
Using Machine Learning for Particle Track

Identification in the CLAS12 Detector

Polykarpos Thomadakisa,1,2, Angelos Angelopoulosa,1, Gagik Gavalianb,1, Nikos
Chrisochoidesa

aCRTC, Department of Computer Science, Old Dominion University, Norfolk, VA, USA
bJefferson Lab, Newport News, VA, USA

Abstract

Particle track reconstruction is the most computationally intensive process in nuclear physics
experiments. Traditional algorithms use a combinatorial approach that exhaustively tests
track measurements (“hits”) to identify those that form an actual particle trajectory. In
this article, we describe the development of four machine learning (ML) models that assist
the tracking algorithm by identifying valid track candidates from the measurements in drift
chambers. Several types of machine learning models were tested, including: Convolutional
Neural Networks (CNN), Multi-Layer Perceptrons (MLP), Extremely Randomized Trees
(ERT) and Recurrent Neural Networks (RNN). As a result of this work, an MLP network
classifier was implemented as part of the CLAS12 reconstruction software to provide the
tracking code with recommended track candidates. The resulting software achieved accuracy
of greater than 99% and resulted in an end-to-end speedup of 35% compared to existing
algorithms.

1. Introduction

In nuclear physics, experiments measuring scattered particle parameters are the most
computationally-intensive process. This process relies on measurements of particle tracking
detectors to construct a particle trajectory by combining the detected hits and resolving
the particle momentum via fitting the trajectory points (using Kalman Filter[1]). In high
luminosity experiments (where multiple particles are produced as a result of an interaction,
and noise is present in particle tracking detectors), the process of isolating detector hits for
each particle trajectory relies on considering each combination of hits that can potentially
form a track and then fitting each hypothesis to determine which one represents a valid
trajectory. This process can be time-consuming, amounting to about 94% of the total data
post-processing time.

Motivation. Recent advances in artificial intelligence and machine learning create the op-
portunity for substituting some of the existing algorithms with predictions from machine

1Authors contributed equally.
2Correspoding author pthom001@odu.edu

Preprint submitted to Elsevier March 9, 2022

learning models. With this substitution, we reduce the complexity of the code needed to
select the correct track hit combinations by providing only the most likely track trajectory
candidates. In this work, we focus on the track-candidate identification process for the
CLAS12[2] detector at Jefferson Laboratory (JLab), Newport News, Virginia. We study
different types of machine learning models, including CNN, ERT, MLP, and RNN. The goal
of our investigation is to construct a model that can identify the candidate with the highest
probability of representing a real track out of all possible track candidates formed by the
combination of different particle detections. We evaluate each model for its accuracy and
speed of inference to determine their effectiveness on CLAS12’s tracking performance. The
resulting implementation produces a speedup of 35% in the tracking code and a track candi-
date identification accuracy of 99.9% when compared to tracks reconstructed by the current
algorithm.

2. CLAS12 Detector

The CLAS12[2] detector is built around a six-coil toroidal magnet which divides the active
detection into six azimuthal regions, called “sectors”. The torus coils are approximately
planar. Each sector subtends an azimuthal range of 60◦ from the mid-plane of one coil to
the mid-plane of the adjacent coil. The “sector mid-plane” is an imaginary plane that bisects
the sector’s azimuth.

Figure 1: CLAS12 Drift Chambers inside the toroidal field[2]. Three different Regions (R1, R2 and R3)
consist of two Super Layers of chambers with 6 layers of wires in the Super Layer.

Charged particles in the CLAS12 detector are tracked using drift chambers[3] inside the
toroidal magnetic field (Figure 1). There are six identical independent drift chamber systems
in CLAS12 (one for each azimuthal sector); each of them consists of three chambers (called

2

“regions”) separated from each other along the beam direction, as shown in Figure 2a. Each
region consists of two parts called super-layers with wires in each super-layer running at 6◦

relative to the main axis of the chambers, shown in Figure 2b. Particles passing through the
drift chambers leave a signal in the wires.

Figure 2: Side and front view of drift chambers [3]. a) the layout for one sector showing three regions of
drift chamber. Z-axis is direction of incoming beam. b) diagram of wire directions in each super layer.

Reconstruction Procedure. The reconstruction software uses clusters of hits to compose a
trajectory through the drift chambers. First, neighboring hits in each super-layer of the drift
chambers are grouped together to form clusters. Then, track candidates are constructed
from all combinations of six clusters in one drift chamber sector. Each track candidate is
fitted using a polynomial function to determine the particle’s initial momentum and origin
angles.

Figure 3: Example of Drift Chamber data with wire hits (gray circles) and hits identified as belonging to
a track by tracking algorithm (red circles). Each plot presents data from one sector from different events.
Cases with one and two tracks in one sector are shown.

Track candidates that satisfy the “good fit” requirement are further processed (fitted)
using Kalman Filter which outputs the final track parameters, such as momentum, polar
and azimuthal angles at the vertex. Examples of reconstructed tracks (for one sector) are
shown in Figure 3 where all hits in drift chambers are shown with gray points, and hits
belonging to a reconstructed track are shown with red points. Each reconstructed track has
an associated cluster in each of the super-layers (super-layer boundaries indicated by dashed

3

lines), and plots with 12 clusters are events in which two tracks were reconstructed . As
can be seen in the example plots, there are many more clusters that are not part of a track
(background clusters, shown in gray), and their number is even higher in two-track events.
All cluster combinations have to be considered by the tracking algorithm before detecting
the valid track candidates and running them through the final Kalman Filter. Thus, as the
number of clusters increases, so does the cost of the process (e.g., time, money). By using
ML, we determine which candidates represent a possible good track and have the tracking
algorithm analyze only those. This may result in tracking code speed-up and possibly lead to
much simpler and maintainable code for track candidate selection. For training our model,
we use data that was processed by the conventional tracking algorithm and good tracks were
already isolated (similar to the data shown in Figure 3).

3. Related Work

Farrel et al. [4] used space-point data arranged as sequences and connected graphs. For
the first approach an RNN is presented with a sequence of hit coordinates and predicts the
coordinates of the next hits. The authors experimented with this approach using a traditional
regression model as well as a Gaussian distribution model for the produced predictions.
Their results on low occupancy tests showed very good performance for both models. For
the second approach, they presented the data as a graph of connected hits and use a Graph
Neural Network (GNN) to perform track reconstruction. Two paths were examined, one
using GNNs to classify graph nodes as part of the same track, while the other performs
classification on graph edges instead and is able to detect many tracks at once.

In another effort, Farrel et al. [5] investigated the applicability of image-based and point-
based models. In the image-based approach, they presented each layer of the detector as an
image which is fed to an RNN that predicts the correct location of a target track. A variation
of this approach used a CNN that is fed with the entire detector image and classifies the
points belonging to the same track. While this approach performed well, the authors argued
that it would not be possible to scale it up as the dimensionality and sparsity increases. In
the point-based approach, the spacepoints of the detector are sorted before being fed to an
RNN which can, then, classify the spacepoints to the respective target tracks. The results
presented in this work were collected by running on toy data, not real experiments. Tsaris
et al. [6] employed the models developed here to more realistic datasets, and showed that
they can achieve promising results.

In [7], Baranov et al. proposed a two-step technique consisting of a hit preprocessing
step, followed by the employment of a deep neural network that classifies detected hits
as parts of a particle track. In the preprocessing step, the authors use a directed search
algorithm to filter possible candidates and narrow the search space. The deep neural network
that follows consists of a one-dimensional convolutional layer followed by an RNN with two
Gated Recurrent Unit (GRU) layers. The filtered hits are fed to the neural network which
is able to classify them as valid points and assign them to their respective track. With this
approach, they achieve performance of up to 97.5% for a dataset created using a Monte
Carlo generator. An improved version of this model, in terms of accuracy and speed, was
presented in [8] where the authors replaced the two-step approach with a single neural

4

network. This network enhanced the neural network presented in the original work with a
regression component that estimated the location of a hit in the next detector layer.

4. Data Selection and Performance Metrics

4.1. Data Selection

Due to inefficiencies that develop over time, not all of the six layers in a given super-layer
have hits in each of the clusters. For these reasons, we used different data representation
(features) for each of the models. For the CNN, an image of size 36x112 was used, repre-
senting all the wires in one sector of the drift chamber, since the inefficiencies get smoothed
out by convolutional and pooling layers. For the ERT and MLP models, we used six-feature
input for each track, representing the average wire number of the cluster in each super-layer.
For the RNN, we pre-processed the data to produce a sequence of 36 numbers that represent
the track trajectory. For this purpose, each cluster in all six super-layers was fitted with
a linear function to determine its intercept and slope. Then, the signals in missing layers
were completed with a pseudo hit with the wire number that lies on the line representing
the cluster. After this procedure we had a track candidate with 36 input features, one for
each wire in the drift chambers layers.

To generate the training datasets, we extract good and bad tracks from data events that
have already been processed by the conventional algorithm and write out their hit patterns.
An example of one event is shown in Figure 3, where all hit clusters are presented along with
the clusters that form a valid track.

In all representations, the cluster combinations that form a real track are labeled as a
positive sample, while those that did not get identified as valid tracks are labeled as negative
samples. Since there are multiple negative samples per event alongside the positive one, we
need to balance the training dataset between negative and positive samples. To achieve this,
we only provide a single negative sample for each positive sample of an event. In the next
section, we evaluate how different options for negative samples affect our results.

4.2. Training Data Tuning

When selecting training data, we discovered that negative sample selection can affect
the model accuracy. In each reconstructed event with a valid track, there are many track
candidates that we have to choose as a false sample. In the training dataset, we balance the
number of “true” and “false” samples in order to prevent the machine learning model from
overfitting to “false cases”.

We create three training datasets (shown on Firgure 4) and test the network trained
on different input data. The samples and choices for the “false” track candidate shown on
Figure 4 are the following:

• track candidate that looks least like the real track in that event

• track candidate randomly chosen from all combinations

• track candidate that is closest to the real track; most of the time they differ only by
one cluster

5

Figure 4: Training data selection for the inference accuracy study. Examples of data samples for “Least
likely”, “Random” and “Closest Neighbor”. (Wire numbers are normalized to 112)

W
ro

ng

Rig
ht

Predicted label
accuracy=0.8173; misclass=0.1827

Wrong

Right

T
ru

e
 l
a
b
e
l

6,346 3,654

1 9,999

Confusion Matrix

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

W
ro

ng

Rig
ht

Predicted label
accuracy=0.9413; misclass=0.0587

Wrong

Right

T
ru

e
 l
a
b
e
l

8,827 1,173

2 9,998

Confusion Matrix

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

W
ro

ng

Rig
ht

Predicted label
accuracy=0.9922; misclass=0.0078

Wrong

Right

T
ru

e
 l
a
b
e
l

9,862 138

18 9,982

Confusion Matrix

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 5: Confusion matrix (number of events) for different models : (left) trained with data set with
least likely track candidates, (middle) trained with sample with randomly chosen “false” candidates, (right)
trained with sample closest neighbor “false” candidates.

Three models are trained using three datasets, and then model evaluation is done on a
subset of “closest neighbor” data.

As can be seen from the confusion matrices in Figure 5, the model trained on random and
“least likely” datasets is able to accurately predict the “true” track but fails in classifying
the “false” track. Because the model has not been shown a false candidate very similar to
a true candidate, it is not able to distinguish false candidates very similar to the true. The
tests show that model accuracy depends on training sample composition. The best results
are achieved using the “closest neighbor” training dataset. This method is used for all model
evaluations and for the final implementation of training data extraction from experimental
data.

6

4.3. Performance Metrics

In order to determine our models’ accuracy, we devised and utilized several metrics in
addition to using the standard accuracy metrics. The need for these new metrics stems from
the fact that the performance of the machine learning models should be evaluated in the
context of event samples rather than the overall performance on the whole dataset. Moreover,
it is crucial to identify the valid track in each sample; however, it is less harmful to misclassify
an invalid track since it will be eliminated by the following stage of the tracking algorithm
where Kalman-Filter fitting is applied. Of course, it is important to keep false positive
number low as well since Kalman-Filter fitting is the slowest part of the reconstruction
process. Also, examining only the accuracy of the model does not give a good indication
about its overall performance due to the heavily imbalanced amount of invalid tracks in
the testing sample. For example, a model that classifies all tracks as invalid may achieve
relatively high accuracy; however, it is in fact useless, because it cannot detect valid tracks.

Our custom metrics provide a better indication about the real performance of the machine
learning methods for the needs of our application. The accuracy metrics consist of:

1. A-det: The ratio of samples where the valid particle track was correctly detected.

2. A-det|conf : The percentage of A-det for which there were invalid tracks confused
(misidentified) as valid ones (false positives).

3. A-det|high: The percentage of A-det for which the valid particle track had the highest
probability of being valid out of all tracks in a sample.

4. A-notdet: The ratio of samples where the valid track was not detected (false nega-
tives). This metric was very critical for us to minimize, as we don’t want to miss valid
particle tracks.

5. Models Description and Performance Evaluation

5.1. Evaluation Settings

The following evaluations were performed on Old Dominion University’s Wahab High-
Performance Computing Cluster. The training set consists of 3.4 million tracks spread
equally between valid and invalid tracks. The evaluation dataset consists of 14,760 events
totalling 606,223 tracks, both generated from real data in CLAS12 after being classified using
the conventional algorithm. Clasifications for models outputting probabilities (ERT, MLP,
CNN) are made around a threshold of 0.5; tracks with inferred probability higher or equal
to that are considered valid. The ERT and MLP models executed on a 40-core Intel Xeon
Gold 6148 CPU @ 2.40GHz, utilizing the 6-feature data format and were implemented using
the scikit-learn library[9]. The CNN and RNN executed on a NVIDIA Tesla V100 GPU.
The CNN utilized the 36x112-feature data format while RNN the 36-feature format. Both
networks were implemented in TensorFlow 2 [10] with Python 3 on a Linux Ubuntu machine.

5.2. Extremely Randomized Trees

ERT [11] is a supervised learning algorithm that constitutes an ensemble of randomly
generated decision trees [12]. A decision tree is formed by recursively dividing the dataset
into subsets. The splitting criteria are formed by the algorithm based on the classification
features and such that the derived subsets are optimal. The recursive splitting process

7

Figure 6: An illustration of the extremely randomized trees decision-making algorithm

completes when the derived subset consists only of same class elements or when splitting does
not add any extra value. However, this algorithm introduces a high probability of overfitting
the training data, in other words, creating a model that cannot generalize to new data. For
example, it could generate a tree with a leaf for each example in the training set which
would not be reusable when used on a different dataset. To mitigate such issues, one can use
multiple decision trees formed by random subsets of the dataset. The randomness introduced
by generating new decision trees in this way dramatically improves the prediction power of
the model. A method that follows this approach by picking random subsets of the input
dataset with replacement is called random forest [13]. ERT is an extension of the random
forest method that incorporates more randomness by randomly selecting the splitting criteria
instead of choosing the best split. Moreover, this method forms the different random trees
by using subsets of the input dataset without replacement. The final prediction of this model
is produced by taking the average of the predictions of all random trees. Figure 6 shows an
example of the ERT decision algorithm.

Architecture. For our application, we use a model with three hundred estimators (decision
trees), with no limit in the number of features to be considered when splitting. In addition,
we use the information gain (entropy) split quality criterion. The rest of the parameters are
kept at their default values. The input for the model is a 6-feature dataset.

Results. The ERT model has 99.96% accuracy in identifying the valid particle track in a
sample (A-det metric). In 40.72% of the samples where the valid track is identified, there
are also some false positives (A-det|conf metric); however, in most cases (> 97% of the
samples), the valid track is given the highest probability of being valid (A-det|high metric).
Finally, there are almost no samples where the valid track is not detected (A-notdet metric).
These results are compiled in Table 1. Table 2 shows the confusion matrix generated by
evaluating the model on the testing dataset, which indicates very few cases of false negatives
and an acceptable amount of false positives.

8

Metric Result
A-det 99.96%
A-det|conf 40.72%
A-det|high 97.09%
A-notdet 0.04%
Time to Train 502 sec
Time to Predict/sample 306 µs

Table 1: Shows the results for some metrics used to evaluate the model. The ERT model executed on a
multi-core CPU.

Predicted: Invalid Predicted: Valid
Actual: Invalid 560,019 31,444
Actual: Valid 6 14,754

Table 2: Shows the confusion matrix generated by the results from evaluating the ERT model on the testing
dataset.

5.3. Multi-Layer Perceptron

MLP [14] is a supervised learning algorithm that learns a function f that given an input
in space Rm produces an output in space Rn by training on a given dataset. It consists of an
input layer, an output layer, and one or more layers in-between called hidden layers. Each
layer contains a number of neurons representing parameters of the network. Specifically,
for the input and output layers those parameters represent the input (~x : x1, x2, ..., xm) and
output values (~y : y1, y2, ..., yn) of function f . The neurons between two contiguous layers
(li−1, li) are fully connected with each other through weighted links and the values of the
neurons of layer li are formed as a weighted linear summation of the neurons on layer li−1 plus
some bias bi. Before these values are fed forward from li to li+1 a non-linear function, called
the activation function, can be applied (e.g. hyberbolic tangent) to introduce non-linearity
to the model.

The number of layers and the number of neurons are referred to as hyperparameters of a
neural network which need to be tuned for optimal results. Cross-validation techniques can
be used to find the ideal values. Figure 7 shows a MLP with a single hidden layer, R3 input
and R1 output. The calculations that take place for the output(s) of each layer is presented
below, where W is the matrix of the link weights, ~x the input vector of the layer, b the bias,
~z the output before applying an activation function φ and ~a the output after applying the
activation function:

W~x =

w11 w12 · · · w1m

w21 w22 · · · w2m
...

...
. . .

...
wk1 wk2 · · · wkm

x1
x2
...
xm

 + b =

z1
z2
...
zk

9

φ(

z1
z2
...
zk

) =

a1
a2
...
ak

Once all layers have received and fed forward their respective values, the output layer pro-
duces an output which is evaluated against the ground truth using an error function. Training
is then performed by applying backpropagation and optimization. In this stage, an opti-
mization algorithm, like gradient descent, is used to minimize the error function between
the predicted and ground truth values. This is achieved by back-propagating the error of
the output to the hidden layers and adjusting the values of the weighted links between the
neurons. In this way, the next forward pass should produce better results since the weights
have been adjusted according to the expected output. By applying multiple iterations of
feed-forward and backpropagation, the neural network optimizes its weights to “learn” the
function f that will produce outputs with minimal error.

w11

w41

w21
w31

w51

w53
w43
w33w1

3 w
23

w1
2
w22w32
w42w52

a1'=y1

x1

x2

x3

b

a1

a2

a3

a4

a5

w'11

w'12

w'13

w'1
4

w'1
5

b'

Figure 7: A MLP with a single hidden layer of 5 neurons, 3 inputs and 1 output.

Architecture. The MLP used for our application consists of three hidden layers with sixty-
four neurons each (see Figure 8). The optimizer chosen was Adam [15]. We used a batch
size of thirty-two, and an adaptive learning rate, meaning that the learning rate decreases
if there is no training loss decrease in two consecutive epochs. The rest of the parameters
were kept as their default values.

Results. The MLP model achieves 99.95% accuracy in identifying the valid particle track in
a sample (A-det metric). In 38.32% of the samples where the valid track is identified, there
are also some false positives (A-det|conf metric). In 92.92% of the samples, the valid track
is given the highest probability of being valid (A-det|high metric). Finally, the valid track
is not detected in only 0.05% of samples (A-notdet metric). These results are compiled in

10

Figure 8: Architecture of the Multi-Layer Perceptron network.(Generated using [16])

Table 3. Table 4 shows the confusion matrix generated by the results from evaluating the
model with the testing dataset.

Metric Result
A-det 99.95%
A-det|conf 38.32%
A-det|high 92.92%
A-notdet 0.05%
Time to Train 4 hours
Time to Predict/sample 120 µs

Table 3: Shows the results for some metrics used to evaluate the model. The MLP model executed on a
multi-core CPU.

Predicted: Invalid Predicted: Valid
Actual: Invalid 561,994 29,469
Actual: Valid 7 14,753

Table 4: Shows the confusion matrix generated by the results from evaluating the MLP model with the
testing dataset.

5.4. Convolutional Neural Network

CNNs are a type of neural network known to perform better on data where spatial locality
is important (e.g. images). A common CNN consists of Convolutional, Pooling and a Fully
Connected Layers. Convolutional layers are the most important layers in a CNN, including
an input, a number of kernels, and an output (feature map).

11

• The input to a CNN layer is an N-dimensional array (for example, a colored image
with height, width and RGB values) given as an input to the network or produced by
a previous layer.

• A kernel is a 2-dimensional array of weights, usually 3x3, that is used to apply con-
volution on the input. The kernel is shifted on the input, based on a stride, and on
each shift a dot product is applied between the respective area of the input and the
kernel to produce a single element of the output (also known as feature map). The
process continues until the whole input has been processed and the whole matrix of
the feature map has been produced. The weights of the kernel are the parameters
learned by the neural network and are adjusted between iterations through the process
of backpropagation and gradient decent.

• The result produced by applying convolution on the input using the provided kernel
is the output (feature map) of the layer. An activation function is finally applied on
the output array (e.g. Rectified Linear Unit or ReLU [17]) to introduce non-linearity
in the model.

The size of the output is affected by 3 parameters: the number of kernels, the stride used
during convolution, and the type of padding. The number of kernels determines the depth
of the output (e.g. n kernels would generate n outputs, thus an output of depth n). By
increasing the depth of the output, we can extract more features through the extra number
of weights to be trained. As mentioned before, the stride determines the step that the kernel
moves over the input to apply dot product. A stride larger than one would generate an
output of size smaller than the input. Padding can be either “valid” or “same”. A valid
padding adds no padding to the input which will result in an output of smaller size for
kernels greater than 1x1. This occurs because the kernel will be shifted on the input and
apply the dot product fewer times than the size of the input. In other words, when a row or
column of the kernel exceeds the size of the input the dot product will be aborted. In same
padding, the input is padded by zeros to ensure that the output will be of the same size as
the input.

Examples of the convolution process between a 5x5 array and 3x3 kernel for valid and
same padding and strides of 1x1 and 2x2 are shown in Figure 9. When valid padding is
used, (Fig. 9a) the kernel can only be applied 3 times horizontally with a stride of 1x1
before moving to the next row. This process is repeated until no more steps are left to be
taken both horizontally and vertically for a total of 9 applications of the dot product (3x3
output). When using a stride of 2x2, the kernel is shifted by 2 elements at a time horizontally
and 2 elements vertically when a row is completed which allows the application of only 4
dot-products in total (2x2 output). The same process is followed when same padding (fig.
9b) is applied with the only difference being the introduction of more elements on the edges
of the input array to ensure that the output of the convolution (assuming stride 1) will be
the same size as the input. In both cases, the number of kernels equals the depth of the
output.

Pooling layers perform downsampling by sweeping a 2-dimensional filter over their input
and applying some aggregation function to generate the output. The process is very similar to
convolution with the difference being that instead of a dot product, an aggregation function is

12

applied (same as fig. 9a but with the kernel only applying an aggregation). The aggregation
can either be the maximum or the average of values in the area under the filter; hence,
the names max pooling or average pooling, respectively. This process is used to reduce the
amount of parameters to be learned to prevent overfitting and reduce the training time. The
fully connected layer is an MLP residing at the end of the CNN.

Architecture. The convolutional neural network consists of three convolutional layers of 32,
64 and 128 filters, respectively, with a 3x3 kernel size, each followed by a 2x2 max-pooling
layer with same padding and dropout of 0.25, 0.25 and 0.4 (see Fig. 10). Dropout[18] is a
technique where a percentage of the available neurons of the network are randomly selected
and deactivated during training in an attempt to prevent overfitting. Two dense layers of
128 and two neurons respectively follow the convolutional layers with a droupout of 0.3
between them. The activation function for all layers except the last one is Leaky ReLU[19],
while softmax is used for the last layer. Adam was used as the optimizer and categorical
cross-entropy as the loss function. We trained the model for twenty epochs using a batch
size of 32.

Results. The CNN model achieves good results, with 99.96% accuracy in identifying the
valid particle track in a sample (A-det metric). In approximately 53% of the samples where
the valid track is identified, there are also some false positives (A-det|conf metric). In 90.2%
of the samples, the valid track is given the highest probability (A-det|high metric). Finally,
the valid track is not detected in 0.04% of the samples (A-notdet metric). These results
are compiled in Table 5. Table 6 shows the confusion matrix generated by the results from
evaluating the model with the testing dataset.

Metric Result
A-det 99.96%
A-det|conf 52.99%
A-det|high 90.22%
A-notdet 0.04%
Time to Train 8 hours
Time to Predict/sample 1.2 ms

Table 5: Shows the results for some metrics used to evaluate the model. The CNN model executed on one
Tesla V100-SXM2-16GB.

Predicted: Invalid Predicted: Valid
Actual: Invalid 552,808 38,655
Actual: Valid 6 14,754

Table 6: Shows the confusion matrix generated by the results from evaluating the CNN model with the
testing dataset.

13

(a) First two steps of convolution with valid padding and a stride of 1 (left) or 2 (right).

(b) First two steps of convolution with same padding and a stride of 1 (left) or 2 (right). The gray area in the input array
represents the padding of zeros added to the input.

Figure 9: Examples of convolution between a 5x5 array and a 3x3 kernel, with (a) valid and (b) same
padding. The figures show the convolution process with a stride of 1x1 (left column) and a stride of 2x2
(right column). The resulting outputs are generated by applying dot product between the kernel and the
respective area of the input, starting from the top left area and shifting the kernel based on the stride. The
output for stride 1x1 is generated by shifting the kernel one step at a time (left) while for stride 2x2 by
shifting it two steps at a time (right). Figure (a) represents the sizes of the outputs when using valid padding
while (b) shows the output for same padding. The sizes of the outputs are affected by both the stride and
the padding since those affect how many times the kernel can shift on the input and apply the dot product.

5.5. Recurrent Neural Network

Another approach that we investigate is the use of RNN[20]. RNN is a type of neural
network that is used to predict features in datasets that present a sequence. For example,

14

Figure 10: Architecture of the CNN network including the feature maps of each convolutional layer and fully
connected layer. The number of neurons per layer is also included.

given a sequence of temperature data for the days in the previous month, an RNN is able to
infer the temperatures of the next few days in the future. RNNs incorporate the connection
that exists between sequential data to infer the next data points in the sequence. To employ
them for the needs of identification, we make use of the following observation: applying a
well trained RNN on a sequence that does not follow the same pattern as the training data
(i.e. providing a false sequence) will result in predictions with a high degree of error.

In the context of particle trajectories, a track can be presented as a sequence of hit
detections on sequential layers of wires. We used this observation to train an RNN using
Gated Recurrent Units[21] (GRU) layers that given a subset of a track can predict its missing
parts. Specifically, our model is trained to infer the detections of the last 12 layers given
information of the first 24. The RNN is trained on the same dataset as the models for
trajectory classification, except that only data for valid particle tracks is utilized. This allows
the RNN to predict valid particle tracks based on partial previous sensor activation patterns.
Since the RNN is trained on only valid particle tracks, it will give incorrect predictions for
invalid particle tracks. By passing all particle candidates through the RNN, we produce a
new set of inferred candidate tracks. By measuring the spatial distance of the inferred tracks
and the actual track in the dataset, we can extract the tracks that are invalid and those
that are valid. An inferred track that has a large distance from the actual candidate track
in the dataset is considered invalid, and thus the candidate that was used to generate it is
also classified as an invalid. On the other hand, when the candidate track in the dataset has
a small distance from the inferred one it likely means that the inferred track is valid and so
is the track that generated it. This process allows us to eliminate most of the invalid tracks
and identify possible valid tracks.

Architecture. We use two stacked GRU layers, the first containing 40 units while the second
containing 240 units (Figure 11). The input to the model is a vector of features, with each
feature occupying one time step. As for the optimizer, we used RMSprop [22].

Results. The RNN achieves an average mean absolute error (MAE) of about 1.57. In the
context of this problem, this means that the predicted particle trajectories of the model

15

Figure 11: Architecture of the recurrent neural network.

were on average about 1.57 sensors away from the actual particle trajectories. Figures 12
and 13 show examples of actual particle tracks overlapped with the predicted portions of the
particle tracks from the RNN. For the classification process we used Mean Absolute Error
(MAE) as the metric for spatial distance and explored with different values as the maximum
distance.

Figure 12: Shows three separate valid particle tracks (blue) and the predictions of the RNN for part of them
(orange). If the RNN correctly predicted the track, then the blue and orange overlap. The small spatial
distance between the predicted portion of the tracks and the actual portion of the tracks means that the
actual tracks are likely valid.

Figure 13: Shows three separate invalid particle tracks (blue) and the prediction of the RNN for part of them
(orange). The larger spatial distance between the predicted portions of the tracks and the actual portions
of the tracks means that the actual tracks are likely invalid.

16

Metric Max Dist: 2 Max Dist: 3 Max Dist: 4
A-det (%) 91.98 97.58 99.0

A-det|conf (%) 69.65 83.32 90.65
A-det|high (%) 71.74 73.91 74.17
A-notdet (%) 8.02 2.41 1.0

Table 7: Shows the results of the metrics used for the evaluation of the RNN model for different maximum
distances.

Max Dist: 2 Max Dist: 3 Max Dist: 4
True Positive (%) 91.98 97.58 99.0
False Negative (%) 8.02 2.41 1.0
True Negative (%) 92.45 88.35 84.0
False Positive (%) 7.55 11.65 16.0

Table 8: Shows the confusion matrix values generated by the results from evaluating the RNN model with
the testing dataset. The true positive and false negative percentages are presented as a fraction of the valid
tracks in the dataset. Accordingly, the percentage of true and false negative are presented as a fraction of
the invalid tracks.

Tables 7 & 8 show the performance of the RNN for the different maximum distances.
As expected, a larger maximum distance helps to identify more valid tracks but increases
the amount of invalid tracks misclassified as valid. On the other hand, a smaller distance
decreases the amount of tracks falsely identified as valid but also increases the amount of
valid tracks that are missed by the algorithm. Since there are no probabilities infered from
the network to classify as valid or invalid, the value we used to compute the A-det|conf
metric is the distance between the inferred and the actual track candidate (the smaller the
better). The performance of the RNN shows that this approach can be promising, however,
the three other machine learning networks outperform it.

6. Performance Summary

We have presented four machine learning models applied to perform track classification
for CLAS12 drift chambers along with a brief introduction for each method. In this section,
we summarize the results of all four methods in tables 9, 10 below:

Model A-det(%) A-det|conf(%) A-det|high(%) A-notdet(%) Training Inference
Type Time Time/sample

ERT 99.96 40.72 97.09 0.04 506 sec 306 µs

MLP 99.95 38.92 92.92 0.04 4 hours 120 µs

CNN 99.96 52.99 90.22 0.04 8 hours 1.2 ms

RNN 99.0 90.65 74.17 1.0 3 hours 343 µs

Table 9: Summarizes the results for the four models for particle trajectory classification. The MLP and ERT
models executed on a multi-core CPU, while the CNN executed on one Tesla V100-SXM2-16GB.

17

Model True Positive False Negative True Negative False Positive
Type (%) (%) (%) (%)

ERT 99.69 0.04 94.68 5.31

MLP 99.95 0.05 95.02 4.98

CNN 99.96 0.04 93.46 6.53

RNN 99.0 1.0 84.0 16.0

Table 10: Summarizes the confusion matrix values generated by the results from evaluating each model with
the testing dataset. The true positive and false negative percentages are presented as a fraction of the valid
tracks in the dataset. Accordingly, the percentage of true and false negative are presented as a fraction of
the invalid tracks.

We can see that all methods manage to identify the valid track very accurately with over
99% success. ERT performs the best in terms of accuracy, while MLP comes close second,
however, it performs 2.5 times better in terms of inference speed. CNN gets the third place
in both accuracy and inference time; an important factor for that being that it utilizes a
much larger data format (4032 features vs 6 vs 36). The RNN falls quite behind in terms of
accuracy, misclassifying about 1% of the valid tracks versus 0.04% of the rest of the models.
Moreover, the percentage of events that contain false classifications amount to 90.65%, more
than double of what the ERT and MLP models achieved. Out of this study we decided to
implement the MLP algorithm in the track reconstruction process of CLAS12 due to its high
speed and high accuracy in detecting the valid track. Figure 14 presents the ROC curves
of the three models that output probabilities (MLP, CNN and ERT) where we can see that
their performance is almost identical.

7. Software Implementation

To conduct this study, we implemented a framework that simplifies the process of training,
validation, and prediction. Our software3 is written in the Python programming language
to accelerate the development process and make the software easily maintainable, reusable,
and extensible. We use TensorFlow 2 [10] for the creation, training, and validation of the
CNN and RNN machine learning models while scikit-learn [9] was used for the ERT and
MLP models.

Since our datasets are sparse, we use the svmlight data format [23] which is designed for
labeled data with sparse features. To load and store datasets, we make use of the scikit-learn
library. Scikit-learn is also utilized to generate validation datasets by randomly picking data
entries from the training dataset. To enable easy distribution of the software, we provide a
YAML[24] file that contains the required dependencies that can be provided to software like
Anaconda [25] to handle all software dependencies.

Our software consists of two separate operations, train and test. Each operation is im-
plemented as a subcommand that accepts its own parameters (similar to how git commands
work: git commit 〈args〉, git branch 〈args〉, etc.).
The train subcommand, as shown from its name, is used to train a new model. It takes

3Code and data available at: https://github.com/gavalian/clas12ai/tree/master/ml

18

https://github.com/gavalian/clas12ai/tree/master/ml

a set of required and optional arguments; the required ones include the dataset to use for
training, the format that the dataset has (4032, 36 or 6 features), the model architecture to
be used (CNN, MLP, ERT, RNN), and the path to store the trained model. Optionally, the
user can also set the number of training epochs to go through, the batch size, and a separate
validation file.

The test subcommand performs the respective evaluation operation; accepted arguments
include the trained model to use, the dataset to test it on, the directory to store the per-
formance results (all required), and the batch size (optional). When testing completes, it
generates a report for the user with the accuracy results, confusion matrix etc.

Extending the framework with new models is simple. A new model architecture can be
implemented by subclassing a built-in abstract class and implementing two methods; namely
the build(), and preprocess() methods. The build() method is where the architecture of
the new model is described using Keras notations, compiled, and returned to the framework.
The preprocess() method is provided so that the user can perform any preprocessing that
might be needed for the specific model, application, and dataset. For example, to test the
CNN model the input needs first to be transformed to a 36x112x1 tensor to fit the CNN’s
expected input format (width× height× channels).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC for MLP

ROC curve (area = 0.98)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC for ERT

ROC curve (area = 0.98)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC for CNN

ROC curve (area = 0.98)

Figure 14: ROC curves produced from the MLP (left), CNN (middle), and ERT (right) models.

19

8. CLAS12 Tracking

In our studies, we used only one track type, namely negatively charged tracks as training
and validation datasets. However, the final implementation of the MLP had 6 input features,
representing the mean values of clusters in each super-layer, for both positively and negatively
charged track candidates . Thus, classification in the output results into one of three possible
cases, namely: “false track”, “negatively charged track”, and “positively charged track”.
For training, we use events where two tracks were identified in one of the sectors of the
drift chambers and use valid track features as positive samples for the neural network. As
negative sample (“false track”), two candidates are constructed by swapping clusters of two
tracks. A random number of clusters (one or two) are swapped in each event (determined
by a random number generator). This method assures that no valid reconstructed track can
be represented as a “false track” in the training sample. It also provides better accuracy,
because it produces “false” track candidates that are similar to the real track by swapping
only one or two clusters.

The trained network is, then, used to identify track candidates from real experimental
data, and predictions are compared with the tracks reconstructed by the conventional algo-
rithm. In this case, we do not use cuts/thresholds for classification. Classification is done
by picking the track candidate with the highest probability. From our tests, most of the
time (> 98.5%), the valid track has a probability of > 0.85, but if so happens that the
highest probability is 0.3, we pick the respective track and pass it to the tracking algorithm
to consider.

The distribution of negative tracks is shown in Figure 15 (top row) as a function of
particle momentum and polar angle in a laboratory reference frame. In Figure 15 (bottom
row), the distribution of tracks that are not identified by the network as good tracks is shown
as a function of momentum and angle. Only a tiny fraction (9 out of 65224 tracks) was not
identified by the neural network as a good track candidate. In Figure 16, the efficiency of
track identification is shown as a function of particle momentum and polar angle. The track
identification accuracy for both positively and negatively charged particles is summarized in
Table 11, showing efficiency > 99.9% for both particle charges.

Particle Charge Conventional Tracks ML Predicted ML missed Efficiency

negative 65224 65215 9 0.999862
positive 177434 177411 23 0.999865

Table 11: Summary of track identification efficiency negatively and positively charged particles.

The implementation of our MLP network was ported into the standard CLAS12 software.
The ML module follows the clustering algorithm and composes all possible combinations of
tracks found from each segment. All track candidates are, then, evaluated by the ML module.
The suggestions of tracks are saved into intermediary data structures and are passed to the
tracking algorithm, which uses these suggestions to construct and fit the final tracks. Our
study with experimental data shows that our neural network can identify good tracks with
efficiency above 99.9% and provide a 35% speedup compared to the existing tracking code.
The time reduction comes from the fact that much fewer invalid tracks need to be fitted with

20

the Kalman-Filter, tracks which would be thrown away later due to non-convergence. Fitting
an event’s track candidates takes about 350-400 ms (depending on combinatorics), thus, ML
track candidate finding essentially removes this overhead (120µs vs 350ms) by minimizing
the number of tracks that conventional algorithms have to consider and intensively fit.

9. Conclusion and Future Work

We have demonstrated the performance of four machine learning models, aiding the
CLAS12 reconstruction code with track classification. We have shown that all four models
ERT, MLP, RNN, and CNN perform well for this task. The MLP shows the best results in
terms of accuracy and inference speed on real data. A small systematic study was imple-
mented, showing that inference accuracy is increased substantially by training the models
on datasets with false samples very similar to true ones. Finally, we evaluated the perfor-
mance of the MLP model in comparison to the traditional track candidate selection algorithm
method, which showed an equally good track identification efficiency and resulted in 35%
track reconstruction speed up. In the future, we plan to extend the ML model by introduc-
ing a preprocessing step to further filter the candidate tracks. An RNN will be introduced
to give an estimate of the path the true track will follow. This estimation will be used
to narrow down the number of candidates the MLP needs to consider. This network will
be first implemented in the CLAS12 reconstruction software to test improvements in track
reconstruction efficiency. Then, it will be complemented with a de-noising auto-encoder de-
veloped for CLAS12 tracking [26], which already shows significant improvements for segment
identification in high background (high luminosity) conditions.

Figure 15: The distribution of tracks as a function of particle momentum and polar angle reconstructed by
conventional tracking algorithm (top row). Distribution of tracks as a function of momentum and angle for
track candidates that were not identified by ML (bottom row).

21

Figure 16: Efficiency of track identification using suggestions from MLP network as a function of particle
momentum (left) and polar angle (right).

10. Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and NSF grant
no. CCF-1439079 and the Richard T. Cheng Endowment. The authors would like to thank
Raffaella De Vita for helping in processing data with CLAS12 reconstruction software and
the anonymous reviewers for their constructive comments. This work was performed using
the Turing and Wahab computing clusters at Old Dominion University (ODU).

22

References

[1] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal
of Basic Engineering, vol. 82, pp. 35–45, 03 1960.

[2] V. Burkert et al., “The CLAS12 Spectrometer at Jefferson Laboratory,” Nucl. Instrum.
Meth. A, vol. 959, p. 163419, 2020.

[3] M. Mestayer et al., “The CLAS12 drift chamber system,” Nucl. Instrum. Meth. A,
vol. 959, p. 163518, 2020.

[4] S. Farrell, P. Calafiura, M. Mudigonda, Prabhat, D. Anderson, J.-R. Vlimant, S. Zheng,
J. Bendavid, M. Spiropulu, G. Cerati, L. Gray, J. Kowalkowski, P. Spentzouris, and
A. Tsaris, “Novel deep learning methods for track reconstruction,” in 4th International
Workshop Connecting The Dots 2018, 10 2018.

[5] S. Farrell, D. Anderson, J. Bendavid, M. Spiropoulou, J.-R. Vlimant, S. Zheng,
G. Cerati, L. Gray, K. Kapoor, J. Kowalkowski, P. Spentzouris, et al., “Particle track
reconstruction with deep learning,” 31st Annual Conference on Neural Information Pro-
cessing Systems (NIPS), 2017.

[6] A. Tsaris, D. Anderson, J. Bendavid, P. Calafiura, G. Cerati, J. Esseiva, S. Farrell,
L. Gray, K. Kapoor, J. Kowalkowski, et al., “Hep. trkx project: Deep learning for par-
ticle tracking,” in Journal of Physics Conference Series, vol. 1085, Institute of Physics,
2018.

[7] D. Baranov, S. Mitsyn, G. Ososkov, P. Goncharov, and A. Tsytrinov, “Novel approach to
the particle track reconstruction based on deep learning methods,” in Selected Papers of
the 26th International Symposium on Nuclear Electronics and Computing (NEC 2017),
Budva, Montenegro, vol. 2023, pp. 37–45, 2017.

[8] D. Baranov, S. Mitsyn, P. Goncharov, and G. Ososkov, “The particle track reconstruc-
tion based on deep neural networks,” in EPJ Web of Conferences, vol. 214, p. 06018,
EDP Sciences, 2019.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in
python,” Journal of machine learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 265–283, 2016.

[11] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn.,
vol. 63, p. 3–42, Apr. 2006.

[12] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, p. 81–106, Mar. 1986.

23

[13] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference on
document analysis and recognition, vol. 1, pp. 278–282, IEEE, 1995.

[14] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

[15] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International
Conference on Learning Representations, 12 2014.

[16] A. LeNail, “Nn-svg: Publication-ready neural network architecture schematics,” Journal
of Open Source Software, vol. 4, no. 33, p. 747, 2019.

[17] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th International Conference on International Confer-
ence on Machine Learning, ICML’10, (Madison, WI, USA), p. 807–814, Omnipress,
2010.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15,
p. 1929–1958, jan 2014.

[19] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in
convolutional network,” ArXiv, vol. abs/1505.00853, 2015.

[20] L. C. Jain and L. R. Medsker, Recurrent Neural Networks: Design and Applications.
USA: CRC Press, Inc., 1st ed., 1999.

[21] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical
machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[22] S. K. Hinton Geoffrey, Srivastava Nitish, “Neural networks for machine learning.” http:

//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. Lec-
ture Notes, University of Toronto. Online; accessed 2021-04-29.

[23] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM
Trans. Intell. Syst. Technol., vol. 2, May 2011.

[24] “The Official YAML Web Site.” https://yaml.org/. Online; accessed 2021-04-29.

[25] “Anaconda Software Distribution.” https://docs.anaconda.com/. Online; accessed
2021-04-29.

[26] P. Thomadakis, A. Angelopoulos, G. Gavalian, and N. Chrisochoides, “De-noising drift
chambers in CLAS12 using convolutional auto encoders,” Comput. Phys. Commun.,
vol. 271, p. 108201, 2022.

24

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://yaml.org/
https://docs.anaconda.com/

	Introduction
	CLAS12 Detector
	Related Work
	Data Selection and Performance Metrics
	Data Selection
	Training Data Tuning
	Performance Metrics

	Models Description and Performance Evaluation
	Evaluation Settings
	Extremely Randomized Trees
	Multi-Layer Perceptron
	Convolutional Neural Network
	Recurrent Neural Network

	Performance Summary
	Software Implementation
	CLAS12 Tracking
	Conclusion and Future Work
	Acknowledgments

