
Springer Nature 2021 LATEX template

Towards Runtime Support for Unstructured

and Dynamic Exascale-era Applications

Polykarpos Thomadakis1* and Nikos Chrisochoides1

1Department of Computer Science, Old Dominion University,
Norfolk, 23529, Virginia, USA.

*Corresponding author(s). E-mail(s): pthom001@odu.edu;
Contributing authors: nikos@cs.odu.edu;

Abstract

This paper presents an effort to mitigate overheads, latencies and lim-
itations observed in message-driven runtime frameworks, by utilizing
lightweight threads tightly integrated with message-passing. It also intro-
duces new abstractions and features for group communication as well as
fine-grained concurrency on top of remote method invocations to improve
workload balancing in shared and distributed memory. We observe up to
100% difference in performance behavior for task creation and handling
message-passing. Evaluations on 1000 cores (25 nodes) of a distributed
memory machine showed that the integration of fine-grained concur-
rency with the runtime achieves performance improvements of 12% on
a seismic wave simulation benchmark, as opposed to 50% degradation
with OpenMP. Moreover, a 3D mesh refinement application showed 50%
improvement, exploiting multi-grain parallelism at data and task level.

1 Introduction

Developing efficient applications for modern, large scale, heterogeneous com-
puting clusters requires a lot of effort and expertise in both the application
and the systems domain. The required expertise becomes even more rele-
vant for unstructured applications due to their sparse, data-intensive, and
dynamic (or adaptive) nature. The workflow of such applications is not stati-
cally predictable and heavily depends on the specific given input; thus, raising

1

Springer Nature 2021 LATEX template

2 Runtime Support for Unstructured Exascale-era Applications

the complexity of scheduling and load balancing algorithms required to effi-
ciently utilize modern platforms. Our solution to simplify the development
of efficient adaptive and irregular applications is the introduction of a high-
level Domain Specific Language (DSL). The DSL hides the additional effort
required for maintaining correctness in the context of concurrency as well
as the idiosyncrasies of low-level hardware, and transparently scales applica-
tions to large computing clusters. It includes selective domain-specific language
constructs, a compilation toolchain, and a runtime framework that provides
tasking, scheduling, and load balancing across and within tightly integrated
heterogeneous nodes. In this work, we focus on the runtime framework of the
DSL, namely the Parallel Runtime Environment for Multicore Applications
(PREMA) [1, 2].

An effective runtime should address the following fundamental issues in
parallel computing: a) global namespace, b) scheduling and load balancing, c)
latency hiding, d) fault resilience, e) heterogeneity and performance portability.
Currently, PREMA addresses the former three while work is in progress for
the latter two. In the process of designing and implementing high-level DSL
constructs on top of PREMA, we realized some of its limitations, also found
in other similar systems, that inhibit its performance and ease of use. Some
of these limitations include: 1) requiring remote method invocations (Active
Messages) or tasks to run to completion to avoid delaying the progress engine,
2) inability to preempt task execution, 3) limited high-level constructs to check
remote task completion and task dependencies, and 4) inability to balance a
coarse-grained work unit’s load once it has been scheduled.

Restricting applications to use run-to-completion tasks is a common
requirement among shared and distributed memory runtime systems, like
PREMA. Tasks are usually expected not to synchronize with each other, except
from “parent” tasks synchronizing with their “children”, and should not be
involved in a (busy)-waiting routine, e.g., waiting for an MPI message recep-
tion or for an interrupt to fire. Moreover, such systems lack the ability for
tasks to voluntarily release control of a CPU thread, when busy-waiting is
unavoidable, in order to allow other tasks to execute. These restrictions are
put in place in an effort to prevent tasks from delaying the execution flow or
even causing deadlocks; however, they increase the complexity of developing
applications on top of such systems, especially when porting legacy codes. In
section 3, we present an attempt to loosen these constraints by introducing
the wait until() construct that allows PREMA to preempt a task execution
until a given condition is satisfied. We show that this feature can quickly lead
to live-lock scenarios when using tasks that do not use dedicated stacks and
cannot context switch.

Unstructured and adaptive applications are usually hard to scale across
multiple computing cores and nodes due to the difficulty in statically dividing
them into uniform chunks of work. One way to handle the irregular workload
of such applications is to apply dynamic load balancing in an attempt to fix
workload imbalance when it arises at run-time. PREMA implements implicit

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 3

load balancing through a uniform object-oriented, message-driven execution
model (see section 1.1) that virtualizes memory spaces and processing ele-
ments, and allows transparent data and workload migrations. Applications are
designed as if those objects are located in independent process that do not
share common hardware and can only interact with each other through mes-
sages that trigger a function execution (called handlers). Internally, the objects
share the resources of a computing node, the work units of an object (received
handlers) can be executed, if possible in parallel, by any idle thread in the
node, and objects, along with their workload, can be migrated among nodes.
Thus, workload can be redistributed both in distributed and shared memory,
while using a uniform interface to create work units (handlers). Even though
this approach is elegant, it can be sub-optimal when the there is a large dis-
parity among handlers’ workload since a handler is a single unit of work that
cannot be shared among threads.

In this paper, we present an effort to alleviate the issues presented above.
We show that by integrating PREMA with lightweight threads (in our case,
Argobots [3]) one can easily avoid the limitations imposed by using run-
to-completion tasks, substantially improving end-user productivity without
significant cost in performance. Moreover, by utilizing the capabilities of this
new integration, we implement high-level group-commnuication primitives that
further increase ease-of-use. Finally, to mitigate the load imbalance imposed
in cases of large workload disparity between handlers, we diverge from the uni-
form message-driven execution model and integrate PREMA with a tasking
framework that enables applications to express handlers as a set of par-
tially independent tasklets. We show that by sacrificing a little ease-of-use
to utilize a hybrid execution model, runtime systems can achieve significant
improvements. Specifically, by compartmentalizing handlers, PREMA is able
to redistribute workload outliers among the idle cores of a computing node.

1.1 Parallel Runtime Environment for Multicore
Applications

The Parallel Runtime Environment for Multicore Applications (PREMA) is
a system that provides runtime support for applications targeting large-scale
computing clusters. PREMA allows for seamless and efficient utilization of
the available computing power of a computing platform, both in shared and
distributed memory, by offering 2-level parallelism that utilizes the Message
Passing Interface (MPI) for inter-node communication and Pthreads for intra-
node coordination. Its ultimate goal is to alleviate applications from the burden
of dealing with work scheduling, load balancing, and overlapping the com-
munication overhead with computations with minimum involvement of the
user. PREMA introduces the abstraction of mobile objects, a globally address-
able, location-independent container implemented by the runtime system to
store application data. Mobile objects are indented to represent semi-isolated,
coarse-grained data, similar to these belonging to an MPI rank after appro-
priately over-decomposing [4] the application domain; however, users are free

Springer Nature 2021 LATEX template

4 Runtime Support for Unstructured Exascale-era Applications

Node 1 Node 2 Node 3

Invoke f1

Issue
local task

Invoke f1

Issue
message

Virtual Global Namespace

mobile
objects

Fig. 1 PREMA’s mobile object driven (MOD) model. Applications are expressed as method
invocations between local or remote mobile objects. A virtual global namespace is used to
provide a uniform high-level interface to issue local or remote work. The runtime system is
responsible to run a task locally or send an active message depending on the location of the
target mobile object.

to encapsulate any type or size of desired data. Utilizing the abstraction of
mobile objects, PREMA introduces a mobile object-driven (MOD) program-
ming model where interactions are expressed as (remote) method invocations
(called handlers in PREMA) between mobile objects rather than processes or
threads. Handlers can be invoked on mobile objects uniformly, regardless of
whether their data are local or remote. An example of the MOD model is
shown in Figure 1.

By utilizing the MOD programming model and associating remote handlers
with access privileges, an application is able to transparently run on multi-
core distributed platforms without explicitly handling concurrency. PREMA is
able to extract shared-memory parallelism by running non-conflicting handlers
concurrently and allowing threads to share their workload. On the distributed
memory level, it can migrate mobile objects between different computing nodes
in order to provide distributed-memory load balancing. Thus, the hardware
memory spaces and processing elements are virtualized, allowing inter-handler
parallelism (multiple handlers running in parallel) and sharing mobile object
workload for threads in the same node. To increase flexibility, the framework
exposes a simple and isolated module that allows easy experimentation/devel-
opment of new 2-level load balancing/scheduling policies without affecting the
application code.

1.2 Contributions

This paper presents an effort to address tasking and communication chal-
lenges related to message-driven runtime frameworks, like PREMA, by using
lightweight threads tightly integrated with message-passing. We use Argob-
ots to demonstrate a number of optimizations, including lightweight threads
with distinct stack, capable of preemption. We also use a high-level task-
ing framework, introduced in in [5], and present a detailed overview of its
design and implementation on top of Argobots. In this context, the tasking
framework is used to facilitate even load distribution by employing multi-level
task-parallelism. In summary, this work:

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 5

• provides the means for efficient task creation and message-handling,
using low-latency, preemptable, lightweight threads as opposed to run-to-
completion tasks with the purpose of mitigating overheads and latencies
stemming from blocking operations

• encourages the utilization of multiple levels of data and task over-
decomposition to improve the quality of workload distribution by increasing
the flexibility of the runtime system to dynamically assign work units across
both shared and distributed memory

• facilitates ease-of-use in the context of message-driven, global address-space
and data migrations, introducing high-level group communication constructs

• evaluates methods for integrating remote method invocations and message-
handling, where we observe up to 100% difference in performance behavior,
and presents significant improvement of 50% through exhibiting multi-grain
task and data over-decomposition.

This work has a broad impact on scientific computing use cases; some
examples of applications that use PREMA and can leverage from its new
features include mesh generation applications ([6], section 6.7), solvers (section
6.6) , N-body simulations [7], as well as other applications of irregular and
adaptive computation and communication nature. Subsequently, it can be used
as the backend of a domain specific language for unstructured and dynamic
applications.

2 Related Work

2.1 Lightweight Threading Systems

Some of the most popular and highly optimized general-purpose systems
include MassiveThreads [8], QThreads [9], StackThreads/MP [10], Cilk [11],
Intel Threading Building Blocks [12], and Argobots [3]. All of these libraries
offer large-scale lightweight thread support, allowing a large number of
limited-resource threads to coexist in a system, managed by a set of heavy-
weight OS threads. Threads generated from these libraries can block and wait
for other threads to complete and can also migrate between OS threads before
completing their execution. QThreads, StackThreads/MP, MassiveThreads
and Argobots offer (in different extends) sets of synchronization primitives
(mutexes, conditional variable, etc.) that allow OS threads to context-switch
between lightweight threads instead of blocking when the waiting condition
is not immediately satisfied. StackThreads/MP and Cilk require compiler
support while the rest of the systems are provided as C language libraries
which makes them much easier to use in applications and higher-level run-
times. MassiveThreads and Argobots are enhanced with additional support
for efficient interaction with with I/O operations. Threads created by the two
systems are able to automatically detect blocking IO calls and context switch
at user-level, simplifying the interaction between computation-heavy and
IO-heavy tasks in a single threading model. Finally, while all other libraries

Springer Nature 2021 LATEX template

6 Runtime Support for Unstructured Exascale-era Applications

adopt a predefined scheduling policy, i.e. work-first LIFO scheduling within a
single OS thread and FIFO randomized work-stealing between OS threads,
Argobots does not restrict users to a specific policy and provides the tools to
implement their own.

Based on our review, Argobots was chosen as the best option for a low-level
threading system, since it achieves high performance [3, 5], and incorporates
the features provided by all the other systems. It also exposes abstractions that
allow low-level customization and optimization by the user while maintaining
a portable and broadly applicable interface. Other libraries facilitate higher
usability, but this comes at the cost of less flexibility and lack of low-level
control. For instance, all other libraries implement transparent scheduling deci-
sions, hide work pools and provide no control over stack and context-switching.
Having access to these implementation decisions and being able to customize
them plays a crucial role in optimizing a complicated runtime system such as
PREMA to achieve high performance. Argobots allows that while providing
two types of tasks to optimize performance, exposing an explicit task-yield
operation, and integrating with MPI and power management systems.

2.2 Distributed Memory Systems

Distributed memory runtime systems have been used since the beginning of
the field of High-Performance Computing [13]. Systems like Split-C [14] and
Unified Parallel C [15] introduced the partitioned global address space (PGAS)
environment for parallel computing as an extension to the C language, using
globally accessible arrays distributed among the computing nodes. Hiding
message-passing into global array accesses makes it feasible to achieve func-
tional programs by sharing a common virtual address space; however, it is
difficult for developers to optimize remote accesses since they are implicit.
In addition, data allocation is static and cannot change based on dynamic
load. Titanium [16] made inter-node communication explicit; however, data
migrations are still not supported.

Chapel [17] extends the PGAS languages model with an asynchronous
approach and the abstraction of locales. Locales can be either an abstracted
or real machine component where data or computations can reside; work
and data are then assigned to them explicitly. Even though Chapel supports
shared memory tasking, distributed load balancing has to be explicitly imple-
mented by the application developer. HPX [18] is another task-based runtime
using the asynchronous PGAS approach. HPX does not support distributed
load balancing, although it does so in the shared memory. Legion [19] is a
data-centric parallel programming framework that targets distributed hetero-
geneous systems. Its abstraction of logical regions to represent user data allows
it to efficiently map data to computing memories and devices, but makes it
difficult to develop unstructured and irregular applications. Unicorn [20] and
StarPU [21] are systems closely related to Legion, exposing concepts similar to
Legion’s logical regions to represent their data. Hence, they also lack an effi-
cient way to develop unstructured and irregular applications. D-Galois [22] is

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 7

an object-based optimistic parallelization system for irregular applications. It
provides a set of concurrency-aware data structures as well as mechanisms to
rollback conflicting operations in order to optimize optimistic parallel execu-
tion. Galois’ abstractions mainly focus on graph analytics, thus, applications
need to be expressed in an appropriate fashion. Thus, none of these systems
are suitable for developing irregular and adaptive applications that require
dynamic data redistributions.

3 Integration of PREMA and Argobots

In this section, we present how each of PREMA’s software layers, namely the
Data Movement and Control Substrate (DMCS), the Mobile Object Layer
(MOL), and the Implicit Load Balancing (ILB) are adjusted to be integrated
with Argobots.

DMCS incorporates MPI to utilize multiple computing nodes in a high-
performance computing cluster, as well as Argobots to take advantage of the
hardware cores of each node. The programming model of DMCS is similar to
that of Active Messages (i.e., each message sent is associated with a function
call to be invoked on the receiver side once the message is received). This layer
is divided into three components: the application, the communication, and the
handler-execution component. The application component runs on the default,
implicitly-created Argobots Execution Stream. The handler-execution compo-
nent consists of multiple Execution Streams (ES), usually one less than the
number of cores residing on a computing node. The communication component
is either handled by a dedicated stream or any stream whose work pools are
empty. The streams of the application and handler-execution components run
customized Argobots schedulers, each assigned with a primary work pool while
accessing each others’ pools for the needs of work-stealing. On top of these
work pools, each scheduler is assigned a private work pool, used to trigger a
change of the active scheduler, a feature used by the higher-level layers. When
a scheduler’s work pools are empty, it attempts to perform work-stealing on a
randomly selected work pool of a local peer. If this fails, it performs exponen-
tial backoff to minimize the cycles wasted while waiting for new work units.
The communication component encloses all message-passing related operations
and is either handled by a dedicated stream or the streams in the handler-
executing and application components when the rest of their work has been
completed. When a remote method invocation request is received in the com-
munication component, a new User Lightweight Thread (ULT) is created that
is pushed to a randomly selected pool of the handler execution component (if
any) or to the application component’s work pool. In section 6.2, we evaluate
different approaches for handler/task creation using Argobots.

By encapsulating remote handler invocations in ULTs their execution can
be interrupted at any point allowing others handlers to execute on the same
hardware thread. Furthermore, the interrupted handler will continue its exe-
cution from where it stopped when there is an available core in the same node.

Springer Nature 2021 LATEX template

8 Runtime Support for Unstructured Exascale-era Applications

This functionality suits the needs of parallel applications that otherwise need
to use a (busy) waiting mechanism for some resources to become available.
Using the yielding function, an application can interrupt the running ULT
that needs to wait so that another one can run. In contrast, in the PThreads
implementation, using busy waiting inside a handler for reasons other than
for sending a message was discouraged as it could cause starvation and even
deadlocks in some cases. The use of ULTs and their yielding capabilities allow
to overcome these constraints. Some scenarios that can leverage the yielding
functionality include blocking on a lock and message acknowledgment opera-
tions. Figure 2 shows an example of how using ULTs can avoid deadlock cases
induced when blocking in the PThreads implementation. The issue arises by
the implementation of the wait until([condition]) operation, which blocks the
running thread until the given condition evaluates to true. To avoid wasting
cycles while waiting, PREMA tries to find another task to run by popping the
next task available in the pools; however, when used from inside a handler,
it can lead a live-lock scenario like the following. Let us assume a scenario
of three tasks, namely T1, T2, and T3 (see Figure 2 left) where T1 needs
to wait for some acknowledgment A3 from T3, T2 waits for acknowledgment
A1 from T1, and T3 does not wait for any acknowledgments. PREMA starts
running T1 until it blocks waiting for acknowledgment A3, then switches to
T2 until it blocks waiting for acknowledgment A1, and finally switches to T3,
which acknowledges A3. Even though A3 has been acknowledged, the control
will never return to T1 to unblock it. Once T3 finishes its execution, the con-
trol returns to T2’s wait until() operation, which will keep checking the task
pool but will never run T1 since T1 has already been popped and is running
T2 from its wait until() operation. The Argobots implementation avoids such
a scenario by using separate stacks for each task, saving their states before
switching control of the execution stream, and resubmitting them to the task
pool when unblocked. This also allows blocked tasks to be stolen in case the
currently running thread starts a long-running process.

The ILB layer is implemented as an Argobots’ stackable scheduler that
is pushed to the dedicated pool of each available execution stream to change
the DMCS scheduling policy. It inherits the pools created by DMCS to con-
tinue executing remote handlers of the lower layers while also handling pools
dedicated to the ILB. Handlers need to be issued through the ILB messag-
ing operation for their loads to be monitored. Their execution consists of two
steps. In the first step, the requests need to be routed to the current location
of the target mobile objects and have their load evaluated. In the second step,
handlers are scheduled for execution. For the first step, MOL finds the loca-
tion of the mobile object and guarantees that it is in a valid state. Next, the
ILB is notified about the new handler, the handler’s load is calculated, and
it is pushed to the list of pending handlers of the mobile object. The second
step is executed later from the stacked Argobots scheduler created for the ILB.
This scheduler maintains a list of all local mobile objects in the computing
node to monitor the load of the whole node. When there is no other ongoing

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 9

Task Pool

Empty

Deadlock

Task Pool

T1

A1
A3

T2

T3

X
X

Scheduler context

if(check_task_pool())

 run_next_task();

Task Pool

A1
A3

T2

T3

X
X

Scheduler context

T1 context

do_work1();

wait_until(A3);

do_more_work1();

check_task_pool();

run_next_task();

T1 context

do_work1();

wait_until(A3);

Task Pool

A1
A3

T3

X
X

Scheduler context

do_more_work1();

T2 context

do_work2();

wait_until(A1);

do_more_work2();

if(check_task_pool())

 run_next_task();

check_task_pool();

run_next_task();

T1 context

do_work1();

wait_until(A3);

Task Pool

A1
A3

X
�

Scheduler context

do_more_work1();

T2 context

do_work2();

wait_until(A1);

do_more_work2();

if(check_task_pool())

 run_next_task();

T3 context

do_work3();
check_task_pool();

run_next_task();

T1 context

do_work1();

wait_until(A3);

Task Pool

A1
A3

X
�

Scheduler context

do_more_work1();

T2 context

do_work2();

wait_until();

do_more_work2();

wait_until(condition)

{

 while(!condition)

 {

 if(!check_task_pool())

 run_next_task();

 }

}

if(check_task_pool())

 run_next_task();

if(check_task_pool())

 run_next_task();

POSIX Threads

T1

pushed back

to task pool

T2

pushed back

to task pool

Task Pool

T1

A1
A3

T1

T2

T3

X
X

Scheduler context

if(check_task_pool())

 run_next_task();

Suspended Tasks

Task Pool

A1
A3

T2

T3

X
X

Scheduler context

T1 context

do_work1();

wait_until(A3);

do_more_work1();

Task Pool

A1
A3

T3

X
X

Scheduler context

T2 context

do_work2();

wait_until(A1);

do_more_work2();

if(check_task_pool())

 run_next_task();

Task Pool

A1
A3

X
�

Scheduler context

if(check_task_pool())

 run_next_task();

T3 context

do_work3();

if(check_task_pool())

 run_next_task();

T1 T2Suspended Tasks

T1 context

Task Pool

A1
A3

�

�

Scheduler context

do_more_work1();

if(check_task_pool())

 run_next_task();

T2

T2 context

Task Pool

A1
A3

�

�

Scheduler context

do_more_work2();

if(check_task_pool())

 run_next_task();

wait_until(condition)

{

 if(!condition)

 {

 save_context();

 suspend_task();

 }

}

Argobots

Fig. 2 An example of how blocking inside a handler can cause deadlock, and how Argobots
helps to solve this issue.

work, it picks one handler from the list of pending handlers of the next avail-
able mobile object and creates a ULT out of it. ULTs created from this part of
the system are then pushed to the fine-grained tasking module, presented in
section 5. If no pending handlers are available, ILB starts a new cycle of dis-
tributed load balancing to find a remote mobile object with enough workload.
The distributed memory load-balancing scheduler is also implemented inside a
ULT as part of the ILB to allow the load balancing policies to use operations
that could block. Since this operation includes sending messages and check-
ing containers that might require some synchronization, ILB should provide
applications with this feature.

4 Constructs for Group Communication

Springer Nature 2021 LATEX template

10 Runtime Support for Unstructured Exascale-era Applications

1 void run_important_computation(...);
2 bool computation_done = false;
3
4 DEFINE_HANDLER(computation_hdler_done) {
5 // Signal waiting thread
6 computation_done = true;
7 }
8
9 DEFINE_HANDLER(computation_hdler) {

10 // Execute computations as needed
11 run_computation(dmcs_get_msg_args());
12
13 // Execution is done, notify source
14 dmcs_send(dmcs_get_msg_source(),

computation_hdler_done);
15 }
16
17 int main() {
18 double values[4];
19 size_t v_size = sizeof(data);
20 int target = 1;
21
22 // Execute run_computation_hdler on

target
23 // args: values[4]
24 dmcs_send(target,

run_computation_handler,data,v_size);
25
26 // Wait until notified completion
27 wait_until(computation_done == true);
28 }

void run_important_computation(...);

DEFINE_HANDLER(computation_hdler) {
// Execute computations as needed
run_computation(dmcs_get_msg_args());

}

int main() {
double values[4];
size_t v_size = sizeof(data);
int target = 1;
dmcs_future done;

// Execute run_computation_hdler on
target

// args: values[4]
dmcs_send(&done,target,

computation_hdler, data,
v_size);

// Suspend ULT until future is set
done.wait();

}

Fig. 3 Minimal example of remote handler completion acknowledgment in PREMA without
(left) and with (right) futures.

4.1 Futures

A feature of Argobots that takes advantage of the ULT’s ability to yield is
the eventual data type. An eventual corresponds to the concept of futures
found in many programming languages. A future is a mechanism for safely
passing values between threads that run concurrently. Argobots implement
this mechanism and enhance it with the yielding power of ULTs. A running
ULT may designate an eventual where it will store a value once it executes;
other ULTs that need this value for their computations can then attempt to
retrieve it by accessing the respective future. Trying to access an eventual,
which has not been assigned a value yet, will cause the accessing ULTs to
block. In such a case, the ULT is suspended by the Argobots framework and
removed from the pool of active work units. It becomes available again only
when the respective value of the event has been set. If the future has already
been assigned a value, it will allow the ULTs accessing it to retrieve the value
without blocking. PREMA utilizes this feature of Argobots and exposes it as
a high-level construct while also extending it to distributed memory.

In the old design, an application using PREMA needed to manually develop
acknowledgments for remote handlers execution when such functionality was
desired (Figure 3 left). In the new version of PREMA, when the applica-
tion needs to invoke a function on a remote processor or mobile object, the

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 11

mo2

mo4

mo1

mo3

mo5

void foo(…)
e1 attached

to mo5

e1

attach buffer &
signal dependency

Fig. 4 A visualization of PREMA’s event primitive. Event e1 is attached to mobile object
mo5 and expects four dependencies to be signaled in order to invoke foo on mo5. Once foo
is invoked, mo5 has access to all buffers attached as dependent data.

messaging interface used can optionally return a future that is signaled once
the remote function call completes(Figure 3 right). Internally, PREMA cre-
ates a new Argobots eventual and attaches its identifier to the header of the
remote message handler. Once the handler invocation completes on the target,
PREMA checks whether the respective section of the message header is set.
If it is, it will invoke a new remote handler back to the sender with the value
related to the future as an argument. When the remote handler executes, it sets
the future to a ready state on the original sender and thus, unblocks all ULTs
waiting for it. With this mechanism, the synchronization of the application
logic becomes easier to handle and can be better optimized by PREMA.

4.2 Events

Distributed futures manage to remove most of the boilerplate code users had to
write to acknowledge handler completion. They, also, improve concurrency and
eliminate some of the constraints of the original implementations of PREMA.
However, they can only signal one dependency at a time, either acknowledging
the completion of a handler or used in a user-defined functionality (e.g., block-
ing on a future that is signaled from a remote message manually). To handle
cases where multiple dependencies need to be satisfied, we have introduced the
primitive of distributed events. An event is a synchronization tool associated
with a mobile object, a handler task, a predefined number of dependencies,
and optionally data buffers. It is uniquely identifiable in the whole distributed
system and can be used by the application to satisfy dependencies remotely
(see Figure 4). For example, an event can be triggered as the last step of a
handler to signal its completion to dependent tasks and pass required data to
them. The data can even consist of a mobile object that needs to be trans-
ferred to the location of the associated mobile object. In this case, the runtime
system will handle the migration process implicitly, even if the object resides
remotely. PREMA transfers the signals from different dependencies along with
their data or mobile objects and triggers the associated handler task when the
predefined number of dependencies has been fulfilled.

Springer Nature 2021 LATEX template

12 Runtime Support for Unstructured Exascale-era Applications

…

Network

S1 Sn…

…
ES1 ES2 ESn

…

P1 P2

…
S′1

S′2

S2

ULTs

Tasklets

Tasking Framework
Backend

Handler Executing Component

P′1

P′2

P′n

…

Pn S′n

User-defined handler

HW Cores

Fig. 5 From left to right: a user-defined handler, implemented as an Argobots ULT,
comes through the network and is assigned to one of the task pools {P1, P2, ..., Pn}, man-
aged by the schedulers {S1, S2, ..., Sn}; tasks are mapped to Argobots execution streams
{ES1, ES2, ..., ESn} which in turn execute on hardware cores. A user-defined handler can
spawn one or more fine-grained tasklets, which are handled by the tasking framework back-
end. The tasking framework (right) has its own task pools {P ′

1, P
′
2, ..., P

′
n} and schedulers

{S′
1, S

′
2, ..., S

′
n}.

5 Fine-grained Recursive Task Parallelism

The need for finer-grained parallelism inside a handler arises from the large
workload disparity witnessed among handlers of irregular and adaptive appli-
cations [23]. Despite the use of over-decomposition to diffuse workload[24, 4],
the workload disparity among handlers targeting different mobile objects can
still be large. This is an effect of the decomposition being computed at the
initialization stage of the application. To bridge this gap, we developed a stand-
alone tasking module on top of Argobots. It is designed to help utilize multiple
hardware threads in the context of a single handler execution. In [5] we study
the standalone version of the module as a black box and experiment with dif-
ferent models to spawn parallel tasks in shared memory. In this work, we delve
into its low-level implementation and integration with PREMA, as well as the
issues raised from introducing preemption on a tasking framework utilizing
lock-free task pools. A tight integration of the two systems is a requirement
for an efficient, low latency hybrid tasking model. When used as an integrated
part of PREMA, this module can utilize the existing execution streams, avoid-
ing the creation of new threads and the possible over-subscription overheads.
To distinguish between ULTs used in other parts of PREMA and tasks created
by this module, the latter will be called tasklets for the rest of the paper.

The interaction between the shared and distributed memory modules
within PREMA is depicted in Figure 5; namely the handler executing compo-
nent and the fine-grained tasking framework backend. Each of the two modules
consists of a set of schedulers {S1, S2, ..., Sn}, {S′

1, S
′
2, ..., S

′
n} and task pools

{P1, P2, ..., Pn}, {P ′
1, P

′
2, ..., P

′
n}. Handlers are issued either locally or remotely,

through the network, and are implemented as Argobots User Level Threads
(ULTs). Tasklets can be spawned in the context of a handler execution and

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 13

are managed by the tasking framework backend. The schedulers of the tasking
framework backend are attached as plugins to PREMA’s schedulers, allowing
them to utilize the existing Argobots Execution Streams, avoiding resource
over-subscription.

5.1 Low-level Implementation

The scheduler of this module attempts to maximize parallelism and minimize
memory use by using a hybrid of depth-first and breadth-first execution policy
and recursive creation of work units. Each processing element (PE) is asso-
ciated with a list of tasklets. Each time a new tasklet is created by a PE, it
is pushed to the bottom of its list. To pick a new tasklet to execute, the PE
pops a tasklet from the bottom of its list; if the list is empty, it will try to
steal a tasklet from the top of another PE’s list. Provided that the tasklets
creation is performed recursively, this scheduling algorithm prioritizes tasklets
that are hot in the cache (latest created) when there is pending work in the
pool, while maximizing the amount of stolen work when stealing is attempted,
by targeting tasks that were created early in the recursion steps. To implement
this scheduling algorithm, the Argobots abstraction of custom pools was used
to encapsulate a lock-free implementation of a circular double-ended queue
(deque)[25]. The interface of the abstract pools only provides push and pop
(and remove but is not needed in our case) operations to manipulate the con-
tents of a data structure. Thus, stealing is implemented as part of the pop
operation, and each abstract pool is implemented as an array of pointers to all
available deques, instead of associating it with a single deque. When an ES is
ready to pick a new task, it calls the pop function, which, in turn, checks its
deque; if empty, it will randomly steal a tasklet from another deque.

Tasklet dependencies are also provided in this module; a “parent” work
unit can create several “children” tasklets and wait for their completion. The
“children” can then create their own “children”, constructing a tasklet depen-
dency tree. The function that creates a tasklet returns a handle that can be
joined for completion, causing the caller to yield if not complete. The root
tasklet of a tree is implemented as a ULT to enable yielding; however, chil-
dren tasks are implemented using common list structures for performance. To
enable switching between children tasklets when waiting for dependents com-
pletion, we explicitly push and pop children tasks from the lists and run them
inside the parent or a separate ULT, which allows yielding from any node in
the tree. Once a tasklet execution completes, the control returns to the parent
tasklet, which, in turn, evaluates whether it will continue waiting for other chil-
dren to complete or not. Waiting in this context will cause popping/stealing
another tasklet.

5.2 Safely yielding tasklets

An important incentive to build such tasking frameworks on top of lighweight
threads (LWTs), is the ability of LWTs to yield, allowing the creation of tasks

Springer Nature 2021 LATEX template

14 Runtime Support for Unstructured Exascale-era Applications

Yielding Pool

Pop
Yield
(Push)

Livelock

Yield
(Push)Pop

Yielding PoolMain Pool

Pop

Main Pool

Fig. 6 An example of a live-lock scenario during the yield operation in the tasking frame-
work (left) and how it is avoided by using a secondary pool to temporarily store yielding
tasklets (right).

that might not run to completion. This enables tasks to run blocking operations
such as messaging and acquiring locks. The requirements to maintain this
ability while using the aforementioned approach to creating tasks yields some
issues that can cause the framework to not operate correctly. In this section,
we identify the problems raised by this task creation strategy and present our
approach to handle them.

5.2.1 Avoiding live-locks

The yielding operation in Argobots saves the context of the yielding ULT,
pushes the ULT back into its respective work pool, and switches control to the
execution stream’s scheduler; however, following the same steps in the case
of our fine-grained tasking module could cause a livelock. In our work-pool
implementation, both push and pop operations target the bottom of the deque.
Pushing a yielding ULT back to the same pool will insert it at the bottom of
the deque, making it the first ULT that will be popped in the next pop request.
In a scenario where a ULT yields while busy waiting for some resource, the
yielding ULT would be constantly popped and pushed to the bottom of the
deque, allowing no other ULTs to be executed (Figure 6 left). To avoid such
a scenario, we distinguish between new and yielding ULTs by keeping track
of the last ULT executed on each ES and comparing it with ULTs that are
about to be pushed to the respective work pool. If they are the same, we can
infer that the ULT about to be pushed is yielding. Yielding ULTs are pushed
to a secondary work pool, maintained per ES, to unblock the main work pools
and allow other ULTs to execute (Figure 6 right). Once all ULTs in the main
pools have executed, the ULTs in the secondary/yielding pool are run; ULTs
running in the secondary pool and yield are pushed back to the main pool to
avoid the same live-lock scenario from occurring there.

5.2.2 Signaling blocked tasks

Another issue arises from the default implementation of signaling blocked
ULTs in Argobots. Blocked ULTs remain in a private structure of Argobots;
when an active ULT signals a blocked ULT, it changes its state from blocked
to active and pushes it back to the last work pool where it resided before being

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 15

Blocked
ULT

Running
ULT

Signal from
ES2

Push
Race

Condition

Blocked
ULT

Running
ULT

Signal from
ES2

Push

ES1
WorkPool

ES2
WorkPool

ES1
WorkPool

ES2
WorkPool

Fig. 7 By default, when a blocked ULT is signaled to unblock it is pushed back to the
last pool it executed. The push operation is executed by the ES of the ULT that signals
the blocked ULT; as a result, an ES may push the just unblocked ULT to the work pool of
another ES which causes a race condition in our lock-free implementation (left). To overcome
this issue, our implementation ignores the pool that Argobots chooses to push the blocked
ULT and always pushes it to the pool of the signaling ULT’s ES. This modification conforms
to the requirements of the custom deque and avoids race conditions.

blocked. This work pool might belong to an ES different than the one running
the signaling ULT, which breaks the requirement that each execution stream
can only push and pop to/from its work pool and only steal from other work
pools (see Figure 7, left). To overcome this issue, the push operation ignores
the target pool that Argobots chooses and assigns signaled ULTs to the work
pool of the execution stream running the signaling ULT, as shown in Figure 7,
right. Thus, pushing to a work pool can only be performed by the execution
stream that owns the pool, conforming to the deque requirements.

6 Performance Evaluation

In this section, we measure the performance of PREMA, taking advan-
tage of the contributions presented so far. Due to the difficulty in isolating
minor overheads derived from different approaches for handler task creations
and message-handling using full scale, real-world applications, in 6.2 and
6.3 we evaluate PREMA on benchmarks derived from the widely-used OSU
Microbenchmarks [26]. In section 6.4, we derive a synthetic microbenchmark
that stresses PREMA’s handler execution component, presenting an extreme
condition of highly contended mutexes, and present the impact on its per-
formance before and after utilizing lightweight threads. Section 6.6 presents
an evaluation on SW4lite; an application designed to reflect the workflow of
a few important kernels of SW4. It is part of DoE’s exascale project (ECP)
initiative for benchmarks that accurately represent a wide range of scientific
applications while avoiding dealing with large and complex code bases [27].
Sections 6.5, 6.7 present evaluations on real-world applications in shared and
distributed memory, respectively.

Springer Nature 2021 LATEX template

16 Runtime Support for Unstructured Exascale-era Applications

1 2 4 8

vs pthreads

abt_dedicated

abt_no_dedicated

pt_no_dedicated

pt_dedicated

1 2 4 8
1

2

3

4

5

6

dedicated

revive

named

unnamed

La
te

n
cy

 (
s)

1 2 4 8

no dedicated

revive

named

unnamed

#Threads

(a)

1 2 4 8

vs pthreads

abt_dedicated

abt_no_dedicated

pt_no_dedicated

pt_dedicated

1 2 4 8
1

2

3

4

5

6

dedicated

revive

named

unnamed

La
te

n
cy

 (
s)

1 2 4 8

no dedicated

revive

named

unnamed

#Threads

(b)

1 2 4 8

vs pthreads

abt_dedicated

abt_no_dedicated

pt_no_dedicated

pt_dedicated

1 2 4 8
1

2

3

4

5

6

dedicated

revive

named

unnamed

La
te

n
cy

 (
s)

1 2 4 8

no dedicated

revive

named

unnamed

#Threads

(c)

Fig. 8 Latency observed on ping pong benchmark for different task creation approaches
using dedicated streams for communication (a) or not (b) and comparison of the best
approaches with the PThreads implementation (c).

6.1 Experimental Setup

Two computing clusters are used to run the performance benchmarks. The first
one, namely Turing, is a 250-node cluster consisting of Intel(R) Xeon(R) (E5-
2660, E5-2660 v2, E5-2670 v2, E5-2698 v3,E5-2683 v4) 128 GB CPUs ranging
between 16 to 32 cores spread among two sockets (2 NUMA nodes). The second
platform, namely Wahab, is a 200-node cluster which utilizes Intel(R) Xeon(R)
Gold 6148 @ 2.4 GHz CPUs of 40 cores each in two sockets (4 NUMA nodes).

6.2 Handler Task Creation

In this subsection, three approaches to creating handler tasks as lightweight
threads are examined. Performance is measured as the latency in handler cre-
ation, with and without a dedicated communication stream, in a ping pong
benchmark. Two nodes exchange 20000 64B-sized messages in total, where
the sender sends a message and then waits for an acknowledgment. The three
approaches are described below:

• Unnamed: The Argobots runtime is responsible for monitoring and releasing
the memory of ULTs when they complete.

• Named: PREMA checks ULTs for completion and frees their resources
explicitly. An array of handles is maintained per handler executing ES.

• Revive: A variation of the second approach where the completed ULTs in
the preallocated arrays are reused through the ABT revive() function.

Figure 8 shows the performance observed in terms of latency for the three
different approaches when using a dedicated stream for communication (8a) or
not (8b) and compares the best for the two with their PThreads counterparts.
In all cases, a single message is on-the-fly at any time. Two nodes exchange
20000 64B-sized messages in total, where the sender sends a message and then
waits for an acknowledgment before sending the next.

Figure 8a shows the latency observed when a dedicated stream is in use to
handle communication and assign the respective tasks to other streams. The
approach used plays a significant role in this case, where the “revive” approach

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 17

of reusing previously completed ULTs benefits the overall performance, main-
taining a very stable latency of 3µs. In contrast, using the “named” or
“unnamed” approach not only achieves a lower performance (of 6 and 4 µs,
respectively) when a single handler executing stream is used but also faces
increasing overheads when the number of streams also increases. The perfor-
mance degradation observed in this case comes from the fact that ULTs use
their own stack. Each time a stream creates a new ULT, it needs to allocate
its stack memory, which increases the critical path of the ULT creation. Reviv-
ing ULTs, on the other hand, does not need to allocate new memory as the
memory of previously completed ULT is reused.

Figure 8b shows the latency observed when no dedicated stream is used. In
this case, the significance of the three different approaches is not apparent when
only a single stream is in use. The reason is that Argobots use internal memory
pools for the stacks of completed ULTs per ES. When a stream completes the
execution of a ULT, it stores the memory used for the stack in its memory pool
to reuse it later and avoid reallocations. However, when one ES creates most
ULTs (producer) and other ESs execute them (consumers), the producer pool
is depleted without being reused. The consumer ESs keep the stack memory
in their memory pools, forcing the producer to steal from them or allocate
more memory. This extra overhead is observed for “named” and “unnamed”
approaches when two or more streams are used in figure 8b. In this case, the
overheads are lower compared to Figure 8a because all streams have the same
chance to produce or consume ULTs. Thus, they all have more opportunities
to refill their pools and avoid allocations or steals.

Figure 8c shows the comparison of the revive approach when using ded-
icated streams or not. We also compare the performance of the two with
their PThreads implementation counterparts. Using no dedicated thread for
communication achieves the least overhead when only a single thread is uti-
lized, and PThreads exhibits the lower overhead in this case. When more than
one handler executing stream/thread is available, using a dedicated stream
showed lower latency for both the Argobots and PThreads implementation,
with a difference between them of about 15%. Using no dedicated stream falls
a little behind with the PThreads implementation achieving up to 10% worse
performance than the Argobots counterpart.

6.3 Message Handling

Message handling is part of the DMCS and utilizes the MPI as a commu-
nication library. In this section, four ways to handle message passing are
evaluated.

• ULT-Per-Message (UPM): A new ULT is created to run the MPI operation,
yielding if the operation did not complete immediately or exiting otherwise.
If a separate stream is used for communication, message reception is handled
by a separate ULT that runs in a loop and yields; otherwise, one of the
handler-executing threads directly polls the network.

Springer Nature 2021 LATEX template

18 Runtime Support for Unstructured Exascale-era Applications

• Communication-In-Pool (CIP): Two ULTs are spawned that run in a loop,
one for receiving and one for sending messages. Send requests are passed
through regular C++ queues. Each ULT serves the respective operations
and yields its execution.

• Combining the two (CIP-UPM): A new ULT is created for each outgo-
ing message (like UPM), while incoming messages are handled through a
separate ULT running in a loop (like CIP).

• Queue: Outgoing message requests are passed through a C++ queue (like
CIP). When no dedicated stream is used, this queue is served directly from
the handler-executing streams that also serve the incoming messages. Oth-
erwise, a single ULT is spawned in the dedicated stream that continuously
polls the network and serves message requests in the queue.

The performance of each approach is presented in Figure 9 in combination with
the different task creation approaches on the same benchmark. We present
results for both cases where a dedicated stream is used for message handling
(bottom) or not (top). As can be seen from the graph, the best performance in
terms of latency observed is achieved through the combination of the “queue”
message handling and the “revive” handler task creation approach with 3µs
latency achieved on average. It is interesting to note that depending on the
existence of a dedicated stream or not, different combinations provide the best
performance, except for the best case (queue-revive).

When no dedicated stream is present (top), the “queue” approach is the
best performing, regardless of the task creation approach. CIP and UPM per-
form similarly but with an increasing overhead compared to queue as the
number of handler-executing streams increases (up to 5µs overhead). This is
expected since the two approaches require the creation of ULTs and context
switching in comparison to the queue approach, which only needs to check a
queue and poll the network. The combination of CIP and UPM (CIP-UPM)
adds the largest overhead in all cases as it constitutes the longest critical path
before handling message passing (up to 6µs overhead). On the other hand,
when a dedicated stream is in use for message passing (bottom), we see that
UPM and CIP-UPM perform better when the named or unnamed task creation
approach is used (on average 3.5µs overhead). In these cases, the overhead of
the other two message-handling ways is experiencing almost double the over-
head as the number of handler-executing streams increases(up to 6µs). Thread
stack creation and reuse is probably the explanation for this effect as in the
task creation benchmark. In this benchmark, it has been shown that the queue
+ revive combination of message handling and handler task creation is the
best in terms of latency, regardless of whether a dedicated stream is used for
communication.

6.4 Blocking Operations in Handler Execution

An important feature stemming from the integrating with Argobots is the
ability to yield handler execution either explicitly by calling the respective

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 19

2
3
4
5
6

w/
o

de
di

ca
te

d
st

re
am

revive named unnamed
queue
cip
upm
cip-upm

1 2 4 8
2
3
4
5
6

w/
 d

ed
ica

te
d

st
re

am

1 2 4 8 1 2 4 8

La
te

nc
y

(
s)

#Threads

Fig. 9 Latency observed on ping pong benchmark for different task creation and message
passing handling approaches using dedicated streams for communication (top) or not (bot-
tom).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% compete for lock

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

abt_mutex

pt_mutex

Fig. 10 Execution time with respect to percentage of tasks of a mobile object competing
for its mutex. Mutex is implemented as an Argobots mutex (abt mutex) or PThreads mutex
(pt mutex)

function or implicitly when a blocking call is detected. The potential benefit
provided is presented through a synthetic benchmark. An allocation of ten
cores is used along with ten mobile objects, each using an exclusive mutex to
provide access to its data. For each mobile object, 100 handler invocations are
issued where a specific percentage of them needs to take control of the mutex
before executing. We set the time that the mutex is held to 50ms at a time
and experiment with standard PThread mutexes and ULT-aware mutexes that
can suspend handlers when locked. Figure 10 shows an evaluation of the two
implementations with different percentages of handlers acquiring the mutexes,
ranging from 0.1 to 0.9 (10 - 90 handlers/mobile object). One can observe the
tremendous difference observed in the two implementations (up to 1000%).
The issue with the PThread implementation is that a handler that tries to
access a taken mutex will block the hardware thread it executes on, preventing
handlers targeting a different mobile object/mutex from running. In contrast,
the Argobots implementation will suspend the running handler ULT, allowing
another handler to run on the same thread. In similar cases, the user might
know that acquiring a resource exclusively could cause delays and, thus, may
explicitly yield competing handlers to mitigate the propagation of such effects.

Springer Nature 2021 LATEX template

20 Runtime Support for Unstructured Exascale-era Applications

6.5 Fine-grained Recursive Tasking

In this section, we evaluate the performance of the fine-grained tasking frame-
work on the Barcelona OpenMP tasks suite of benchmarks[28] and compare
it with OpenMP and TBB. Specifically, we focus on three benchmarks: Pro-
tein Sequence Alignment, Fast Fourier Transformation (FFT) on one billion
points, and Sort on one billion elements. All three benchmarks are run on
both computing infrastructures available to us and are implemented following
a recursive parallelization model, suitable for PREMA’s tasklets; their results
are presented in Figure 11. Another thorough comparison study for the three
libraries is presented in [5] in the context of parallel mesh generation.

6.5.1 Protein Sequence Alignment

The performance achieved by PREMA tasklets in both systems is depicted in
the left of Figure 11, achieving a speedup of 26 on the 32-core system and 37.4
on the 40-core. The difference in performance between PREMA tasklets and
the two industrial-strength frameworks is negligible; PREMA tasklets outper-
form OpenMP in all thread variations on the Wahab cluster and fall behind
on the Turing cluster but only by a small amount. A similar trend is noted
when performance is compared to TBB on the two machines.

6.5.2 FFT

An interesting observation in this benchmark is the declining performance
of OpenMP (Figure 11, middle). We see that its performance suffers in the
specific application as it is affected by the large number of tasks generated.
On the other hand, PREMA’s and TBB’s performance scales well on Turing
for the first 16 cores (≈ 13 speedup) and saturates to approximately 19 on 32
cores. For the Wahab system, PREMA continues to perform on par with TBB,
achieving a speedup of 11 on 16 cores, with both frameworks’ performance
declining after this point, having no increase in speedup for 32-40 cores. We
see that in this benchmark the speedup achieved by any framework is much
lower than what was observed in the previous one. The difference between
the two benchmarks is that first, each task of the alignment case runs much
longer than a single task in FFT, and second, FFT creates about a thousand
times more tasks. Thus, the overheads related to task creation are much more
difficult to hide behind computations and also, they add-up quickly due to
their large number. The decline in performance on higher core counts can also
be attributed to the decrease in the amount of work per thread, which limits
the amount of possible concurrency while increasing the number of failed steal
attempts, and to the use of more CPU sockets which leads to NUMA effects.

6.5.3 Sort

The declining performance of OpenMP is also exhibited in this benchmark;
however, it does so once it reaches the utilization of 16 cores. The other two

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 21

1 2 4 8 16 24 32
0

5

10

15

20

25

Tu
rin

g
Alignment

1 2 4 8 16 24 32
0

5

10

15

20
FFT

1 2 4 8 16 24 32

5

10

15

Sort

1 2 4 8 16 24 32 36 40
0

10

20

30

40

W
ah

ab

Alignment

1 2 4 8 16 24 32 36 40

2.5

5.0

7.5

10.0

12.5

FFT

1 2 4 8 16 24 32 36 40

5

10

15

20
Sort

#Threads

Sp
ee

du
p

omp
prema-tasklet
tbb

Fig. 11 Speedup achieved on two different platforms, Turing (top) and Wahab (bottom),
from fine-grained tasking using OpenMP (omp), Intel TBB (tbb) and PREMA tasklets, for
Protein Sequence Alignment, FFT and Sort applications.

tasking frameworks continue to perform well on both platforms. The perfor-
mance of the Turing machine continues to be superior both for the sequential
case and parallel ones, even though it utilizes fewer threads. Like in FFT, both
frameworks’ performance scales well up to the first 16 cores with a speedup
of approximately 13 on Turing and 11 on Wahab. In larger counts of cores,
the performance of both frameworks declines on both platforms (Figure 11,
right). This decline stems from the same factors as the FFT case, i.e., large
number of small tasks creating overheads difficult to overlap. Moreover, this
benchmark also introduces a significant amount of accesses to memory shared
among multiple threads, leading to cache-line false sharing effects.

6.6 Seismic Wave Simulation Benchmark

In this section, we evaluate the new features of PREMA on the SW4lite bench-
mark [29]. We study its performance on different work unit allocations (mobile
objects, PREMA tasklets) for single-node and multi-node experiments.

6.6.1 Single Node Performance

We evaluate the performance of SW4lite on a single node, utilizing different
approaches to concurrency, utilizing domain decomposition and message pass-
ing, or tasking. For the task decomposition approach, we evaluate OpenMP
(omp for), PREMA tasklets as a stand-alone library, and PREMA tasklets as
part of a single PREMA instance. For the domain decomposition approach, we
evaluate MPI, one instance of PREMA for the whole node using one mobile
object per thread, and using one instance of PREMA (utilizing a single mobile
object) for each core. Figure 12 shows the results of this evaluation for a small
input running the point-source functionality of SW4lite. It is clear that both
versions of PREMA tasklets outperform the OpenMP version of the code (lines
with triangle markers) by about 20% but only attain a speedup of 10 at 40

Springer Nature 2021 LATEX template

22 Runtime Support for Unstructured Exascale-era Applications

Fig. 12 SW4 performance of threading (triangles) and message passing (squares) par-
allelism on a single node for a small input. omp: OpenMP, prema tasks: tasklets,
prema tasks(so): tasklets as a standalone library. mpi: 1 MPI rank/core, prema instances: 1
PREMA rank/core, prema objects: 1 mobile object,thread/core.

1 2 4 10
Parallelism

0

50

100

150

200

Ti
m

e
(s

)

omp-for

omp-taskloop

prema-taskfor

Fig. 13 Intra-handler parallelism with OpenMP for , taskloop and PREMA fine-grained
tasklets.

cores. On the other hand, the domain decomposition approach performs much
better, achieving a speedup of 32 at 40 cores for all versions. This observation
raised a concern about whether the performance disparity will always be in
favor of just data decomposition or there is an optimal combination of the two
approaches that gives the best results. In other words, whether it is always
the best choice to decompose the data into more “pieces” as the number of
cores increases or there is a point where it’s more efficient to apply a two-
level approach with a coarse-grained data decomposition and finer-grained task
decomposition on top of it. In the next section, we experiment with different
approaches for combinations of data and tasking over-decomposition.

6.6.2 Multi-Node Performance

Our observations on the single-node evaluations lead us to run more exper-
iments on larger inputs and different work unit allocations to find out how
different combinations of data and task decomposition can affect the per-
formance of an application like SW4lite. The addition of tasklets on top
of PREMA makes it enables running such a study simplifying the exper-
imentation with data and task decomposition independent of the available

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 23

Fig. 14 Normalized performance of the SW4 benchmark for different PE allocations with
respect to the performance achieved when mapping one mobile object per PE and one tasklet
per handler (10-1).

hardware resources. In other words, one can decompose the application data/-
tasks domain in many more “pieces” than the available nodes/cores without
needing to provide extra code to handle them or taking care of resource over-
subscription. Trying to run such a study without tasklets, e.g., using OpenMP,
results in a bad performance, as shown in Figure 13. In this benchmark, we
exploit distributed and shared memory parallelism concurrently, using one
mobile object per core for 640 cores and also try intra-handler parallelism
using OpenMP for, OpenMP task loop, and PREMA tasklets. Using OpenMP
causes over-subscription of hardware resources (PEs) since it is unaware of the
existing threads running from PREMA, resulting in overheads related to con-
stant context-switching and multiple threads competing for the same hardware
core. In contrast, PREMA tasklets are aware of the threads already running
and utilize them efficiently, achieving up to 10% improvement over the base
case or 60% over OpenMP.

Using PREMA tasklets, we evaluate different approaches to (over-
)decompose only at the data domain level, only at the task level by creating
tasklets and with a combination of the two. The different work unit allocations
allow different levels of freedom for PREMA to take advantage of, like load
balancing and latency hiding, since both data subdomains and tasklets in a
PREMA instance are shared among its threads. Figure 14 presents the overall
running time on an increasing number of cores (strong scaling), normalized by
the running time of the base case. The base case for this experiment is using
one mobile object per hardware thread and one tasklet per handler, using one
instance of PREMA per socket of 10 hardware cores to avoid NUMA effects.
The x-axis shows the work-unit allocations, where the first number represents
the number of mobile objects per PREMA instance and the second one shows
the number of tasklets spawned per mobile object handler. As can be seen
from the figure, the application benefits from increasing the number of mobile
objects per instance (green bars) when the number of cores is low and the
work enclosed in each mobile object is substantial to overlap the overheads of
message-passing and context-switching. However, it benefits less as the num-
ber of cores increases and the work per mobile object thins out , and thus, the
overheads related to the increased number of messages and context-switching
can no longer be tolerated. Utilizing task decomposition only (orange bars)

Springer Nature 2021 LATEX template

24 Runtime Support for Unstructured Exascale-era Applications

Fig. 15 Visualization of a mesh generated by the parallel mesh refinement application
of this section: Metric-adapted mesh to a laminar flow over a delta wing. Figure adapted
from [5].

cannot surpass the performance of domain decomposition in any case, but
it gets better as the number of tasks increases and the size of the data per
PREMA instance decreases. This can be explained from the data observed in
6.6.1 where the task parallelism approach achieves by far worse performance
than the approach utilizing data decomposition. Thus, when the are fewer but
larger data domains, task parallelism performance suffers due to the inherent
implementation of the applications. However, when there more but smaller
data domains, the inherent sub-par performance of task parallelism is less
important and task-overdecomposition can help to evenly balance workload
and more efficiently utilize the available cores.

Combining the two approaches seems to have better results when the num-
ber of mobile objects is close to the number of threads, and task decomposition
is performed on top of that (purple bars). Our best results (12% improve-
ments) in most cases were achieved when using a combination of 10 mobile
objects -10 tasklets (yellow bars). Using 20 mobile objects per instance (2 per
thread) and two to four times data decomposition per object (gray bars) also
showed some improvement in lower counts of cores which diminished in larger
allocations without, however, hurting performance as other cases did.

These experiments show that a reasonable level of over-decomposition in
both levels can substantially benefit the performance of an application by
allowing an overall increased flexibility for the underlying scheduler/load bal-
ancer. The specific values of over-decomposition are application-dependent and
might need some experimentation to optimize. Adjusting the decomposition
can be difficult and error prone when done by hand but PREMA completely
hides this transition once the standard case has been implemented

6.7 Parallel Mesh Refinement

Our final benchmark is a parallel mesh refinement application, namely
CDT3D [30]. A visualization of a mesh generated by CDT3D is presented in
Figure 15. From our previous experience integrating this highly irregular and

Springer Nature 2021 LATEX template

Runtime Support for Unstructured Exascale-era Applications 25

Fig. 16 Per core execution time for the mesh refinement application with inter-handler
shared memory load balancing (left), inter-handler shared & distributed memory load bal-
ancing (middle), and intra-handler tasklet parallelism on top of inter-handler shared &
distributed memory load balancing (right)

adaptive application with PREMA, we detected some serious limitations of
PREMA that led us to enhance it with the lightweight threads and the fine-
grained tasklets. To run the application on top of PREMA, we decomposed
the initial mesh into sub-meshes and assigned them to the available cores, run-
ning a sequential refinement handler on each. We over-decompose the mesh
so that each core is initially assigned ten sub-meshes to allow more flexibility
for inter-handler shared and distributed memory load balancing. The issue is
depicted in the first two graphs of Figure 16 that present the execution time
per core when running CDT3D on 1000 cores (25 nodes) of the Wahab dis-
tributed memory machine. The left graph shows the execution time of each
core when only shared memory inter-handler parallelism is used, while in the
middle, distributed load balancing is also utilized. While most of the load
balancing issues are handled, a few “spikes” in execution time remain, which
constitute refinement processes that took too long to execute compared to the
average, stemming from the adaptive nature of the application. By invoking
PREMA tasklets to explore intra-handler parallelism, we are finally able to
achieve correct load balancing that reduces the overall running time by 50%
compared to the distributed load balancing case and 60% compared to the base
case. The spikes in execution time are removed by overdecomposing a single
handler into multiple tasklets. The tasklets that constitute this handler can be
shared across the available cores of a single node, effectively parallelizing the
workload that would otherwise map to only a single core. Thus, mitigating the
effects of any handler that executes substantially longer than others.

7 Conclusion and Future Work

We have presented the integration of PREMA with lightweight threads utiliz-
ing Argobots. The product of this effort overcomes the limitations previously
exhibited by PREMA while incorporating features for effortlessly handling
control flow in shared and distributed memory and a tasking framework that
allows for fine-grained parallelism inside the execution of remote method invo-
cations. We have experimented with multiple design choices for task creation
and message handling, where we observed up to 100% difference in latency.
Moreover, we have shown that the lightweight threads remove constraints

Springer Nature 2021 LATEX template

26 Runtime Support for Unstructured Exascale-era Applications

forced by previous implementations, allowing blocking in remote method invo-
cations while avoiding the overheads stemming from waiting semantics like
mutexes. The fine-grained tasking framework achieves performance on par
with industrial-strength systems like TBB while outperforming OpenMP. Our
experimentation with different combinations of workload decomposition both
on the data and task level on the SW4lite benchmark showed up to 12%
improvements. Finally, we show that the integration of tasking on top of remote
method invocations can have tremendous effects on irregular applications, like
3D mesh refinement, achieving up to 50% improvement through exhibiting
multi-grain over-decomposition both on the data and task level.

In the future, we intend to use the current work as an intermediate layer
to scale the high level abstractions of the shared memory tasking framework
presented in [5] over distributed memory systems. Using this product as a
vehicle, will study the performance impact of parameters regarding the optimal
number of PREMA instances per node and the number of threads per PREMA
instance, as well as different approaches to distribute the available workload.
This aspect can be divided into two sub-problems: (A) How to distribute the
mobile objects themselves and how to invoke the respective tasks on each
of them. Approaches to try are: (1) do nothing at the application-level and
let the load balancing algorithm distribute the mobile objects reactively, (2)
proactively distribute the mobile objects one at a time using a round robin
policy, (3) proactively distribute the mobile objects in groups, and (4) use the
same approach as (3) but consider the expected load of each mobile object to
form potential groups of tasks. (B) How to handle task submission after mobile
objects have been distributed? Similar to the task submission approaches for
the shared memory implementation, we will evaluate approaches like: (1) a
single process submits all (remote) tasks (flat model), (2) statically assigning
task submission to all available processes, and (3) hierarchically assigning task
submission in a tree-like fashion.

As a next step for our work in PREMA, we are working on integrating
support for heterogeneous distributed systems since they are becoming the
norm in high-performance computing. Our preliminary results show that our
implementation can substantially decrease the effort required to develop appli-
cations on such hardware while optimizing performance [31]. In the future,
we intend to incorporate machine learning (ML) into the runtime system to
automatically infer the data and task over-decompositions that optimize the
performance of the DSL. A bridge to practice and understand the require-
ments of such a process while collecting data from the current implementation
of the runtime will be our work on leveraging ML in the field of nuclear physics
accelerators[32, 33].

Declarations

Ethical Approval

Not applicable.

Springer Nature 2021 LATEX template

REFERENCES 27

Competing Interests

The authors declare no competing interests.

Authors’ Contributions

P.T wrote to the main manuscript text. Both authors contributed to the con-
ception and design of the work. P.T developed the software and benchmarks
of this work. Both authors reviewed the manuscript.

Funding

This work is funded in part by the Dominion Fellowship, the Richard T. Cheng
Endowment at Old Dominion University and NSF grants: CCF-1439079, CNS-
1828593.

Availability of Data and Materials

The software developed as part of this work is not currently publicly available
but will be in the future.

References

[1] K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali, “A load bal-
ancing framework for adaptive and asynchronous applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 15, pp. 183–192,
February 2004.

[2] P. Thomadakis, C. Tsolakis, and N. Chrisochoides, “Multithreaded run-
time framework for parallel and adaptive applications,” Engineering with
Computers, Jul 2022.

[3] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castelló, D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé,
S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun,
K. Taura, and P. Beckman, “Argobots: A lightweight low-level threading
and tasking framework,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 3, pp. 512–526, 2018.

[4] N. Chrisochoides, “Multithreaded model for the dynamic load-balancing
of parallel adaptive pde computations,” Applied Numerical Mathematics,
vol. 20, no. 4, pp. 349–365, 1996.

[5] C. Tsolakis, P. Thomadakis, and N. Chrisochoides, “Tasking frame-
work for adaptive speculative parallel mesh generation,” The Journal of
Supercomputing, vol. 78, pp. 1–32, 2022.

[6] K. Garner, P. Thomadakis, T. Kennedy, C. Tsolakis, and N. Chriso-
choides, “On the end-user productivity of a pseudo-constrained parallel
data refinement method for the advancing front local reconnection mesh
generation software,” in AIAA Aviation Forum 2019, (Dallas,Texas), June
2019.

Springer Nature 2021 LATEX template

28 REFERENCES

[7] M. Balasubramaniam, K. Barker, I. Banicescu, N. Chrisochoides,
J. Pabico, and R. Carino, “A novel dynamic load balancing library
for cluster computing,” in Third International Symposium on Parallel
and Distributed Computing/Third International Workshop on Algorithms,
Models and Tools for Parallel Computing on Heterogeneous Networks,
pp. 346–353, 2004.

[8] J. Nakashima and K. Taura, MassiveThreads: A Thread Library for High
Productivity Languages, pp. 222–238. Berlin, Heidelberg: Springer, 2014.

[9] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An api for
programming with millions of lightweight threads,” in 2008 IEEE Inter-
national Symposium on Parallel and Distributed Processing, pp. 1–8,
2008.

[10] K. Taura, K. Tabata, and A. Yonezawa, “Stackthreads/mp: Integrating
futures into calling standards,” in Proceedings of the Seventh ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’99, (New York, NY, USA), p. 60–71, Association for Computing
Machinery, 1999.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
Journal of Parallel and Distributed Computing, vol. 37, no. 1, pp. 55–69,
1996.

[12] “Advanced hpc threading: Intel® oneapi threading building blocks.”
[13] P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov,

P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan, T. Fahringer,
K. Katrinis, E. Laure, and D. S. Nikolopoulos, “A taxonomy of task-based
parallel programming technologies for high-performance computing,” J.
Supercomput., vol. 74, p. 1422–1434, apr 2018.

[14] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta,
T. von Eicken, and K. Yelick, “Parallel programming in split-c,” in
Proceedings of the 1993 ACM/IEEE Conference on Supercomputing,
Supercomputing ’93, (New York, NY, USA), p. 262–273, ACM, 1993.

[15] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren,
“Introduction to upc and language specification,” tech. rep., UC Berkeley,
1999.

[16] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: A high performance java dialect,” Concurrency - Practice and
Experience, vol. 10, pp. 825–836, 1998.

[17] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perf. Comp. Appl., vol. 21, pp. 291–
312, Aug. 2007.

[18] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “Hpx: A
task based programming model in a global address space,” in Proceedings
of the 8th International Conference on Partitioned Global Address Space
Programming Models, (New York, NY, USA), pp. 6:1–6:11, ACM, 2014.

Springer Nature 2021 LATEX template

REFERENCES 29

[19] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Express-
ing locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, (Los Alamitos, CA, USA), pp. 66:1–66:11,
IEEE Computer Society Press, 2012.

[20] T. Beri, S. Bansal, and S. Kumar, “The unicorn runtime: Efficient
distributed shared memory programming for hybrid cpu-gpu clusters,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 5,
pp. 1518–1534, 2017.

[21] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A
unified platform for task scheduling on heterogeneous multicore archi-
tectures,” Concurr. Comput.: Pract. Exper., vol. 23, p. 187–198, feb
2011.

[22] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, (New York, NY, USA),
p. 456–471, Association for Computing Machinery, 2013.

[23] P. Thomadakis, C. Tsolakis, and N. Chrisochoides, “Multithreaded run-
time framework for parallel and adaptive applications,” Engineering with
Computers, vol. 38, pp. 4675 – 4695, 2022.

[24] N. Chrisochoides, “Parallel run-time system for adaptive mesh refine-
ment,” in Solving Irregularly Structured Problems in Parallel (A. Ferreira,
J. Rolim, H. Simon, and S.-H. Teng, eds.), (Berlin, Heidelberg), pp. 396–
405, Springer Berlin Heidelberg, 1998.

[25] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in Pro-
ceedings of the Seventeenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’05, (New York, NY, USA), p. 21–28,
Association for Computing Machinery, 2005.

[26] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The mvapich
project: Transforming research into high-performance mpi library for hpc
community,” Journal of Computational Science, vol. 52, p. 101208, 2021.
Case Studies in Translational Computer Science.

[27] “Ecp proxy applications.” https://proxyapps.exascaleproject.org/, 2019.
[Accessed: 2022-11-28].

[28] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
openmp tasks suite: A set of benchmarks targeting the exploitation of
task parallelism in openmp,” in 2009 International Conference on Parallel
Processing, pp. 124–131, 2009.

[29] “Sw4lite.” https://github.com/geodynamics/sw4lite, 2019. [Accessed:
2022-02-10].

[30] F. Drakopoulos, C. Tsolakis, and N. P. Chrisochoides, “Fine-Grained
Speculative Topological Transformation Scheme for Local Reconnection
Methods,” AIAA Journal, vol. 57, pp. 4007–4018, July 2019. Publisher:
American Institute of Aeronautics and Astronautics.

[31] P. Thomadakis and N. Chrisochoides, “Towards performance portable

Springer Nature 2021 LATEX template

30 REFERENCES

programming for distributed heterogeneous systems.” arXiv:2210.01238,
2022.

[32] P. Thomadakis, A. Angelopoulos, G. Gavalian, and N. Chrisochoides,
“Using machine learning for particle track identification in the clas12
detector,” Computer Physics Communications, p. 108360, 2022.

[33] P. Thomadakis, A. Angelopoulos, G. Gavalian, and N. Chrisochoides,
“De-noising drift chambers in clas12 using convolutional auto encoders,”
Computer Physics Communications, vol. 271, p. 108201, 2022.

	Introduction
	Parallel Runtime Environment for Multicore Applications
	Contributions

	Related Work
	Lightweight Threading Systems
	Distributed Memory Systems

	Integration of PREMA and Argobots
	Constructs for Group Communication
	Futures
	Events

	Fine-grained Recursive Task Parallelism
	Low-level Implementation
	Safely yielding tasklets
	Avoiding live-locks
	Signaling blocked tasks

	Performance Evaluation
	Experimental Setup
	Handler Task Creation
	Message Handling
	Blocking Operations in Handler Execution
	Fine-grained Recursive Tasking
	Protein Sequence Alignment
	FFT
	Sort

	Seismic Wave Simulation Benchmark
	Single Node Performance
	Multi-Node Performance

	Parallel Mesh Refinement

	Conclusion and Future Work

