumor is removed shows the tumor cavity and brain shift (pointed by the blue arrow). The yellow 

outline indicates the preoperative brain outline after rigid registration. The large dark cavity is due 

to tumor resection.  

 

During surgery, the opening of the skull and dura causes changes in 

pressure inside the Intra-Cranial Cavity. Because of this and other factors, 

such as drainage of cerebrospinal fluid and the effect of gravity, the brain 

changes its shape, introducing discrepancies in relation to the pre-

operative configuration. The adoption of intraoperative MRI (iMRI) has 

provided a means for monitoring brain deformation (or brain shift) during 

surgery (Golby, 2015). The number of hospitals offering iMRI has grown 

over the past decade from a handful of research centers to hundreds of 

clinical sites worldwide (Black, 2016). iMRI can be used to observe the 

deformed brain during surgery. While acquiring fMRI and DTI is 

intraoperatively impractical, the preoperative MRI image can be 

registered to an iMRI using non-rigid registration. The resultant 

registration can then be applied to the preoperative fMRI, DTI, and 

surgical plan, providing more accurate, updated guidance to the 

neurosurgeon (Archip et al., 2007). 

 



Image registration, in general, 

is concerned with the spatial 

alignment of corresponding 

features in two or more 

images. During image 

registration, a spatial transfor-

mation is applied to one 

image (called floating) so that 

it is brought into alignment 

with the fixed or target image, 

which is used as a reference 

position of the object 

(patient’s brain). In this 

method, two types of image 

registration are used. First, the floating image, which corresponds to the 

pre-operative MRI, is aligned with the patient's position using translations 

and rotations (i.e., global transformations). Second, non-rigid registration 

uses spatially varying (i.e., local) transformation to account for brain 

shift, which varies in different brain locations. Image registration 

algorithms generally optimize specific similarity criteria between the 

fixed and floating image under varying spatial transformation parameters. 

The complexity of this optimization depends on the number of parameters 

that describe the transformation. Non-rigid registration usually requires 

significant computing resources and time; it is an open research area in 

medical image processing and a potential use case for quantum advantage 

even in the Noisy Intermediate-Scale Quantum (NISQ) era, Figure 2 

depicts the fusion of structural and functional MRI near a brain tumor, a 

tessellation, and the computed deformation field superimposed over 

iMRI (top right).  

 

This paper presents an overview of the physics-based non-rigid 

registration method (Clatz et al., 2005) and briefly describes its 

extensions to improve its accuracy for large brain tumors. Namely, it 

presents the original method developed by Clatz et al. at INRIA, France, 

and its implementation within Insight Segmentation and Registration 

Toolkit (Liu and Kot et al., 2014). It overviews its extensions by 

removing additional outliers due to tissue resection (Liu et al., 2014) and  

(Drakopoulos et al., 2015) at the CRTC in collaboration with the Surgical 

Planning Lab (SPL) at BWH.  It is outside the scope of this paper to 

review past work by others; however, in (Sotiras et al., 2013), a complete 

survey and taxonomy of NRR methods are presented. The aim is to 

identify opportunities for leveraging quantum computing and sensing. 

Namely, we look for a hybrid classical and quantum computing paradigm 

to improve computational intensive modules identified in the rest of the 

paper and the potential use of quantum sensing to eliminate the high cost 

Figure 2. Brain tumor (green) and fMRI fused with 

iMRI using a deformation field (top right). 



of encoding classical DICOM images to quantum computers.  

 
Figure 3 depicts a 

flowchart with all 

steps and software 

modules for pre- and 

intra-operative image 

processing for image-

guided neurosurgery 

at Brigham and 

Women's 

Hospital (BWH) in 

Boston, MA. The 

intra-operative images 

were 0.5T iMRI (J. 

Schenck, F. Jolesz, P. 

Roemer, H. Cline, W. 

Lorensen, R. Kikinis, 

et al., 1995) and 

acquired during surgery 

at BWH. The patient-

specific Finite Element (FE) model, selection of registration points, and 

non-rigid registration took place remotely at the Center for Real-Time 

Computing (CRTC) in Virginia using midsize High-Performance 

Computing (HPC) clusters (Chrisochoides et al., 2006).  

 
 

2. Physics-Based Non-Rigid Registration  

 

The specific NRR method was initially developed in INRIA, France, by 

Clatz and Ayache et al. (Clatz et al., 2005) and is implemented as open-

source software by the CRTC group in Virginia, USA (Liu and Kot et al., 

2014). It is designed for registering high-resolution pre-operative data 

with iMRI—the NRR process takes place in two phases:  preoperative 

and intra-operative. Intra-operative processing (i.e., the dynamic data-

driven stage) starts with the acquisition of the first iMRI, i.e., the time-

critical DDDAS part, and the intra-operative computation is initiated 

when a scan shows the shift of the brain becomes available. The basic 

idea of the registration method is to estimate the sparse deformation field 

that matches “similar” locations in the pre-operative and iMRI and then 

use a biomechanical model for brain deformation to discard unrealistic 

displacements so that it can derive a dense deformation field that defines 

a transformation for each point in the image space.  

 

Sparse displacement vectors are obtained at the selected points in the 

Figure 3. Flow diagram of the NRR process used in BWH 

during a clinical study, as depicted in (Archip et al., 2007). 



image, where the intensity variability in the surrounding region exceeds 

a certain threshold. Such registration (or feature) points can be identified 

before the time-critical part of the computation in the floating (pre-

operative) image. Once the reference (intraoperative) scan is available, 

the deformation vector is estimated at each of the selected points utilizing 

block matching (Clatz et al., 2005), where fixed-size rectangular regions 

(blocks) centered at the registration points are identified in the floating 

image. Given such a block, the method selects a search region (window) 

in the reference image. At the registration point, the vector of the sparse 

deformation field is defined by the block's displacement, which produces 

the most significant similarity between the image intensities in the block 

and the overlapping section of the window. The normalized cross-

correlation similarity metric is used. It is worth noticing the high 

computational complexity of the block-matching procedure. Considering 

the sizes of three-dimensional block and window are defined in pixels as 

B = {Bx, By, Bz} and W = {Wx, Wy, Wz}, the bound on the number of 

operations is O(BxByBz × WxWyWz) for a single registration point.  

 

This problem can be formulated as energy minimization (Clatz et al., 

2005). One seeks the balance between the external forces, proportional to 

the sparse displacements, and the internal forces of the mesh resisting 

deformation:   

 

         [K + H
T 

SH]U = H
T 

SD                                                                 (1) 

 

where K is the mesh stiffness matrix, H is the linear interpolation matrix 

form the matches to the displacements at mesh vertices, S is the block 

matching stiffness matrix (matches with higher confidence are assigned 

higher weights), D is the vector for the block displacements, and U is the 

unknown displacement vector for mesh vertices. The stiffness matrix, K, 

is calculated based on the assumed physical properties of the brain tissue 

elastic modulus E and Poisson ratio ν (see Table 5). This formulation can 

tolerate some outliers but suffers from a systematic error concerning the 

correctly estimated displacements. Alternately, one can use 

approximation to compute the locations of vertices, which would 

minimize the error concerning the block matches:  

 

   arg min
𝑈

(𝐻𝑈 − 𝐷)𝑇𝑆(𝐻𝑈 − 𝐷)                                                            (2) 

 

However, this formulation would also minimize displacement error 

regarding outlier measurements, which one would like to eliminate from 

the set of block displacements. A robust iterative approach combines 

approximation and interpolation. Gradual convergence to the 

interpolation solution is achieved using the external force F added to the 

formulation (1) to slowly relax the internal mesh stress:   



       [K + H
T 

SH]U = H
T 

SD + F                                                        (3) 

 

Rejection of the outlier matches is done iteratively, with a user-defined 

total percentage of matches to be discarded, fR, and the number of 

rejection iterations, nR, as follows:  
 

1: INPUT: nR, fR 

2: for i =0 to nR do 

3:  Fi ⇐ KUi 

4:  Ui+1 ⇐ [K + H
T 

SH]
−1

[H
T 

SD + Fi] 

5:  for all blocks k do 

6:   compute error function ξk 

7:  end for 

8:  reject fR/ nR blocks with highest error function ξ 

9:  re-compute S, H, D 

10:  end for 

11: repeat 

12:  Fi ⇐ KUi 

13:  Ui+1 ⇐ [K + H
T 

SH]
−1

[H
T 

SD + Fi] 

14: until convergence 

 

The force, F, is computed at each iteration to balance the internal force 

of the mesh, KUi. The error, ξk, measures the difference between the block 

displacement approximated from the current deformed mesh and the 

matching target for the kth block. The user-defined percentage of the 

displacements with the highest ξk values is rejected. This method 

converges to the formulation in (2) and, at the same time, is tolerant to 

most of the outliers due to faulty matching. 

 

The Physics-Based Non-Rigid Registration (PBNRR) method is 

implemented (Liu and Kot et al., 2014) as part of the Insight 

Segmentation and Registration Toolkit (ITK) 4.5 refactoring effort 

sponsored by the National Library of Medicine. ITK is a multi-platform, 

open-source image analysis library serving many researchers and 

engineers worldwide. ITK collects cutting-edge image analysis 

algorithms, providing a platform for advanced product development.   

 

The PBNRR includes three main modules components, all of which have 

been implemented in ITK:
 
 

• Feature Point Detection: Identify small image blocks with rich 

structural information in the pre-operative MRI.  

• Block Matching: Calculate displacement for each image block to 

generate a sparse deformation field.  

• Robust Finite Element (FE) Solver: Estimate entire brain 

deformation based on the sparse deformation field estimated 

above.  

 



 

Studies conducted by Clatz et al. in 2005 and independently by Liu and 

Kot et al. in 2014, Liu et al. in 2014, and Drakopoulos et al. in 2021 have 

demonstrated that the biomechanical model presented by Clatz et al. and 

its ITK implementation generally provide reasonable estimates of brain 

shift in the context of sparse and "noisy" intra-operative data. This is 

particularly true just after the dura is opened and before any tissue is 

removed when compared to the standard registration method used in most 

Image Guided Navigation Systems (IGNS), known as rigid registration. 

In addition, PBNRR usually performs better than the best interpolation 

methods, e.g., the B-Spline-based registration method implemented 

within Slicer3D. The reason is that PBNRR can: (i) capture local brain 

shift better because of its natural piecewise approximation as opposed to 

global affine transformations utilized in rigid registration and (ii) remove 

some of the outliers in contrast to interpolation methods, which by design 

use all data independently of the quality of information (i.e., being low or 

high confidence). Both B-Splines and PBNRR are currently available 

within Slicer3D.  

 

In (Liu et al., 2010), we confirmed that the PBNRR method is ready for 

wide application in the OR without requiring distributed or cluster 

Figure 4. Non-Rigid Registration of pre-operative (top row) with iMRI (2nd row) using PBNRR 

and B-Splines for four cases included in the (NCIGT, 2021) dataset.  



computing resources, as was 

the case in (Chrisochoides et 

al. l, 2006). However, no 

computational power can 

improve the method's 

accuracy for the complete 

resection of large brain 

tumor cases leading to 

significant brain shifts. This 

creates a large cavity of 

elements in the tessellated 

brain image model (as 

depicted in Figure 5), which 

compromises the accuracy 

of the biomechanical model 

defined on pre-operative 

MRI, given that this cavity is 

not properly accounted for.  

 

 

 

3. Real-Time D4NRR  

This section summarizes the extensions of the PBNRR by (i) removing 

additional outliers due to tissue resection using either algebraic means: 

(1) a Nested Expectation and Maximization method (referred to thought-

out as NEMNRR) (Liu et al., 2014), or (2) geometric by relying on real-

time image-to-mesh tessellation method (Foteinos et al., 2014) and (ii) 

considering a heterogeneous biomechanical model as opposed to 

homogenous used in (Clatz et al., 2005).  Follow-up efforts by this group 

will integrate these new capabilities within the next major upgrade of ITK 

and Slicer 3D.  

 

3.1 Nested Expectation Maximization Method 

 

The NEMNRR method formulates 

the registration as a three-variable 

(point correspondence, deformation 

field, and resection region) functional 

minimization problem, in which 

point correspondence is represented 

by a fuzzy assign matrix; the 

Deformation field is represented by a 

piece-wise linear function 

regularized by the strain energy as in 
Figure 4. Multi-tissue mesh from segmented 

brain MRI. 

Figure 5. Tesselatted brain image and cavity of brain 

tumor elements (green).  



PBNRR (Clatz et al., 2005), but this time extends the model from a single 

homogenous tissue to a heterogeneous multi-tissue (see Figure 6) based 

biomechanical model. A Nested Expectation and Maximization 

framework is developed to resolve these three variables simultaneously 

(Liu et al., 2014).  

The NEMNRR method extends the cost function used in (Clatz et al., 

2005) to: 

𝐽(𝑈, 𝐶, 𝑀𝑅𝑒𝑚)  = ∑ 𝑈𝑇𝐾𝑒𝑖
𝑈

𝑒𝑖∈𝑀 \ 𝑀𝑅𝑒𝑚

+ 

  𝜆1 ∑ (𝐻𝑈 − 𝐷(𝐶))
𝑇

𝑊(𝐻𝑈 − 𝐷(𝐶))

𝑠𝑖∈𝑀 \ 𝑀𝑅𝑒𝑚

+ 𝜆2 ∑ 𝑉𝑒𝑖

𝑒𝑖∈𝑀𝑅𝑒𝑚

 

(4) 

 

where the continuous domain 𝛺  (brain image) is discretized as a multi-

tissue mesh 𝑀 using the method presented in (Liu et al., 2010) on a multi-

label image segmented from the pre-operative MRI. 𝑀𝑅𝑒𝑚 (see Figure 5, 

green elements) is the removed mesh approximating the resection region 

𝛺′. 𝐾𝑒𝑖
 is the element stiffness matrix of element 𝑒𝑖. Each element is 

associated with a tissue label, which determines the elastic parameters to 

build the element stiffness matrix. The first term of equation (4) 

approximates the strain energy as in (Clatz et al., 2005), and the third term 

approximates the volume of the resection region, in which 𝑉𝑒𝑖
 is the 

volume of element 𝑒𝑖. In the second term, the entries of the vector 𝐷 are 

defined as  

 

𝑑𝑖(𝑐𝑖𝑗) = 𝑠𝑖 − ∑ 𝑐𝑖𝑗𝑡𝑗𝑡𝑗∈𝛺𝑅
, ∀𝑠𝑖 ∈ 𝑀\𝑀𝑅𝑒𝑚 .  

 

Considering the registration problem in the Expectation and 

Maximization (EM) context (Dempster et al., 1977), cost function (4), 

from the probability (Bayesian) point of view, defines the likelihood 

function, in which the unknown (model parameter) is the displacement 

vector 𝑈, and the missing data are the correspondence 𝐶 and the resection 

region 𝑀𝑅𝑒𝑚. Assuming 𝑀𝑅𝑒𝑚 is known, the more accurate the estimate 



of 𝐶, the more accurate the 

estimate of 𝑈, and vice versa. 

EM algorithm is very 

efficient for this kind of 

circular dependence problem, 

so one employs EM to solve 

𝑈 and 𝐶 under a specified 

𝑀𝑅𝑒𝑚. To resolve 𝑀𝑅𝑒𝑚, one 

can treat 𝑈 and 𝐶 as an 

unknown pair 〈𝑈, 𝐶〉. The 

more accurate the estimate of 

𝑀𝑅𝑒𝑚, the more accurate the estimate of 〈𝑈, 𝐶〉, leading to a Nested EM 

framework as shown in Figure 7, in which the inner EM serves to resolve 
〈𝑈, 𝐶〉 with 𝑀𝑅𝑒𝑚 fixed, and the outer EM serves to resolve 𝑀𝑅𝑒𝑚. 𝑀𝑅𝑒𝑚 

is approximated by a collection of tetrahedra located in a region of the 

model, which corresponds to the resection region in the intraoperative 

MRI. 𝑀𝑅𝑒𝑚 is initialized to ∅ and updated at each iteration of the outer 

EM. The outer EM stops if all the tetrahedra contained in the resection 

region are collected.  

 

The resection region is 

difficult to identify in 

the intra-operative MRI, 

so a simple threshold 

segmentation method is 

used. We cannot 

determine if a 

tetrahedron is an outlier 

based solely on its 

position. It might be in 

the background image 

(BGI) instead of the 

resection region. To 

ensure the element 

outlier rejection 

algorithm is robust, we use the fact that the resection region is made up 

of tetrahedra that not only fall in the BGI of intra-operative MRI but also 

connect and form a maximal connected submesh. The outliers are 

collected iteratively, with additional outliers added into 𝑀𝑅𝑒𝑚 if they fall 

in the BGI and connect with the maximal simply connected submesh 

identified in the previous iteration. We demonstrate the NEMNRR 

strategy in Figure 8, with the inner EM iterating horizontally and the outer 

EM iterating vertically. 

 

Figure 6. Illustration of Nested Expectation and 

Maximization strategy. Row: inner EM, Column: outer EM. 

 

Figure 5. Nested Expectation and Maximization 

framework. 



NEMNRR addressed a fundamental challenge in PBNRR: “It does not 

require the point correspondence to be known in advance and allows the 

input data to be incomplete, thus producing a more general point-based 

NRR method.” This implies that pre-operative landmarks near the tumor 

fail to correspond to iMRI landmarks and thus are treated as outliers, and 

the corresponding elements of the mesh are marked and removed. The 

crux of the idea is to use the NEM method to resolve the deformation 

field with missing correspondence, specifically in the resection region. 

This has many implications; one is to compute the registration error more 

accurately than HD, which will be explored in the future using quantum 

computing. Like the PBNRR, the NEMNRR uses the strain energy of the 

biomechanical model to regularize the solution. As a result, it is 

improving the registration error over the PBNRR by 2.9mm on average 

out of 25 cases presented in (Liu et al., 2014). 

The NEMNRR addresses brain deformation caused by tumor removal, 

but it is computationally expensive and currently is very difficult to meet 

clinical time constraints, even with the use of the best available 

accelerators. On the other hand, it does not require advanced knowledge 

of point correspondence and can handle incomplete input data, resulting 

in a more comprehensive point-based NRR. This method utilizes the 

biomechanical model's strain energy to regulate the solution and utilizes 

a multi-tissue heterogeneous model to enhance the simulation's accuracy, 

while the PBNRR relies on a simpler homogenous model.  

 

3.2 Real-Time Incremental Adaptive Deformable Registration  

Despite the qualitative improvements made by NEMNRR, the 

registration error for cases with extensive tumor resections was still 

beyond the threshold of 1mm to be acceptable for routine use in the 

operating room.  The next attempt in (Drakopoulos et al., 2014) used 

geometric means to remove outliers due to extensive tumor resections (as 

in NEMNRR), while in the meantime, the CRTC group built real-time 

multi-tissue I2M conversion technologies (Foteinos, 2014) that permitted 

the re-meshing of the brain multi-labeled image in less than a second 

using multi-core hardware and thus able to address the time critical 

aspects of adaptivity in D4NRR

 

The Adaptive Non-Rigid Registration (ANRR) method gradually adjusts 

the mesh for the FEM model to an incrementally warped segmented iMRI 

as opposed to NEMNRR that iteratively rejects feature and element 

outliers derived from a single (original) segmented iMRI. The idea of the 

geometric approach is to remove slivers and potentially negative volume 

elements resulting from large deformation fields (sometimes larger than 

the size of the elements) computed by block matching. This is achieved 



through an incremental approximation to reach the end goal. The ANRR 

method improves the accuracy of the model by improving the accuracy 

of the basic numerical calculations involved at the cost of increasing 

(potentially) the overhead for the mesh generation step and substantially 

increasing the computational cost of the linear solver several times. 

However, even with a single HPC node (DELL workstation with 12 Intel 

Xeon X5690@3.47 GHz CPU cores and 96 GB of RAM), the ANRR 

execution time on average is less than two minutes (Drakopoulos et al., 

2017), which is within the time constraints of the procedure in the 

operating room. 

 
Figure 7. The ANRR software architecture. The red arrows show the execution order of the 

different modules. The loop breaks when the desired number of iterations has been reached. The 

output image (orange box) is the warped pre-op MRI when i = Niter. 

 

 
Figure 8. Non-rigid registration using five iterations of ANRR reflects the changes in brain 

morphology caused by tumor resection. Each column depicts a brain mesh model (top) and an 

axial slice of the preoperative image after the non-rigid registration (bottom) at iteration i. 

 

The evaluation from two retrospective studies using initially 14 and then 

30 cases indicated that the geometric scheme is reducing substantially 

the alignment error compared to NEMNRR, PBNRR, B-Spline, and 

Rigid registration (Drakopoulos et al., 2014 and 2021).   

 

 



 
Table 1. Qualitative data of the intermediate adaptive mesh refinement for ANRR. 

Adaptive 

Iteration  
#Tets 

          αmin           αmax 

Before After Before After 

1 14278 - 5.00° - 169.68° 

2 13482 0.34° 5.24° 179.28° 169.92° 

3 13497 0.14° 4.91° 179.79° 169.71° 

4 12957 0.10° 5.01° 179.80° 171.32° 

 

The error in these studies and this paper (unless it is stated otherwise) is 

measured in terms of Hausdorff Distance (HD) as the measurement of the 

degree of mismatch between two pointsets with the equation,  

𝐻(𝐴, 𝐵) = max [ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)] (5) 

where ℎ(𝐴, 𝐵) and ℎ(𝐵, 𝐴) directed HD defined by 

baBAh
BbAa

−=
 ,
minmax),(

 
and ,minmax),(

,
abABh

AaBb
−=


 respectively. 𝐴 

and 𝐵 are a pair of point sets. HD is automatic and less labor-intensive. 

Note that this study utilized a 100% HD metric, unlike earlier work 

(Archip, 2007), which featured a 95% HD metric.  

 

In (Drakopoulos et al., 2021), an extensive study for registration accuracy 

was performed using 30 cases and anatomical landmarks selected by a 

neurosurgeon, as suggested in Hastreiter et al., 2004. The neurosurgeon 

located six landmarks in each registered preoperative and corresponding 

intraoperative image volume. Landmarks A and B were selected 

individually in the cortex near the tumor; C and D were selected at the 

anterior horn and the triangular part of the lateral ventricle, respectively; 

E and F were selected at the junction between the pons and mid-brain and 

the roof of the fourth ventricle, respectively (see Figure 11). 

 

 
Figure 9. Locations of the anatomical landmarks (A - F) used for the quantitative evaluation of 

the registration accuracy by a neurosurgeon: A, B: cortex near tumor, C: anterior horn of later 

ventricle, D: triangular part of later ventricle, E: junction between pons and mid-brain, F: roof of 

the fourth ventricle. 

The neurosurgeon located one and four additional landmarks of 

functional interest individually. For each case, these additional landmarks 

were selected depending on the location of the tumor, the surgical 

approach, and the visibility of the preoperative and intraoperative images. 



These structures of functional interest include, amongst others, the 

primary motor cortex, the pyramidal tract, the Sylvian fissure, the lateral 

border of the thalamus, the basal ganglia, the posterior limb of the internal 

capsule, and significant vessels.  The error was calculated for each 

landmark as the distance between the landmark location in the registered 

preoperative image and the corresponding intraoperative image. Table 2 

compares NEM and ANRR with the rest of the publicly available 

registration methods: RR, B-Spline, and PBNRR. It presents each case's 

minimum, maximum, and mean errors. The assessment confirms that the 

NEM and ANRR provide the most accurate registration, with an average 

minimum error of 1.36 mm and 1.03 mm, an average mean error of 3.69 

mm and 3.22 mm, and an average max error is 7.79 and 6.59 mm, 

respectively.  

 
Table 2. Quantitative registration results using six anatomical landmarks (A-F). The average 

minimum, maximum, and mean errors are computed over twenty-five cases for NEM and five 

additional (i.e., thirty cases) for rigid registration (RR), PBNRR, and ANRR. 

Method 

Average min 

error 

(mm) 

Average max 

error 

(mm) 

Average mean 

error 

(mm) 

RR 3.19 8.90 5.60 

BSPLINE 2.15 8.29 4.40 

PBNRR 1.11 6.81 3.47 

NEMNRR 1.36 7.79 3.69 

ANRR 1.03 6.59 3.22 

 

3.3 Real-time Adaptive Image-To-Mesh Conversion  

Although numerous grid or mesh generation methods have been 

presented in the literature to date, only some can deal in real-time with 

NRR requirements. Some methods generate low-fidelity meshes with a 

very large number of elements without allowing control to the user as far 

as the mesh size. In contrast, an I2M conversion method initially 

developed for NRR (Fedorov et al., 2005) and improved by (Liu et al., 

2010) by meshing multi-tissue segmented images and in (Drakopoulos et 

al., 2015) by addressing mesh gradation (i.e., control mesh size without 

compromising the fidelity of the mesh). Figure 12 shows the use of a 
finite element mesh for non-rigid registration of brain parenchyma 
and tumor tissues using tetrahedral elements. The resulting meshes 

are not smooth since, for NRR, the objective is to capture the details of a 

segmented image, where the fidelity and control of mesh size are critical, 



as opposed to blood flow applications where smoothness is important 

(Kazakidi et al., 2016). 

 

 

A detailed analysis of requirements for I2M conversion appears in 

(Fedorov and Chrisochoides, 2008); next, we list a subset:  

1. Suboptimal distribution of the registration points: Concerning mesh 

elements: a small number of points makes the numerical formulation 

more sensitive to outliers and introduces additional displacement 

error due to integral voxel displacements recovered by block 

matching. The distribution of points also influences the condition of 

the [K+HTSH] matrix. 

2. Fidelity to Image Boundaries: The mesh must provide a reasonably 

close representation of the underlying object in the image. A mesh, 

which provides 100% fidelity, would be the one whose boundaries 

exactly fit the piecewise-linear boundary between the voxels of the 

image corresponding to the tissue and all other voxels. However, in 

many cases, such a mesh would provide an extremely fine level of 

detail and contain an excessively large number of elements. 

3. Gradation of the Mesh: Interpolation error can be reduced by having 

smaller size mesh elements; at the same time, this leads to a larger 

number of elements and a longer solution time. Thus, it is essential to 

selectively adapt (refine) the mesh in the areas of interest. 

4. Size of the Mesh: The application imposes tight time constraints on 

the solution process, and the solution time depends on the size of the 

linear system. It is crucial to bind the number of degrees of freedom 

(i.e., vertices of the mesh) and keep it to the minimum necessary to 

achieve the desired solution accuracy. 

Figure 10. Top row: the mesh superimposed on a volume rendering of the MRI data. Cyan and 

red represent the brain parenchyma and tumor meshes, respectively. Bottom-row: mesh fidelity 

illustrated on an axial, sagittal, and coronal slice. 



5. The shape of Mesh Elements: Very large or small angles can increase 

the condition number of the stiffness matrix and lead to slower 

convergence rates for the iterative solver. The condition number can 

be improved with preconditioning; one could use a diagonal 

precondition (fast but less effective), and thus, the shape of elements 

is still very critical. 

6. Mesh Generation (or Refinement) Time: The set of registration points 

is dynamically changing through the execution of the algorithm as 

outlier points are discarded. This can lead to a few registration points 

assigned to a mesh vertex, violating the requirement (1). To 

circumvent this problem, the mesh must be refined/coarsened, or a 

new mesh must be generated (re-mesh) as necessary. 

7. Multi-tissue Capabilities: This work conjectures that as more tissues 

are incorporated into the model, such as the falx of the brain, the 

higher the registration accuracy will be more research and 

evaluation will be required to validate this hypothesis experimentally. 

 

A detailed review of I2M conversion methods and evaluation of their 

performance w.r.t FEM-based non-rigid registration method appears in 

(Foteinos et al., 2010). This study indicates that BCC-based methods (Liu 

et al., 2012) are preferable to Delaunay-based methods (Foteinos et al., 

2014) and Lattice Decimation methods (Chernikov and Chrisochoides, 

2011) because the relatively dense initial BCC mesh captures the object 

surface without much compression, thus preserving the good angles of 

the BCC triangulation. However, the main critique of BCC-based 

methods is still on the (large) number of elements required for a given 

fidelity.  This issue will be addressed by introducing mesh gradation 

while addressing the optimal distribution constraint.  

 

3.3.1 Distribution of Registration Points  

Six of the seven requirements for NRR are generic to many other 

applications, and their treatment is outside the scope of this chapter. 

Instead, the rest of this section will focus on the (sub-)optimal distribution 

of registration points. As noted earlier, the NRR software pipeline utilizes 

BCC-based and real-time Delaunay-based image-to-mesh conversion for 

mesh generation. The Delaunay-based approach is by far more flexible in 

terms of mesh gradation. It can generate a mesh that faithfully captures 

(with geometric guarantees) the surface of the input image and the 

interface between the two tissues. However, it does not consider any 

information about the registration points recovered by the Block 

Matching step.  

 



In previous work 

(Fedorov, 2008), the 

distribution of landmarks 

over the mesh was 

incorporated into the mesh 

generation module using 

custom sizing functions 

for two different mesh 

generation methods 

(Delaunay refinement and Advancing Front). These modifications aim to 

equidistribute the landmarks among the mesh elements; this is expected 

to improve the registration error. The evaluation presented in (Fedorov, 

2008) was based on synthetic deformation fields and showed that these 

modifications, to a degree, reduce the registration error. 

 

In a subsequent effort (Tsolakis, 2021) with preliminary results appearing 

in (Drakopoulos et al., 2021), the same sizing function is applied to 

validate the method's effectiveness on a retrospective case study. 

Preliminary results from applying mesh adaptation methods that originate 

from the Computational Fluid Dynamics field are presented in this paper. 

For completeness, a summary of the method employed in (Fedorov, 

2008) is presented along with the modifications that can turn it into an 

anisotropic metric-based method. The (sub-)optimal distribution of the 

registration points can be formulated as assigning approximately the same 

number of registration points at each mesh vertex cell complex, where a 

mesh vertex cell complex is defined as the set of all the elements attached 

to a vertex. See, for example, Figure 13. The p1, p2, and p3 vertex cells 

on the left have 3, 7, and 5 landmarks, respectively. While on the right, 

by collapsing edge p2p1, one attempts to equidistribute the landmarks. 

Both the vertex cells of p1 and p2 now have seven landmarks.  

 

The crux of the method is to 

set the local spacing at each 

vertex equal to the distance 

to the k-th closest 

registration point. Assuming 

an ideal spacing, each 

vertex's mesh vertex cell 

complex will contain k 

registration points. An 

illustration for k = 5 is given 

in Figure 14 left. Notice that 

another way to interpret the 

sizing constraint at each vertex is using a sphere centered at each mesh 

vertex with a radius equal to the distance to the k-th registration point.  

Figure 11 Optimizing landmark distribution. 

Figure 12 Left: Isotropic metric that sets the spacing equal 

to the distance of the fifth closest registration point. Right: 

Anisotropic metric based on the five registration points 

for different values of the inflation constant. 



This technique produces adaptive meshes but does not efficiently capture 

the local distribution of landmarks. This is because only the k-th point is 

used, and the relative positions of the other k-1 landmarks are 

disregarded. To improve this, one can substitute the spheres at each vertex 

with the smallest bounding ellipsoid that encompasses the k closest 

registration points and is centered at the vertex. Describing the local 

spacing as an ellipsoid gives the ability to capture the local distribution 

of the landmarks better due to the increased degrees of freedom of an 

ellipsoid compared to a sphere (see, for example, Figure 14 right). 

 

Creating the minimum volume ellipsoid that encloses a given pointset is 

a problem well studied in the convex optimization literate. The 

constructed ellipsoid has a natural mapping to a 3x3 positive definite 

matrix that can be used as a metric that guides the anisotropic mesh 

adaptation procedure. An additional flexibility to the mesh adaptation 

procedure can be introduced by an ‘inflation’ (constant a), which is 

introduced and is common for all the points; it allows to enlarge all 

ellipsoids by a constant factor.  The goal of this parameter is to allow the 

mesh generation procedure to perform operations that may not conform 

to the strict size but improve the overall result. See Figure 14, right. 

To incorporate the above approach to ANRR, the mesh generated by the 

Parallel Optimistic Delaunay Mesh (Foteinos et al., 2014) at each 

iteration, along with the 

landmarks identified by the 

Block-Matching step, are used 

to build a metric field. The 

metric field is constructed by 

iterating in parallel the mesh 

vertices and evaluating the k-

closest registration points 

using a k-nn search from the 

VTK library (VTK - The 

Visualization Toolkit, 2020). The minimum volume bounding ellipsoid is 

constructed using the Khachiyan algorithm. Directly using the landmarks 

(Figure 15 (b)) will not yield an ellipse centered at a mesh point. Including 

the mesh point into the input of the minimum ellipsoid algorithm does not 

fix the issue (see Figure 15 (c)). Instead, one can generate reflections of 

the k-closest landmarks by the mesh point and include them in the input 

of the minimum ellipsoid algorithm. Due to symmetry, the mesh point 

will always be in the center of the constructed ellipsoid. Finally, the mesh 

is adapted using MMG3D (Dapogny et al., 2014) using the metric field 

derived from the constructed ellipsoids. Figure 14 depicts the difference 

of isotropic vs. anisotropic and sup-optimal mesh for a single case. Notice 

that the number of elements generated constrains the anisotropy; it must 

be approximately equal to the number of elements in the isotropic mesh.  

Figure 13 Different approaches to 

constructing a metric utilizing the 

minimum ellipsoid method. 



Table 3 presents 

preliminary data 

from two new cases:  

(A: case 9) from 

(Drakopoulos et al., 

21), provided by 

HSH (male, with a 

glioma at Left 

Frontal location of the brain, where Partial Resection is performed, with 

preop-MRI and iMRI image sizes and spacing: 448x512x176 and 

0.488x0.488x1.00, respectively) and (B: case 18) from (Drakopoulos et 

al., 21), provided by HSH (female, with glioma at Left Frontal location 

of the brain, where Total Resection is performed, with preop-MRI and 

iMRI image sizes and spacing: 448x512x176 and 0.488x0.488x1.00, 

respectively).  

 
Table 3. Hausdorff Distance (HD) and error using A-F landmarks reported in mm. Where baseline 

uses the default I2M within ANRR, isotropic uses the equidistribution method by (Fedorov, 2008), 

and anisotropic with different values for the alpha weight (in parenthesis). 

Case A HD Min  

error  

Max  

error  

Mean  

error  

# tets # 

vertices 

baseline 2.24             1.07   5.90 3.51   13,210 3,264 

isotropic 1.95 1.22 7.53 3.71 19,893 4,177 

anisotropic 

(a=1.0) 

2.22 0.55 7.85 3.99 22,383 4.520 

anisotropic 

(a=1.2) 

2.00 1.01 7.10 3.70 17.593 3.629 

anisotropic 

(a=1.5) 

2.64 0.93 6.15 3.25 13,291 2,838 

 

Case B HD Min  

error  

Max  

error  

Mean  

error  

# 

tets 

# 

vertices 

baseline 4.06             2.06   5.37 3.65   11,040 2,833 

isotropic 3.42 2.29 5.76 3.92 19,946 4,008 

anisotropic 

(a=1.0) 

3.71 2.12 5.50 3.96 22,342 4,460 

anisotropic 

(a=1.2) 

4.05 2.06 5.05 3.61 18,077 3.766 

anisotropic 

(a=1.5) 

4.05 1.92 5.17 3.65 13,812 2,983 

 

In contrast, for case A, the HD error for Rigid Registration (RR), B-

Spline, and PBNRR (without optimal distribution of registration points) 

is 10.59mm, 5.28mm, and 10.76mm, respectively. While for case B the 

HD error for RR, B-Spline, and PBNRR (without optimal distribution of 

Figure 15. Registration points (left), isotropic mesh (center) and 

anisotropic sub-optimal mesh (right).  

 



registration points) is: 25.72mm, 25.72mm, and 23.90mm, respectively. 

In both cases, the optimal distribution within the ANRR method reduced 

the error to about five to six times compared to RR and PBNRR. While 

the error using A-F landmarks is improved (see Table 2), more work is 

needed. 

 

4. Discussion 

This paper addressed some of the computational aspects of a D4NRR for 

Image Guided Neurosurgery. This D4NRR method was used for the first 

time ever in clinical practice (Chrisochoides, 2006) and (Archip et al., 

2007); it completed and made available non-rigid registration results in 

the OR (at BWH) during tumor resection procedures using image 

landmark tracking across the entire brain volume. Example cases used for 

the evaluation are publicly available (NCIGT, 2021). In addition, many 

of the registration codes used (RR, BSplines, PBNRR) are publicly 

available within Slicer3D. 

 

Before any conclusions are drawn, clarification is important. The 

automatic method (Garlapati, 2013) was used to evaluate the registration 

accuracy quantitatively because it is fast and does not require manual 

intervention. It relies on Canny edge detection (Canny, 1986) to compute 

two-point sets. The first point set is computed from the preoperative 

volume and then transformed (using the deformation field computed by 

each registration method) from the preoperative to the intraoperative 

space. The second point set is computed from the intraoperative volume. 

A Hausdorff Distance (HD) metric (Commandeur, 2011) was employed 

to calculate the degree of displacement between the two-point sets. This 

approach is crude and helpful only for a relative comparison of the 

methods and should not be used in any clinical setting. However, the 

NEMNRR method, the way is formulated, can provide (in the future) a 

way to compute the correspondence between those two sets of points for 

the HD error, making HD error much more reliable.  

 

All registration methods (RR, B-Splines, PBNRR, NEMNRR, ANRR, 

and its recent version for the sub-optimal distribution of registration 

points) can be fine-tuned and optimized even more. There is space for 

improvement with the use of Cloud computing and Deep Learning, as 

suggested in (Drakopoulos et al., 2021). Tables 4 and 5 (Appendix I) 

depict the most important parameters the authors considered in this study. 

As it is apparent and experienced by this group, for a single case to search 

— even a reduced parameter space from Tables 4 and 5 — using 400 

cores (about 10 HPC nodes), running a single adaptive physics-based 

registration method takes a full month. The computational cost is 

prohibited! This suggests that using Deep Learning for patient-specific 



parameter values will be beneficial; some preliminary results appeared in 

(Drakopoulos et al., 2021).  In summary, Deep Learning improved the 

accuracy of ANRR by finding optimal values for its parameters. On 

average, APBNRR with deep learning is ~8.45 times better than rigid 

registration, ~6.71 times better than B-Spline registration, and ~7.9 times 

better than PBNRR, an older version of ANRR. Again, more work is 

required to improve the accuracy of cases with deep brain tumors and 

validate the current state of the software.  

 

A final and perhaps more important outcome of this work was workforce 

development. Six Ph.D. students trained and delivered these results: (1) 

Dr. Fedorov initiated this research with his work on “Enabling 

Technology for Non-Rigid Registration during Image-Guided 

Neurosurgery” (Fedorov, 2009), currently an Associate Professor at the 

Department of Radiology, Brigham and Women's Hospital, Harvard 

Medical School;  (2) Dr. Liu improved by introducing the NEM and the 

multi-tissue heterogeneous model with his work “On the Real-Time 

Performance, Robustness, and Accuracy of Medical Image Non-Rigid 

Registration” (Liu,  2011), currently Senior Researcher at Tencent; (3) 

Dr. Drakopoulos then improved even further by following a pure 

geometric approach to manage tumor resection and substantially 

improved many topologic aspects of the multi-tissue mesh generation 

method with his work on “On the Geometric Modeling for Aerospace and 

Health Care Applications” (Drakopoulos, 2017), currently a R&D Staff 

Engineer at Synopsis Inc. However, the real-time NRR in the case of 

ANRR only becomes feasible because of the work by (4) Dr. Foteinos on 

“Real-Time Image to Mesh Conversion for Finite Element Simulations” 

(Foteinos, 2013), currently a Meshing specialist at Altair and (5) Dr. 

Tsolakis' work on “Unified Framework for Parallel Anisotropic Mesh 

Adaptation” (Tsolakis, 2021) is promising in addressing the optimal 

distribution of registration points and potentially help improve the 

accuracy of ANRR; Dr. Tsolakis currently is Senior R&D Engineer.  

However, none of this would be possible without the tenacity and 

persistence of (6) Dr. Kot to untangle the original FEM NRR code and 

his early contributions to many software systems aspects (Kot, 2011), Dr. 

Kot is a Software Development Engineer at Intel Corporation.  

 

In conclusion, this multi-disciplinary and multi-national team at CRTC, 

BWH, and INRIA demonstrated more than 15 years ago that DDDAS 

deformable registration can be used in real-time for image-guided 

neurosurgery. The accuracy of the specific deformable registration is 

improving to a point within reach to achieve the 1mm goal for the 

registration error. Deep learning, for using patient-specific parameters in 

NEMNRR and ANRR, can help to get closer to this goal. However, some 

issues remain unresolved (Angelopoulos and Chrisochoides, 2018): 



“First, more training data needs to be collected to allow the deep learning 

model to offer more accurate predictions. Second, work needs to be done 

to enable the deep learning model to generate a parameter pool that is 

limited in size and can also be evaluated rapidly. Finally, the accuracy of 

ANRR needs to be further improved, especially the performance of 

ANRR regarding deep tumors which involve very large brain 

deformation.”  

 

In the future, the CRTC team will focus on using Quantum Computing to 

address some of the combinatorial aspects of the problem. CRTC's recent 

work on edge detection, one of the simplest but still most computationally 

intensive modules, suggests that a hybrid (classical and quantum) model 

might be promising (Billias and Chrisochoides, 2023). Early 

experimental evidence suggests that: (1) the use of space-filling curves to 

eliminate image artifacts introduced by the image decomposition, which 

is required to utilize D-NISQ (Distributed Noisy Intermediate-Scale 

Quantum) model; (2) a quantum circuit can be built for mapping DICOM 

images on today’s noise Quantum Processor Unites (QPU);   and (3) it is 

possible to improve the (image) encoding circuit fidelity and reduce the 

edge detection circuit depth as well as the number of CX gates to under 

100 by using a moderate number of 128 cores even to simulate an 

enhanced with realistic noise QPU model from IBM.  
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Appendix I 

 
Table 4. Parameters used in this study for rigid registration (RR) and B-Spline non-rigid 

registration methods implemented in 3D Slicer. MMI: Mattes Mutual Information; VR3DT: 

Versor Rigid 3D Transform; LBFGSB: Limited memory Broyden Fletcher Goldfarb Shannon 

minimization with Simple Bounds.  

 

Parameter 

         Value 

Description 
RR B-Spline 

Cost Metric MMI MMI Mattes Mutual Information 

Interpolation Mode Linear Linear  

Sampling percentage 5% 5% 
Percentage of image voxels sampled for 

MMI  

Histogram bins 100 100 Number of histogram levels 

Optimizer type VR3DT LBFGSB - 

Max number of iterations 1500 1500 
Maximum number of iterations for 

optimizer 

Grid Size - 15x15x15 
Number of subdivisions of the B-Spline 

Grid 

Min step length 10-3 10-3 Min threshold step for optimizer 

Projected Gradient 

Tolerance 
- 10-5 Used by LBFGSB 

 
 

Table 5. A few important parameters are used for PBNRR, NEMNRR, and ANRR. 

Parameter Value Description 

Initialization 

transform 
Rigid 

Rigid transformation to initialize the non-rigid 

registration 

Connectivity 

pattern 
“face” Pattern for the selection of blocks 

𝐅𝐬 5% % selected blocks from total number of blocks 

𝐁𝐬,𝐱 × 𝐁𝐬,𝐲 × 𝐁𝐬,𝐳 3 × 3 × 3 Block size (in voxels) 

𝐖𝐬,𝐱 × 𝐖𝐬,𝐲

× 𝐖𝐬,𝐳 

7 × 7 × 3 (BS) 

9 × 9 × 3 (PR) 

13 × 13 × 3 

(TR, STR) 

Block matching window size (in voxels) 

𝛅 5 Mesh size (PBNRR, ANRR) 

𝐄𝐛 2.1 KPA Young’s modulus for brain parenchyma 

𝐄𝐭 21 KPA Young’s modulus for tumor  

𝐯𝐛 0.45 Poisson ratio for brain tumor and parenchyma 

𝐯𝐭 0.1 Poisson ratio for ventricle (NEMNRR) 

𝐅𝐫 25% % of rejected outlier blocks 

𝐍𝐫𝐞𝐣 10 Number of outlier rejection steps 

𝐍𝐢𝐭𝐞𝐫,.𝐦𝐚𝐱 10 Max number of adaptive iterations (ANRR) 
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