
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Tasking framework for Adaptive Speculative Parallel
Mesh Generation

Christos Tsolakis · Polykarpos
Thomadakis · Nikos Chrisochoides

Received: date / Accepted: date

Abstract Handling the ever-increasing complexity of mesh generation codes
along with the intricacies of newer hardware often results in codes that are
both difficult to comprehend and maintain. Different facets of codes such as
thread management and load balancing are often intertwined, resulting in
efficient but highly complex software. In this work, we present a framework
which aids in establishing a core principle, deemed separation of concerns,
where functionality is separated from performance aspects of various mesh
operations. In particular, thread management and scheduling decisions are
elevated into a generic and reusable tasking framework.

The results indicate that our approach can successfully abstract the load
balancing aspects of two case studies, while providing access to a plethora
of different execution back-ends. One would expect, this new flexibility to
lead to some additional cost. However, for the configurations studied in this
work, we observed up to 13% speedup for some meshing operations and up to
5.8% speedup over the entire application runtime compared to hand-optimized
code. Moreover, we show that by using different task creation strategies, the
overhead compared to straight-forward task execution models can be improved
dramatically by as much as 1200% without compromises in portability and
functionality.

Keywords Parallel Computing · Tasking · Speculative Execution · Mesh
Generation · Mesh Adaptation

1 Introduction

With the advent of multicore machines and new constantly evolving archi-
tectures in the form of accelerators, the need for abstracting parallelism in

Christos Tsolakis, Polykarpos Thomadakis, Nikos Chrisochoides
Center for Real-Time Computing, Old Dominion University, Virginia, USA
E-mail: {ctsolakis,pthomadakis,nikos}@cs.odu.edu

2 Christos Tsolakis et al.

scientific applications becomes paramount. Although platform-specific and/or
application-specific optimizations will always perform better than generic so-
lutions, abstract interfaces can last longer and allow for better interoperability
between applications. Choosing the right abstractions allows applications to
build upon a generic framework while enabling low-level software substrates to
offer implementations that take advantage of the underlying hardware. More-
over, abstractions provide space for future explorations and allow to future-
proof [28] applications; as newer hardware (e.g., in the form of accelerators) be-
comes available, the application developer may need to perform minimal to no
changes while the underlying runtime system can add new features opaquely.

(a) PODM pseudocode as presented in [27]. (b) CDT3D pseudocode as presented in [20].

Fig. 1: Pseudocodes of the speculative approach applied to a Delaunay-based
algorithm (left) and a local reconnection operation (right) of an Advancing-
Front method. Colored regions indicate the primal function of the enclosed
steps.

The task management facilities presented in this work, are part of a longer-
term project that aims to enable separation of concerns [18] with regard to
functionality and performance, specifically for mesh operations. Figure 1 de-
picts the pseudocode of two fine-grained speculative meshing operations. Note
that the application developer must manage and account for the meshing ker-

Tasking framework for Adaptive Speculative Parallel Mesh Generation 3

nel, parallel correctness, and load balancing, all within a single algorithm.
Developing and maintaining such an application becomes challenging since
the developer has to keep all three parts in mind while modifying the code.
Moreover, re-using hardware-specific optimizations among different applica-
tions can only be achieved by abstracting them outside of specific applications.
Examples include data affinity-aware work schedulers, cache-optimized data
structures, thread contention management policies, etc.

The separation of functionality from performance will contribute signifi-
cantly towards the implementation of the Telescopic Approach [15] which lays
down a design for achieving scalability for mesh generation on exascale ma-
chines. The Telescopic Approach spans across the multiple memory hierarchies
of an exascale machine (shared, distributed-shared (DSM), distributed, out-of-
core) and maps different algorithmic layers to the appropriate level of memory
based on the intensity of communication between different meshing kernels.
The lowest, closest to the hardware layer, that can sustain high volume of
communication at low cost, is the Parallel Optimistic layer which is designed
to explore concurrency at the CPU level within the limits of shared memory,
using speculative/optimistic execution. Both meshing kernels of Figure 1 are
designed to be used in the Parallel Optimistic layer of the Telescopic Approach.
Abstracting the performance aspects from the functionality for these kernels
will allow interoperability with lower level runtime systems like PREMA [41]
and will speed up the development process by increasing the code-reuse among
the applications that utilize the Telescopic Approach.

As case studies, we use the parallel meshing operations present in CDT3D
[20,19] that are common in most metric-based mesh adaptation codes [44]
and the Delaunay-based kernel of PODM [27]. For these two applications, we
explore ways a tasking environment can be used to express speculative mesh
operations and describe approaches that enable to abstract the load balancing
aspects of both case studies with no impact to functionality. The results in
Sections 4.1 and 4.2 indicate not only low overhead, but even speedup with
respect to the baseline hand-optimized applications for some mesh operations.
In summary, the main contributions of this study are:

– Present a high-level front-end that abstracts and unifies task management
for adaptive and irregular applications.

– Design and implement the front-end for three major back-ends: Intel®’s
TBB, OpenMP, and Argobots.

– Illustrate how this front-end can be applied to two different speculative
parallel unstructured mesh generation codes.

– Provide an in-depth analysis of the effect of task granularity on each back-
end along with the advantages and disadvantages of different task creation
strategies.

4 Christos Tsolakis et al.

2 Related Work

There is a number of tasking systems that have emerged in the recent years
targeting different layers of the application, from low-level assembly layer [35],
and parallelizing compilers [49] to high level tasking frameworks [13]. A com-
plete review of the current state-of-the-art tasking environments is outside the
scope of this section. A comprehensive taxonomy based on architectural char-
acteristics and user APIs appears in [42]. In the rest of this section, we focus
on methods that exploit concurrency through speculative execution. Specu-
lative execution (also known as optimistic) is a technique used in a number
of applications, ranging from processors [43] to databases [32]. It allows for
the exploitation of more concurrency out of a problem by executing steps of
a procedure ahead of time, prior to resolving data dependencies between the
steps themselves. In the case where steps are not needed, the precomputed
results may either be disregarded or additional steps may be required to roll
back to the previous state of the process. The correctness of this scheme, in the
context of parallel algorithms, has been proven in [30] with the introduction
of the notion of Virtual Time and validated in the context of Parallel Discrete
Event Simulations within the Time Warp system.

There are several efforts in the literature that facilitate speculative exe-
cution utilizing higher level constructs. Among the many we list a few per-
tinent to this study such as the use of transactional memory at the software
level [36], compiler-assisted methods [37,11,1] and libraries such as Galois [31],
ParlayLib [6] and SPETABARU [10].

The Galois system [31] provides abstract set iterators, giving to the ap-
plication developer the ability to extract parallelism out of the work-lists of
a sequential application. Custom data structures and a runtime scheduler are
responsible for detecting and recovering unsafe accesses to shared memory.
The elegance of this approach is appealing but, for our use-case, it would
require extensive modifications of the work lists maintained by each applica-
tion. Also, to the best of our knowledge, its effectiveness for mesh generation
has been demonstrated only on simple sequential mesh triangulation codes. In
contrast, in this work, both use-cases build on top of an already-parallelized
application that have demonstrated comparable performance to state-of-the-
art methods [27,45].

In [7,6] the authors revisit the idea of expressing speculative execution as
a combination of nested parallelism and commutative operations suggested
in [40] and propose the use of deterministic reservations for dealing with a
class of greedy algorithms. The main idea is to split the operation into two
phases. One that attempts to reserve the data dependencies for a number
of tasks speculatively, and then a commit phase that executes the tasks that
successfully reserved all their dependencies. The two-phase approach is similar
to the inspector-executor model [38]. However, an inspector-executor model is
not suitable for our case due to the data-intensive nature of the targeted use-
cases. In contrast, our approach re-uses the speculative approach step already
present in both use-cases and merges the two steps in one. This approach

Tasking framework for Adaptive Speculative Parallel Mesh Generation 5

acts directly upon touched data which improves cache utilization and allows
tolerating more than 80% of system latencies [34]. Moreover, it avoids the
synchronization required by a two-phase approach.

The SPETABARU tasking runtime system introduced in [10] can exploit
concurrency of task graphs through speculation. The task graph is built based
on the user-defined data dependencies between the tasks. The system manages
the execution of tasks as well as disregarding data from failed speculative
attempts upon runtime. The library was originally created for Parallel Monte
Carlo Simulations, and it is primarily designed for parallel applications that
utilize graphs of tasks. This tasking system generates the graph utilizing a
single thread in a pre-processing step that generates all the tasks and evaluates
the data dependencies among them. This approach is inadequate for our target
data-intensive applications for two reasons. First, dependency discovery and
resolution is the most expensive step, thus rendering the pre-processing step
to a major bottleneck. Moreover, the continuous generation of new elements
(and therefore tasks) would require additional synchronization points which
would degrade performance significantly.

In [1] the authors incorporate Thread-Level Speculation in OpenMP. Open-
MP is extended with the speculative directive which annotates a variable
as the target of speculative execution. A thread-local version of such variables
is created for each thread. The respective runtime monitors such variables
and guarantees that all read accesses will return the most up-to-date value.
When a thread consumes an outdated version of a speculative variable, it is
stopped and restarted in order to consume the correct value of the variable.
For both of our applications the speculative execution is already part of the
application code and modifying it is outside the scope of this work. Moreover,
the abstract front-end of our approach gives access to additional back-ends
beyond OpenMP.

Although many of the above approaches are close to our goals, most of them
will require nontrivial changes to the code required for the Parallel Correctness
steps (see Figure 1) of the algorithm which for this study we chose to keep as
part of the meshing task. Moreover, in contrast to all the presented approaches,
the starting point in this work is applications that are already parallel instead
of sequential. This comes with the benefit of having thread-safe mechanisms
in place for memory allocation and speculative locking, but also with higher
complexity due to their legacy nature. Also, the proposed approach can utilize
a number of different back-ends, including Argobots [39]. Argobots provides
lightweight User Level Threads (ULTs), capable of context switching with low
overhead. Among others, ULTs are employed to tolerate latencies in cases
such as failing to acquire a lock or calling synchronous MPI operations where
regular tasks would block, along with the underlying hardware thread. Instead,
a ULT will implicitly release the hardware thread it runs on, allowing other
ULTs to use it. This interaction with MPI allows to build scalable runtime
systems such as the PREMA runtime system [41], which in turn is a building
block of the Telescopic Approach [15].

6 Christos Tsolakis et al.

In the context of mesh generation, speculative execution was introduced
in [34] where the authors execute the same meshing kernel across multiple
processes without restricting them on their local data. Instead, the meshing
kernel is launched optimistically, and the data dependencies are discovered
and captured on the fly. If some dependency cannot be satisfied, the opera-
tion releases any captured dependencies, aborts its execution (rollback), and
reenters the scheduler’s pool. The speculative approach has already been uti-
lized in Delaunay triangulation methods [5,4,25], Delaunay Refinement [27]
and Advancing-Front [20] methods. However, in each case, the approach was
application- and method-specific. In contrast, in this work we provide an ab-
stract interface allowing the framework to be applied both across different
mesh operations and between different mesh applications. Moreover, the ap-
proach in this work is method-agnostic, thus rendering the framework useful
for other meshing methods as well as for adaptive and irregular applications
in general.

3 Method

The proposed approach builds upon the observation that the speculative mesh-
ing operations of the two case studies can be decomposed into three compo-
nents: Meshing, Parallel Correctness and Load Balancing (see Figure 1). The
Load Balancing part is handled by the generic tasking framework presented
in the following sections. Parallel Correctness is expressed through the use
of atomic locks upon the cavity (data dependencies) of each operation. For
this study, the parallel correctness steps will remain as part of the meshing
task. The implementation of generic tasking framework is composed of an
application-facing front-end which is agnostic to target hardware, and a back-
end, which provides custom implementations for individual substrates.

3.1 Front-end: A Generic Tasking Framework

The general approach used in this work is to decompose any given opera-
tion into non-interruptible tasks that execute to completion. The framework
supports both blocking calls for creating many tasks (see Listing 1) and a
fine-grained API for single task creation (see Listing 2). This allows for the
utilization of a range of tasking paradigms, from simple fork-join models to
hierarchical or recursive task creation (see Figure 2).

1 /∗∗
2 ∗ @br ie f launch ta sk s and wait u n t i l they a l l f i n i s h
3 ∗ @param u s e r t a s k a r g s vec to r o f task arguments
4 ∗ @param u s e r f u n c the user func t i on to be executed ,
5 ∗ type should be void func (UserTaskArgs &) ,
6 ∗ @param g r a i n s i z e number o f e lements o f u s e r t a s k a r g s to group
7 ∗ i n t o a s i n g l e task
8 ∗/
9

Tasking framework for Adaptive Speculative Parallel Mesh Generation 7

10 template<typename UserTaskArgs , typename FunctionType>
11 void t a s k f o r (std : : vector<UserTaskArgs>& u s e r t a s k a r g s ,
12 FunctionType use r func ,
13 i n t g r a i n s i z e = 10)

Listing 1: Interface for launching several tasks at once.

1 /∗∗
2 ∗ @br ie f add a task to the i n t e r n a l queue
3 ∗ @param u s e r t a s k a r g s arguments o f the task
4 ∗ @param u s e r f u n c the user func t i on to be executed ,
5 ∗ type should be void func (UserTaskArgs&)
6 ∗/
7

8 template<typename UserTaskArgs , typename FunctionType>
9 void c r e a t e a n d s c h e d u l e (UserTaskArgs& u s e r t a s k a r g s ,

10 FunctionType u s e r f u n c)
11

12 /∗∗
13 ∗ @br ie f wait u n t i l a l l generated ta sk s have completed .
14 ∗/
15 void w a i t f o r a l l ()

Listing 2: Interface for creating a single task.

task for in Listing 1 is similar to the parallel-for paradigm. It accepts
a function user func that implements the task operation, as well as a vec-
tor user task args of the different arguments for each task. Optionally, it can
accept a grainsize which controls the number of terminal tasks that will be gen-
erated. The number of terminal tasks is user task args.size()/grainsize.
Similar to std::for each, task for will apply user func to each element of
the user task args vector. However, in contrast to std::for each not all in-
vocations of user func will be completed successfully. Some will abort due to
rollbacks. In this study, re-applying the operation on aborted tasks is handled
by the application logic, since it was already present before the introduction
of this framework.

create and schedule in Listing 2 is a simple wrapper around the corre-
sponding back-end that generates a task and places it in the internal queue of
the framework. This call is not blocking, and the execution of the task may
start immediately on a different thread. Finally, wait for all suspends the
calling thread until the internal task queues are empty.

Fig. 2: Different tasking paradigms employed in this work. Left: flat model,
Middle: two-level task creation, Right: hierarchical task creation.

8 Christos Tsolakis et al.

The tasking framework also provides the user with a unique thread id

∈ [0, nthreads). This id is not pinned to any hardware thread, but it is guar-
anteed to stay fixed and unique for the duration of the task execution. The
thread id is required by both applications of this study for two main opera-
tions. First, data dependency acquisition is implemented utilizing atomic locks
that hold the id of the owning thread [27,20]. Also, both pieces of software uti-
lize the thread-aware memory management method described in [2] that uses a
thread id in order to access the appropriate thread-local memory pools that
allow for the allocation and deallocation of elements in a thread-safe manner.

3.2 Task Generation Strategies

One of the considerations of explicitly creating tasks is the overhead of task
creation. In the current implementation of task for, there is support for all
three task creation strategies of Figure 2. The flat model implements a basic
fork-join paradigm [16]. It creates all tasks sequentially and waits for them to
complete. As a first attempt to reduce the overhead, a 2level task creation
strategy was introduced. For this strategy, the application thread will spawn
sequentially 2 ·nthreads tasks that partition the range of the user task args

vector in equal parts. Each level-2 task will then iterate the assigned range
of the task vector and spawn a task for each task-argument. Finally, the
hierarchical model employs a divide-and-conquer scheme; it creates tasks
recursively by creating two child tasks that bisect the task range up to the
point where the assigned range is smaller or equal to the target grainsize.
When the framework is used sequentially, no tasks are created independently
of the chosen strategy. Instead, the application thread will apply user func

sequentially on each item of the user task args vector.

3.3 Implementation

The above framework is implemented with three different back-ends: the Ar-
gobots runtime system [39], Intel’s TBB framework [48] and OpenMP [17]. For
each of the three implementations we have incorporated the three task creation
strategies of Figure 2 as well as high level constructs specific to each back-end
such as tbb::parallel for, #pragma omp parallel for and #pragma omp

taskloop for a total of 12 different execution back-ends. We will use the no-
tation backend-strategy to refer to tasking strategy strategy implemented
on top of the back-end backend. Although interoperability in terms of mixing
different backends is possible, for this work we restrict our attention to using
one back-end at a time.

3.3.1 Argobots back-end implementation details

Argobots is a low-level tasking framework developed to support higher level
runtime systems, so it does not provide optimized schedulers for fork-join par-

Tasking framework for Adaptive Speculative Parallel Mesh Generation 9

allelism out of the box. To implement an optimized tasking framework for our
needs, we developed custom scheduling mechanisms using the interfaces pro-
vided. For this work we opted for a work-stealing [8] scheduling mechanism
even though any other mechanism could be incorporated in the future. In
this scheduling mechanism, each thread (execution stream in Argobots’ termi-
nology) in the parallel environment is associated with a circular double-ended
queue (deque) which is thread-safe and lock-free [12]. Every new task is pushed
to the top of the deque of the thread that created it. When a thread finishes
with the execution of a task, it first checks its own deque; if there are tasks
available, it pops the one residing at the top of the deque and executes it. If its
deque is empty, it will randomly pick one of the remaining threads and try to
steal the task at the bottom of its deque. By picking the task at the top of the
owned deque first, tasks that are hot in the cache are given priority. On the
other hand, stealing the task at the bottom of other threads’ deques: increases
the chance of picking tasks that will create more child tasks, allows more work
to become available for the stealing thread and results in a decreased number
of steal attempts. We provide two tasking flavors for this implementation -
User Level Threads (ULTs) that can yield explicitly and Tasklets that run to
completion and can only block waiting for another tasklet created using this
framework. In this work, both case studies use tasklets as we only need to wait
for other tasks to complete and no other blocking operation is performed. Each
task is created using a abt::task create function call that asynchronously
schedules a new task and immediately returns a task handle. The task handle
can then be used to check or wait for the completion of the respective task’s
execution. Internally, the call to wait for a task completion will result in calling
the scheduler and popping/stealing some other task.

3.3.2 TBB back-end implementation details

Intel®Thread Building Blocks (TBB)1 is a library that enables parallel pro-
gramming across different applications and architectures. It provides high level
constructs such as tbb::parallel for in addition to giving access to the lower
level tasking queues. TBB uses tasks to express parallelism, thus making it a
suitable candidate for this study. Tasks are expected to be non-preemptive,
which is the case for both applications of this study and for speculative oper-
ations in general. The scheduler switches the running thread only when a task
is waiting for its spawned children. For the hierarchical and the 2level

task creation strategy, each level is enclosed in a tbb::task group that al-
lows to wait until all tasks of the group are completed. When using the lower
level create and schedule, all generated tasks are added to the same global
tbb::task group thus allowing termination to be detected in a convenient
manner while still enabling work stealing among all threads. Additionally, we
implemented a wrapper that passes the arguments of task for directly to

1 Recently, Intel®Threading Building Blocks was renamed to Intel®oneAPI Threading
Building Blocks (oneTBB) to highlight that the tool is part of the oneAPI ecosystem.

10 Christos Tsolakis et al.

the higher level tbb::parallel for function, in order to compare it with our
framework.

3.3.3 OpenMP back-end implementation details

OpenMP is an API that enables parallel shared-memory programming with
the use of #pragmas making it easily accessible directly through the compiler.
It is included in this study since it is often the first step towards introducing
parallelism for many scientific applications. Tasks are created using #pragma

omp task and they are declared as untied which gives them the opportunity
to be scheduled on any available thread. For the hierarchical strategy, it was
advantageous to prepend #pragma omp taskyield right before the recursive
step. This created an extra scheduling opportunity for the back-end. Without
it, it was noticed that a single thread would tend to run all the tasks it cre-
ated, affecting performance and greatly increasing the recursion tree size. For
comparison, we also implemented two more wrappers using higher level con-
structs. The first passes the arguments of task for directly to #pragma omp

for while the second passes to #pragma omp taskloop. For the #pragma omp

for, we chose the dynamic scheduler because it performs on average better
across the different mesh operations covered in this work.

4 Case Studies

As case studies we use the parallel meshing operations present in CDT3D
[20,19] and the Delaunay-based kernel of PODM [27]. These two applications
share a lot of common ideas when it comes to parallel execution, but they
also have some differences. As mentioned in Figure 1, both applications uti-
lize speculative execution for their meshing operations which they implement
similarly; the meshing kernel (blue sections) uses atomic locks speculatively
to guarantee correctness (green sections). This feature fits well with our ap-
proach since we assume that each task should be non-interruptible and should
execute to completion. Also, they both integrate load balancing and thread
management with the mesh application (red sections), that our framework can
abstract away.

PODM is built around a single mesh operation for modifying the mesh,
thus reducing the amount of code changes required. On the other hand, when
it comes to parallel execution, it has a number of optimizations that compli-
cate the use of the tasking framework. In particular, it uses a Hierarchical
Load Balancing that ties worklists to specific threads in order to improve data
affinity and takes into account the cost of memory access when moving load
between threads. These optimizations result in a tight coupling between the
mesh operations and the load balancing parts of the code.

In contrast, in CDT3D the coupling between the threads and their data
is lower. At a high level it follows a fork-join pattern where sequential steps
prepare global data structures for parallel execution. This structure matches

Tasking framework for Adaptive Speculative Parallel Mesh Generation 11

well with the task for API and reduces the places where the code needs to be
modified. Moreover, it utilizes a set of different mesh operations that use both
hand-optimized and generic work sharing methods, which results in varying
impact on performance when transitioning to the tasking framework.

4.1 Case Study I : Parallel Mesh Adaptation Software (CDT3D)

CDT3D is composed of many modules depicted in Figure 3. With proper re-
arrangement of the modules one could implement different meshing applica-
tions as described in [46]. The configuration chosen for this study is optimized
for metric-based adaptation and has been already compared against state-of-
the-art mesh adaptation codes in [45].

Point Insertion (Seq.)

Local Reconnection

Mesh Adaptation

Vertex Smoothing

Local Reconnection

Quality Improvement

Edge Collapse

Edge Collapse

Point Creation

Fig. 3: Mesh operations in CDT3D.

For this case-study, the focus is on: Point Creation, Local Reconnection,
Edge Collapse, and Vertex Smoothing. The common first step for porting the
operations is to express them in a way that is compatible with the API of the
front-end presented in Figure 1. The most natural choice is as an operation ap-
plied to an element. However, the baseline implementation of CDT3D already
uses “buckets” (i.e, lists of elements) for some of its operations (see, for exam-
ple, Figure 1b and references [20,19]). In the context of the presented mesh
operations, “buckets” are used as simple strip partitioning method similar to
the chunk-size parameter of the #pragma omp parallel for scheduler. In
an effort to maximize code re-use of the application, we opted for the conven-
tions of Table 1.

One important feature of the Operator in each case, is that it is built using
the speculative/optimistic approach. In practice, it means that no data or
domain decomposition is applied to the mesh, but the operator will attempt
to acquire its dependencies through some exclusive locking mechanism upon
execution. Failure to do so will result in unlocking any acquired resources and
exiting.

4.1.1 Performance Evaluation

For this evaluation, the code was recompiled picking the appropriate back-
end implementation each time. The experiments were performed on the wahab

12 Christos Tsolakis et al.

Table 1: Characteristics of the baseline implementation of the parallel mesh
operations ported to the tasking framework.

Operation Work-unit Operator Baseline implementation
Local Reconnection “Bucket” Apply local reconnec-

tion between an el-
ement and its face
neighbors for each ele-
ment of a bucket

custom scheduling ([20])

Point Creation “Bucket” Generate candidate
points for each element
of the bucket

custom scheduling ([20])

Edge Collapse Vertex Collapse small edges
attached to a mesh ver-
tex

omp for schedule(guided)

Vertex Smoothing Vertex Improve the quality of
the elements attached
to a mesh vertex by
smoothing

omp for schedule(static)

cluster of Old Dominion University using dual socket nodes equipped with
two Intel®Xeon®Gold 6148 CPU @ 2.40GHz (20 slots) and 368 GB of mem-
ory. The compiler is gcc 7.5.0 and the compiler flags -O3 -DNDEBUG -march=

native. gcc 7.5.0 comes with support of OpenMP version 4.5. For TBB, ver-
sion 2021.1.1 was used. Each configuration was executed 10 times. All times
are normalized based on the performance of the baseline application, unless it
is stated otherwise. The graphs below use the geometric mean [23] to summa-
rize the results for each configuration. The evaluation in the following para-
graphs proceeds as follows: First, we compare higher-level constructs (#pragma
omp parallel for, #pragma omp taskloop and tbb::parallel for) to the
-flat strategy implemented using the three back-ends. Next, we compare
the -flat, -2level, and -hierarchical strategies as implemented in our
framework. We then analyze and optimize the grainsize for each back-end and
strategy in order to derive the optimal grainsize for each operation. Finally,
we compare our framework using the optimal grainsizes with the baseline ap-
plication.

Higher-level parallel constructs and the flat model: For the first benchmark,
the flat tasking creation model is employed for each back-end and compared
against higher-level constructs such as #pragma omp parallel for, #pragma
omp taskloop and tbb::parallel for. As expected, all back-ends exhibit
an overhead when using the flat strategy compared to higher-level constructs
due to the cost of sequentially creating all the tasks. Figure 4 presents the run-
ning time normalized with respect to the baseline implementation. omp-flat
back-end suffers from the highest overhead, especially when more than 20
cores are used, which is the size of the socket for this machine. This trend
is in part attributed to the fact that the naive creation of tasks in the flat

model along with the untied specification allows any task to run on any core
without any consideration about the affinity of data with respect to the cores.

Tasking framework for Adaptive Speculative Parallel Mesh Generation 13

The higher level constructs perform better than their -flat counterparts.
#pragma omp taskloop improves significantly over omp-flat by merging mul-
tiple loop iterations into a single task, thus, decreasing the number of tasks
that need to be created and scheduled. Moreover, by creating and scheduling
fewer tasks, the number of context switches and cache-line invalidations is also
reduced. #pragma omp parallel for equipped with the dynamic scheduler
performs even better thanks to the absence of the overhead of task creation.
tbb::parallel for outperforms the rest by dynamically adjusting the loop
ranges assigned to each task, based on the number of threads, the time for
each task execution, and hardware occupancy.

2 5 10 15 20 25 30 35 40

Cores

2

4

6

8

10

12

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Total Time

abt-flat

tbb-flat

tbb-parallel-for

omp-flat

omp-taskloop

omp-parallel-for

2

4

6

8

10

12

2 5 10 15 20 25 30 35 40

Cores

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Total Time

abt-flat

tbb-flat

tbb-parallel-for

omp-flat

omp-taskloop

omp-parallel-for

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 4: Left: Normalized total running time of high level constructs and the
flat model. Right: zoom-in at the range 0.5-2.0.

Comparison between the flat, 2level and hierarchical task creation strate-
gies: In Figure 5, the three task creation strategies are compared with each
other. Both the 2level and the hierarchical strategies reduce significantly
the overhead in comparison to the flat strategy. In the 2level strategy,
2 ·nthreads level-1 tasks that partition the user task args vector are created
sequentially. Then, each level-1 task generates tasks that apply Operator to
the appropriate unit of work based on Table 1. For this dataset, the grainsize
is set to 1, which results in creating a level-2 task for each unit of work. Both
the 2level and the hierarchical strategies exhibit higher overhead at 2
cores due to the fact that more tasks are created in total. However, this over-
head is amortized at a higher number of cores. The dual socket nature of the
machine affects the system by a smaller amount, in comparison to the flat

strategy, with the omp back-end suffering from the highest overhead at about
7% on 40 cores. On the other hand, the abt and tbb back-ends achieve a small
improvement when using 40 cores.

The hierarchical task creation strategy creates tasks recursively by bi-
secting the user task args vector and creating two child tasks each time. The
algorithm continues up until the target range reaches the grainsize, which is

14 Christos Tsolakis et al.

1 in this dataset. abt-hierarchical and tbb-hierarchical exhibit a higher
overhead at 2 cores, possibly due to the larger number of generated tasks. For
more than 2 cores, the hierarchical strategy performs slightly better than
the 2level. This is attributed, in part, to the fact that the hierarchical

strategy gives more flexibility in scheduling by having many smaller tasks
running concurrently (versus the 2level which combines them in larger ones).
This also creates more work-steal opportunities for idle threads, while at the
same time avoids the overhead of creating tasks sequentially (contrary to the
flat strategy). Results of applying the hierarchical strategy with a grain-
size of 1 using the omp back-end are omitted due to their high overhead, which
reaches up to a 160x slowdown on 40 threads.

2 10 20 30 40

Cores

2

4

6

8

10

12

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Total Time

abt-flat

tbb-flat

omp-flat

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

2

4

6

8

10

12

2 10 20 30 40

Cores

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Total Time

abt-flat

tbb-flat

omp-flat

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 5: Left: Normalized total running of the three task creation strategies
implemented across the three different back-ends. The grainsize is fixed to
1. Right: zoom-in at the range 0.6-2.0.

Effect of grainsize for each task creation strategy: In the next dataset, we
demonstrate that the tasking framework in addition contributes towards au-
tomating the process of performance tuning. Since the tasking framework
uses the same scheduler across the four different operations of this case-study,
running the application repeatedly while scanning through a set of different
grainsize values and the available back-ends, we can obtain optimal values
for each operation. The grainsize controls how many applications of Operator
will be bundled into a single task. In general, creating a high number of tasks
(smaller grainsize) gives more flexibility for load balancing by the scheduler.
However, a high number of small tasks increases the cost of load balancing.
Previous studies on CDT3D [20] revealed a significant dependence of the run-
ning time on the number of buckets created during local reconnection. In this
study, instead of targeting a fixed number of buckets, we fix the size of each
bucket to 150 tetrahedra which was found to be ideal for the baseline applica-
tion.

Tasking framework for Adaptive Speculative Parallel Mesh Generation 15

2 10 20 30 40

Cores

0.6

0.8

1.0

1.2

1.4

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Point Creation Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.6

0.8

1.0

1.2

1.4

2 10 20 30 40

Cores

0.6

0.8

1.0

1.2

1.4

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Local Reconnection Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.6

0.8

1.0

1.2

1.4

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Edge Collapse Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Smoothing Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 6: Effect of grainsize for each operation for omp-2level. Times are nor-
malized based on the time taken using grainsize = 1.

Figures 6, 7 and 8 compare the effect of different grainsizes for each oper-
ation using the 2level task creation strategy. The running time in each case
is normalized based on the time achieved using a fixed grainsize of 1. Overall,
there are similar trends among the different back-ends. Point Creation and
Local Reconnection perform better with a smaller grainsize. This is due to the
fact that these operations already decompose their data into “buckets” (see
Table 1) and each “bucket” offers enough workload to amortize the cost of
creating and handling tasks. Using a higher grainsize creates fewer tasks, thus
constraining the load balancer and causes a loss in performance. On the other
hand, Edge Collapse and Vertex Smoothing, where the Operator is designed
to accept a single vertex, benefit significantly from increasing the grainsize.
In particular, a grainsize of 128 for the Edge Collapse offers more than 30%
speedup in comparison to a value of 1 for the omp back-end and about 20% for
the other two back-ends. The gains for Vertex Smoothing are lower, but they
also appear in the middle of the range which we experimented. The same analy-
sis was also performed for the hierarchical strategy. abt-hierarchical and
tbb-hierarchical obtain optimal performance for the same grainsize values,
while for omp-hierarchical the optimal values are 8192 for Edge Collapse

16 Christos Tsolakis et al.

and Vertex Smoothing, 32 for Vertex Creation and 1 for Local Reconnection.
The graphs for the hierarchical strategy are omitted for brevity. It should be
noted that a different set of values could be ideal for a different configuration
(hardware, meshing problem, etc.).

2 10 20 30 40

Cores

0.6

0.8

1.0

1.2

1.4

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Point Creation Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.6

0.8

1.0

1.2

1.4

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Local Reconnection Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Edge Collapse Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Smoothing Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 7: Effect of grainsize for each operation for tbb-2level. Times are nor-
malized based on the time taken using grainsize = 1.

Tasking framework for Adaptive Speculative Parallel Mesh Generation 17

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Point Creation Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Local Reconnection Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Edge Collapse Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 10 20 30 40

Cores

0.5

0.6

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
g
ra
in
si
ze

=
1

Smoothing Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 8: Effect of grainsize for each operation for abt-2level. Times are nor-
malized based on the time taken using grainsize = 1.

Performance of 2level and hierarchical task creation strategies utilizing
optimal grainsize: Finally, we compare the 2level and hierarchical task
creation strategies utilizing the three different back-ends and the optimal
grainsize values derived in the previous paragraph. The performance data in-
dicate significant improvements for some back-ends especially for the least op-
timized mesh operations (Edge Collapse, Vertex Smoothing). Figure 9 depicts
the performance gains replacing the baseline implementation with the tasking
framework for each of the operations. The grainsize is set to 1 for the Vertex
Creation and Local Reconnection, 128 for Edge Collapse and 64 for Vertex
Smoothing when utilizing *-2level, abt-hierarchical or tbb-hierachical.
For omp-hierarchical, we used the grainsizes mentioned in the previous para-
graph. Tables 2 and 3 present the percent (%) improvement over the baseline
implementation.

The Point Creation and Local Reconnection operations benefit the least.
The difference in performance gains between the two pairs of operations is
related to the fact that not all operations use the same back-end in the baseline
implementation (see Table 1). In particular, the Point Creation and Local
Reconnection operations utilize a custom work-sharing approach described

18 Christos Tsolakis et al.

Table 2: Percent (%) improvement of running time with respect to the baseline
implementation for the Point Creation and Local Reconnection operations.
Negative numbers signify percent (%) slowdown.

Point Creation Local Reconnection
Cores Cores

2 10 40 2 10 40
abt-2level 5.03 0.82 1.47 1.45 0.79 2.01
tbb-2level 0.68 -0.85 -1.69 -0.13 -0.66 -0.35
omp-2level 1.16 -0.81 -26.42 0.25 -0.49 -4.11
abt-hierarchical 2.69 -3.54 -2.47 -0.02 0.67 2.04
tbb-hierarchical -2.22 -5.30 -6.65 -0.40 -1.20 -0.32
omp-hierarchical -4.24 -97.11 -127.64 -2.19 -73.31 -89.30
tbb-parallel-for -1.58 -3.79 -10.29 -0.59 -1.07 -2.78
omp-taskloop -6.64 -16.30 -38.80 -4.07 -7.35 -12.67
omp-parallel-for -3.39 -3.65 1.01 -0.22 -0.27 0.53

Table 3: Percent (%) improvement of running time with respect to the base-
line implementation of the Edge Collapse and Smoothing operations. Negative
numbers signify percent (%) slowdown.

Edge Collapse Smoothing
Cores Cores

2 10 40 2 10 40
abt-2level -0.46 10.88 12.05 -9.18 3.98 12.04
tbb-2level 7.74 10.60 13.42 -0.07 3.68 11.60
omp-2level 8.69 8.87 5.88 0.98 3.26 11.45
abt-hierarchical -5.44 5.75 9.67 -12.32 0.77 8.92
tbb-hierarchical 3.02 5.26 10.58 -3.17 0.49 8.62
omp-hierarchical -13.43 -76.16 -101.07 -17.42 -80.47 -96.60
tbb-parallel-for 2.28 3.86 6.86 -3.31 0.54 8.49
omp-taskloop -6.53 -8.32 -11.44 -14.47 -15.59 -21.59
omp-parallel-for -238.23 -469.65 -550.96 -3.16 1.89 10.67

in [20] which has been optimized for the these operations. On the other hand,
the Edge Collapse and Vertex Smoothing operation were parallelized using
simple OpenMP primitives. Also, the first two operations operate on “buckets”
(i.e., lists of elements) instead of single elements, thus introducing a-priori
data decomposition which may limit the effect of using different scheduling
techniques.

abt-2level performs the best, offering up to 1.47% and 2.01% improve-
ment on 40 cores for the Point Creation and Local Reconnection operations,
respectively. The Edge Collapse and Smoothing operations benefit more. tbb-
2level performs the best for the Edge Collapse operation delivering more
than 13% improvement on 40 cores, while for Smoothing, the best performing
is abt-2level with up to 12% improvement over the baseline implementa-
tion. For comparison, we also append data from the higher-level constructs
(tbb::parallel for, #pragma omp parallel for, #pragma omp taskloop)
(i.e., from Figure 4) which should serve as a reference point, since they provide
the simplest way to introduce tasks within an application. The higher-level

Tasking framework for Adaptive Speculative Parallel Mesh Generation 19

constructs fail to improve the performance for the operations that use custom
scheduling, and only some of them deliver small gains for Edge Collapse and
Vertex Smoothing. In particular, tbb::parallel for delivers improvements
for Edge Collapse and Smoothing and #pragma omp parallel for exhibits
some gains for Smoothing. However, the gains using the same back-ends within
the proposed approach are higher.

2 10 20 30 40

Cores

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Point Creation Time

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

omp-hierarchical

tbb-parallel-for

omp-parallel-for

omp-taskloop 0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2 10 20 30 40

Cores

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Local Reconnection Time

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

omp-hierarchical

tbb-parallel-for

omp-parallel-for

omp-taskloop
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a) Percent (%) Improvement over baseline for the Vertex Creation and Local Reconnection.

2 10 20 30 40

Cores

1

2

3

4

5

6

7

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Edge Collapse Time

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

omp-hierarchical

tbb-parallel-for

omp-parallel-for

omp-taskloop 1

2

3

4

5

6

7

2 10 20 30 40

Cores

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Smoothing Time

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

omp-hierarchical

tbb-parallel-for

omp-parallel-for

omp-taskloop 0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Percent (%) Improvement over baseline for the Edge Collapse and Smoothing Opera-
tions.

Fig. 9: Performance improvements over the baseline implementation for the
different back-ends using the 2level and hierarchical strategies and optimal
grainsizes.

Figure 10 and Table 4 depict the effect of the tasking framework on the total
running time of the application while utilizing the optimal grainsize for each
back-end and task creation strategy. Overall, abt-2level performs the best
with up to 5.81% improvement on 40 cores. tbb-2level offers a slightly smaller
improvement (4.72%) while omp-2level adds a small overhead (−0.52%) on
40 cores. Although, the hierarchical strategy is able to exploit concurrency
at an earlier stage, it does not perform as well as the 2level strategy. This

20 Christos Tsolakis et al.

is attributed, in part, to the fact that the 2level strategy generates almost
half the number of tasks in comparison to the hierarchical strategy. In
particular, the 2level strategy generates 2 · nthreads +n/grainsize tasks
while the hierarchical generates 2log2(n/grainsize)+1 − 1 = 2(n/grainsize) − 1
tasks where, n number of work-units passed to task for (i.e., the length of
vector user task args in Listing 1)2. Since, in general, 2 · nthreads� n and
grainsize� n, the 2level strategy produces about half the number of tasks.

2 10 20 30 40

Cores

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Total Time

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

omp-hierarchical

tbb-parallel-for

omp-parallel-for

omp-taskloop

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 10: Total running time of the entire application with optimal grainsizes
for each back-end and task creation strategy.

2 h = log2(n/grainsize) is the depth of a perfect binary tree with n/grainsize terminal
nodes. 2h+1 − 1 is the number of nodes for a perfect binary tree with depth h.

Tasking framework for Adaptive Speculative Parallel Mesh Generation 21

Table 4: Percent (%) improvement of total running time with respect to the
baseline implementation. Negative numbers signify percent (%) slowdown.

Total Time
Cores

2 10 40
abt-flat 0.41 -9.80 -21.34
tbb-flat -3.76 -20.62 -79.67
omp-flat -1.21 -13.46 -1177.87

abt-2level -2.81 2.31 5.81
tbb-2level -0.31 1.25 4.72
omp-2level 0.62 0.91 -0.52

abt-hierarchical -15.86 0.91 4.39
tbb-hierarchical -1.62 -0.31 2.79
omp-hierarchical -21.0 -83.01 -99.71

tbb-parallel-for -1.81 -0.30 1.40
omp-taskloop -19.17 -42.88 -49.97
omp-parallel-for -5.48 -8.57 -8.73

4.1.2 Stability of the Tasking Approach

Among the requirements for a parallel mesh generation code as presented in
[45] is the one of stability which requires that a mesh generated in parallel has
comparable quality with one generated sequentially by the same application.
The stability of the baseline application has been already demonstrated in [45].
In Figure 11a, we compare a mesh quality measure among the different back-
ends and task creation strategies of the previous section. In particular, the
histograms are built using the meshes generated at 40 cores in Figure 9 and
averaging the data over the 10 runs of the experiment. Even when using a
logarithmic scale, there is no significant difference between the different back-
ends with the exception of the omp-2level back-end that produced a slightly
lower minimum value. Still, the results are within the range (> 0.01) produced
by other state-of-the-art approaches as presented in [45].

22 Christos Tsolakis et al.

10−2 10−1 100

Mean Ratio

10−5

10−4

10−3

10−2

10−1

100

N
or
m
al
iz
ed

co
u
n
t

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

omp-hierarchical

baseline

(a) (b)

Fig. 11: Stability data and visualization of the generated mesh for this use-case.
(a): Comparison of the mean-ratio quality metric for the different back-ends.
(b): Visualization of the mesh generated by the experiments in this section:
Metric-adapted mesh to a laminar flow over a delta wing.

4.2 Case Study II: Parallel Optimistic Delaunay Meshing (PODM)

The Parallel Optimistic Delaunay Meshing (PODM) method presented in [27]
delivers good parallel performance on DSM machines and high mesh qual-
ity along with provable fidelity guarantees. In terms of meshing operations,
PODM initializes the meshing procedure with only 6 elements that decom-
pose the bounding box of the input image. The mesh is incrementally refined
by inserting points generated based on rules that guarantee the quality and
fidelity of the mesh with respect to the input image. For more details, see
Figure 1a. The point insertion procedure is built around the Bowyer-Watson
kernel [9,47] which introduces new points in the mesh while simultaneously
preserving the invariant that after each point insertion, the mesh retains the
Delaunay property. There are many ways to decompose the Bowyer-Watson
kernel into tasks. In the past, it has been decomposed into compute data depen-
dencies (cavity), collect data dependencies and update connectivity tasks [14].
In higher dimensions (> 3), it is advantageous to decompose the data de-
pendency evaluation (i.e., cavity expansion) into many tasks [26]. Other ap-
proaches [25,33], transform the problem of Delaunay Mesh Refinement into
two tasks: one of generating the vertices to be added and one that updates the
current triangulation by inserting the vertices. In this study, in an effort to
keep the problem complexity low and introduce only a small amount of code
changes, only two types of tasks will be used; one for scheduling an element
and one for refining it.

PODM caries many years of optimization for DSM machines [24]. However,
as it happens with highly optimized codes, viewing them from a new perspec-
tive may reveal new challenges. The optimizations and design decisions that
made PODM very efficient put constraints on the tasking implementation. The

Tasking framework for Adaptive Speculative Parallel Mesh Generation 23

most important one, is that threading is managed explicitly by the applica-
tion and the Load Balancing section of Figure 1a is responsible for populating
the work-queue of each thread. In other words, the workload distribution is
explicit and tightly integrated with the application.

To overcome this issue, we use the thread id obtained by the threading
environment in order to access the appropriate queue in a thread-safe manner.
Listing 3 presents a high level pseudocode of the tasking version of PODM.
It implements the flat model of Figure 2 by decomposing the algorithm of
Figure 1a into two tasks. ScheduleTask creates tasks for a number of elements
from a thread queue. Notice that the task created in line 19 of Listing 3. can
run with any thread id which implicitly enables work distribution between
different threads. Moreover, each thread will push the newly created elements
into its private queue in line 31 of Listing 3. RefineBadElement encapsulates
the blue section of Figure 1a and it will generate the point to be inserted,
calculate and lock its cavity (i.e., data dependencies) and apply the Bowyer-
Watson kernel as well as release any acquired locks in the end.

Figure 12 depicts a high level view of the execution flow of the tasking
version. Initially, ScheduleTask will spawn a task for each of the 6 elements
of the initial mesh. Since the initial mesh is very small, only some of the initial
6 tasks will be completed successfully due to rollbacks. In the second round,
ScheduleTask will create a task for each of the newly created elements, and the
process continues until all thread Queues are empty. Notice that this simple
implementation has two major issues: Possibility of livelocks, occurring when
two tasks lock themselves in an infinite cycle trying to acquire different parts
of overlapping cavities, and the algorithm termination depending on empty
thread-local queues. Thread-local queues are accessed based on the thread id

acquired from the tasking environment, which is, in general, random. Thus,
there is a possibility that a non-empty thread Queue may never get accessed.
In these experiments, we didn’t notice any of the aforementioned issues, but
there is still a chance that they might occur. In a follow-up study, we could
integrate our previous work on contention managers [27] that can treat both
issues efficiently.

Line 16 of Listing 3 includes a limit on the number of elements to be
scheduled at a time. This is necessary since many of the generated tasks will
be invalid by the time they run because their corresponding element will have
been deleted as part of an operation executed on another cavity. Therefore,
scheduling all available elements at once will generate a high number of aborted
tasks.

1 main ()
2 {
3 whi le (not a l l thread Queues are empty){
4 // Launch enough ScheduleTasks to keep a l l c o r e s
5 // busy
6 f o r (t i d : t h r e a d i d s)
7 task : : c r e a t e a n d s c h e d u l e t a s k (ScheduleTask) ;
8 task : : w a i t f o r a l l () ;
9 }

10 }

24 Christos Tsolakis et al.

11 ScheduleTask ()
12 {
13 i n t t i d = task : : g e t t h r e a d i d () ;
14 i n t scheduled = 0 ;
15 whi le (scheduled < s c h e d u l e l i m i t &&
16 ! (thread Queue [t i d] . empty ()))
17 {
18 e l = thread Queue [t i d] . pop () ;
19 task : : c r e a t e a n d s c h e d u l e t a s k (e l , RefineTask) ;
20 scheduled++;
21 }
22 }
23

24 RefineTask (e l)
25 {
26 i n t t i d = task : : g e t t h r e a d i d () ;
27 s u c c e s s = e l . l o c k v e r t i c e s ()
28 i f (s u c c e s s) {
29 RefineBadElement (e l) ;
30 f o r (e l : new ly c rea ted e l ement s)
31 thread Queue [t i d] . push (e l)
32 }
33 }

Listing 3: High level tasking-based pseudocode of PODM.

ScheduleTask

Re�neTask

Fig. 12: Flowchart of the tasking version of PODM.

4.2.1 Performance Evaluation

The hardware and compiler configuration is the same as in Section 4.1.1. Fig-
ure 13 depicts the effect of the different values of schedule limit to the
runtime with respect to the baseline application. Notice that for 1 thread, the
ideal value is low. Any limit below 128 performs equally well, while for 40 a
value of 512 performs better since it provides the system with more concur-
rency, albeit at the expense of more aborted tasks.

Tasking framework for Adaptive Speculative Parallel Mesh Generation 25

1 2 10 20 30 40

Cores

1

2

3

4

5

6

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Meshing Time

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

scheduling limit

1

2

3

4

5

6

1 2 10 20 30 40

Cores

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Meshing Time

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

scheduling limit

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 13: Effect of scheduling limit for the second approach using the tbb back-
end. Right zoom-in in range 0.5-2.0

1 2 5 10 15 20 25 30 35 40

Cores

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
b
as
el
in
e

Meshing Time

tbb-256

tbb-512

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Fig. 14: Normalized meshing time of the tasking version of PODM for two
different values of the schedule limit.

Finally, Figure 14 presents the best values among our experiments. The use
of the tasking framework adds only between 5%− 14% overhead with respect
to the highly optimized baseline application across the different number of
cores. Of course, these results come with the shortcomings mentioned above;
but based on our previous experience, resolving them should not negatively
impact the performance.

The abt and omp back-ends exhibit much higher overheads in this case.
Scheduling decisions and the internal optimizations of tbb could be one of the
reasons. Investigating the cause of this overhead and optimizing the abt and
omp back-end implementations of the generalized framework could be investi-
gated in the future.

26 Christos Tsolakis et al.

4.2.2 Stability of the Tasking Approach

Similar to Section 4.1.2, Figure 15a compares a mesh quality measure (min-
imum dihedral angle in this case) among the different tasking approaches of
this case-study. In order to satisfy the stability requirement, the quality among
the different execution back-ends should be comparable. The histograms of
Figure 15a are built using the meshes generated at 40 cores in the previous
section and averaging the data over the 10 runs of the experiment. The differ-
ence between the tasking approach and the baseline is marginal. The deviation
from the baseline is lower that of the previous case-study due to the different
meshing method used.

0 10 20 30 40 50 60 70

Minimum dihedral angle

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or
m
al
iz
ed

co
u
n
t

×106

tbb-256

tbb-512

baseline

(a) (b)

Fig. 15: Stability data and visualization of the generated mesh of this use-
case. (a): Comparison of the minimum dihedral angle between the different
back-ends. (b): Visualization of the generated mesh along with contours of the
dataset.

5 Conclusion

In this work, we presented a high level tasking framework and applied it to
a number of different meshing operations employing a speculative approach.
A generic solution like the one presented in this work would be expected to
introduce some overhead compared to hand-optimized code written for the
specific needs of the application. However, such an overhead is only made
visible in the second case study (PODM, Section 4.2), which is affected to a
degree by the tighter integration of thread management with the application
algorithm. In contrast, the first benchmark (CDT3D, Section 4.1) exhibits
performance improvements thanks to the well-optimized scheduling algorithm
of the tasking framework. These improvements are significantly higher when

Tasking framework for Adaptive Speculative Parallel Mesh Generation 27

compared to the straight-forward use of tasks and higher than higher-level
constructs that are already present in some of the back-ends (#pragma omp

parallel for, #pragma omp taskloop, tbb::parallel for). Table 4 indi-
cates that the use of the provided higher-level constructs or the flat strategy
which corresponds to the straight-forward use of tasks, introduces overheads
when compared to the baseline application. The naive flat strategy performs
the worst between the two since it produces too many tasks and in a sequential
fashion. omp-flat for example, results in an almost 1200% slowdown. Intro-
ducing the hierarchical strategy that creates tasks recursively reduces the
overhead of creating tasks by distributing it among different threads. This ap-
proach offers small gains in low number of cores and up to 4.39% improvement
for the total running time when utilizing the Argobots back-end. The best re-
sults were obtained with the 2level strategy, a hybrid of the other two, that
manages improvements of up to 2.31% at 10 cores and 5.81% at 40 cores when
compared to the baseline application. When it comes to individual operations,
Tables 2 and 3 indicate performance improvements of up to 2.04% for the op-
erations that use application-specific scheduler in the baseline implementation
and up to 13% for the mesh operations that use generic OpenMP constructs
in the baseline application.

Moreover, the abstract front-end gives a platform to explore multiple execu-
tion back-ends; Figures 4 and 5 show results over 12 different strategy-backend
combinations, which are accessible to the application developer through a
compile-time parameter. In terms of stability, Sections 4.1.2 and 4.2.2 indicate
that the introduction of the tasking framework has no effect on the quality of
the generated data.

Finally, separating the concerns of functionality and performance is a cru-
cial step towards the implementation of the Telescopic Approach [15], which
lays down a design for achieving scalability for mesh generation on exascale
machines. The generalized tasking framework facilitates the integration with
the PREMA runtime system [41] at the shared memory level by handing con-
trol of thread management and load balancing from the application to the
runtime system. This decoupling is expected to speedup the implementation
due to the improved encapsulation of the different methods and PREMA’s
more efficient management of hardware resources. For example, the applica-
tion independent tasking pools that the tasking framework offers can provide
load balancing across different instances of the same application occupying
a common shared memory space. This scenario fits well with our previous
work [22] and the Parallel Data Refinement layer of the Telescopic Approach.

The separation of concerns with regard to functionality and performance
allows to create reusable modules for future applications. By extracting good
solutions from previous implementations, we can reduce the implementation
effort of future revisions of our applications but also provide templates for
developing new speculative methods.

28 Christos Tsolakis et al.

6 Future Work

Both case studies introduce a parameter (grainsize for CDT3D and sched-
ule limit for PODM) that controls the number of tasks created. In this study,
we determined the optimal values by scanning over a predefined range. How-
ever, a more thorough study that includes different meshing inputs and pa-
rameters is needed in order to identify a set of optimal values that exhibits
the best performance on average across different inputs. As with any param-
eter optimization study, this could be performed utilizing machine learning
on pre-generated data. Moreover, the underlying tasking framework could be
equipped with an online machine learning method [29] that can choose the op-
timal parameters based on runtime data. Based on previous experience [3], we
believe that an online machine learning method is superior to formal load bal-
ancing descriptions which tend to oversimplify the problem when it comes to
the effect of different hardware and problem configurations to the application.
On the other hand, an online machine learning framework could be trained on
multiple datasets of interest and reinforce its models based on runtime data.

Utilizing tasks in conjunction with the speculative approach could be fur-
ther improved by abstracting the Parallel Correctness sections of Figure 1. This
could be achieved with high level (but still application-specific) abstractions
that lock and unlock the cavity of an operation automatically. The addition
of contention managers and the ability to automatically reschedule aborted
speculative tasks will make this framework more complete and improve the
encapsulation by providing to the user a tasking framework that is able to
decouple all three sections of Figure 1. Moreover, the decoupling of the three
responsibilities will allow to refactor both our case-studies and extract a larger
number of abstract parameters that control scheduling decisions. Studying the
effect of these additional parameters is part of our future work.

The back-end of the task for front-end of Listing 1 is currently a compile-
time parameter. However, there is no technical constrain that would prevent
it from being an extra argument of the front-end API. Making the back-end
a parameter will enable interoperability among the different back-ends based
on the needs of the user.

Taking into account the memory affinity layout when scheduling tasks could
also improve the framework’s performance. As part of our future work for the
Argobots back-end, we intend to examine this aspect in more detail. Specifi-
cally, the back-end will utilize the Linux numa library to collect memory related
information about the underlying hardware. This information will then be used
by the back-end to coordinate task stealing attempts between threads, in a
hierarchical way.

Throughout this study the default load balancing/work scheduler of each
back-end was used. This work could be extended by evaluating the available
work schedulers of OpenMP (static, dynamic, guided) and implementing
breadth-first and work-first strategies [21] for the task-based methods. More-
over, we could customize the tbb scheduler and extend our Argobots back-end
with custom load balancing methods. Having a variety of scheduling methods

Tasking framework for Adaptive Speculative Parallel Mesh Generation 29

for each back-end will allow to produce a similar study based on the effect of
the application-specific scheduling algorithms of our two case-studies versus
generic load balancing methods.

In a follow-up study, we plan to explore more back-end systems that
can utilize both homogeneous and heterogeneous platforms, including GPUs.
Generic heterogeneous frameworks such as SYCL 3 and Kokkos 4 provide al-
ready support for launching and managing tasks on GPUs. Combining them
with the tasking framework is expected to assist in hiding latencies related
to data transfers to and from the device, as well as delays launching kernels.
Evaluating such a framework would also require the addition or extension of
current mesh operations for heterogeneous architectures.

Acknowledgements We would like to thank the reviewers for providing helpful com-
ments on earlier drafts of the manuscript. This research was sponsored in part by the NASA
Transformational Tools and Technologies Project (NNX15AU39A) of the Transformative
Aeronautics Concepts Program under the Aeronautics Research Mission Directorate, NSF
grant no. CCF-1439079, the Richard T. Cheng Endowment, the Modeling and Simulation
fellowship of Old Dominion University and the Dominion Scholar fellowship of Old Domin-
ion University. Experiments were supported by the Research Computing clusters at Old
Dominion University. The authors would like to thank Kevin Garner for the corrections of
the English text in the manuscript.

References

1. Aldea, S., Estebanez, A., Llanos, D.R., Gonzalez-Escribano, A.: An OpenMP extension
that supports thread-level speculation. IEEE Transactions on Parallel and Distributed
Systems 27(1), 78–91 (2016). DOI 10.1109/TPDS.2015.2393870

2. Antonopoulos, C.D., Ding, X., Chernikov, A., Blagojevic, F., Nikolopoulos, D.S., Chriso-
choides, N.: Multigrain Parallel Delaunay Mesh Generation: Challenges and Opportu-
nities for Multithreaded Architectures. In: Proceedings of the 19th Annual Interna-
tional Conference on Supercomputing, ICS ’05, pp. 367–376. ACM, New York, NY,
USA (2005). DOI 10.1145/1088149.1088198

3. Barker, K., Chrisochoides, N.: Practical Performance Model for Optimizing Dynamic
Load Balancing of Adaptive Applications. IEEE (2005). DOI 10.1109/IPDPS.2005.352

4. Batista, V.H.F., Millman, D.L., Pion, S., Singler, J.: Parallel geometric algorithms for
multi-core computers. Computational Geometry 43(8), 663–677 (2010). DOI 10.1016/
j.comgeo.2010.04.008

5. Blandford, D.K., Blelloch, G.E., Kadow, C.: Engineering a Compact Parallel Delau-
nay Algorithm in 3D. In: Proceedings of the Twenty-second Annual Symposium on
Computational Geometry, SCG ’06, pp. 292–300. ACM, New York, NY, USA (2006).
DOI 10.1145/1137856.1137900

6. Blelloch, G.E., Anderson, D., Dhulipala, L.: ParlayLib - A Toolkit for Parallel Algo-
rithms on Shared-Memory Multicore Machines. In: Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’20, pp. 507–
509. Association for Computing Machinery, New York, NY, USA (2020). DOI
10.1145/3350755.3400254

7. Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Shun, J.: Internally deterministic parallel
algorithms can be fast. In: Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, PPoPP ’12, pp. 181–192. Association
for Computing Machinery, New York, NY, USA (2012). DOI 10.1145/2145816.2145840

3 https://www.khronos.org/sycl (Accessed 27th April 2021)
4 https://kokkos.org (Accessed 27th April 2021)

https://www.khronos.org/sycl
https://kokkos.org

30 Christos Tsolakis et al.

8. Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work Steal-
ing. Journal of the ACM 46(5), 720–748 (1999). DOI 10.1145/324133.324234

9. Bowyer, A.: Computing Dirichlet tessellations. The Computer Journal 24(2), 162–166
(1981). DOI 10.1093/comjnl/24.2.162

10. Bramas, B.: Increasing the degree of parallelism using speculative execution in task-
based runtime systems. PeerJ Computer Science 5, e183 (2019). DOI 10.7717/peerj-cs.
183. Publisher: PeerJ Inc.

11. Caamaño, J.M.M., Sukumaran-Rajam, A., Baloian, A., Selva, M., Clauss, P.: APOLLO:
Automatic speculative POLyhedral Loop Optimizer. In: IMPACT 2017 - 7th Interna-
tional Workshop on Polyhedral Compilation Techniques, p. 8. Stockholm, Sweden (2017)

12. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proceedings of the Seven-
teenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’05, p. 21–28. Association for Computing Machinery, New York, NY, USA (2005). DOI
10.1145/1073970.1073974

13. Chi, Y., Guo, L., Choi, Y.k., Wang, J., Cong, J.: Extending high-level synthesis for
task-parallel programs. In: The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’21, p. 225. Association for Computing Machinery,
New York, NY, USA (2021). DOI 10.1145/3431920.3439470

14. Chrisochoides, N., Sukup, F.: Task Parallel Implementation of the Bowyer-Watson Algo-
rithm. In: Proceedings of Fifth International Conference on Numerical Grid Generation
in Computational Fluid Dynamics and Related Fields, pp. 773–782 (1996)

15. Chrisochoides, N.P.: Telescopic Approach for Extreme-Scale Parallel Mesh Generation
for CFD Applications. In: 46th AIAA Fluid Dynamics Conference. American Institute
of Aeronautics and Astronautics (2016). DOI 10.2514/6.2016-3181

16. Conway, M.E.: A multiprocessor system design. In: Proceedings of the November 12-
14, 1963, fall joint computer conference, AFIPS ’63 (Fall), pp. 139–146. Association for
Computing Machinery, New York, NY, USA (1963). DOI 10.1145/1463822.1463838

17. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory pro-
gramming. IEEE Computational Science and Engineering 5(1), 46–55 (1998). DOI
10.1109/99.660313. Conference Name: IEEE Computational Science and Engineering

18. Dijkstra, E.W.: On the role of scientific thought. In: Selected writings on computing: a
personal perspective, pp. 60–66. Springer-Verlag, Berlin, Heidelberg (1982)

19. Drakopoulos, F.: Finite Element Modeling Driven by Health Care and Aerospace Ap-
plications. Ph.D. thesis, Computer Science, Old Dominion University, Virginia (2017).
DOI 10.25777/p9kt-9c56. ISBN: 9780355362169

20. Drakopoulos, F., Tsolakis, C., Chrisochoides, N.P.: Fine-Grained Speculative Topolog-
ical Transformation Scheme for Local Reconnection Methods. AIAA Journal 57(9),
4007–4018 (2019). DOI 10.2514/1.J057657. Publisher: American Institute of Aeronau-
tics and Astronautics

21. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling Strate-
gies. In: D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Ty-
gar, M.Y. Vardi, G. Weikum, R. Eigenmann, B.R. de Supinski (eds.) OpenMP in a New
Era of Parallelism, vol. 5004, pp. 100–110. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2008). DOI 10.1007/978-3-540-79561-2 9. Series Title: Lecture Notes in Computer
Science

22. Feng, D., Tsolakis, C., Chernikov, A.N., Chrisochoides, N.P.: Scalable 3D Hybrid Paral-
lel Delaunay Image-to-mesh Conversion Algorithm for Distributed Shared Memory Ar-
chitectures. Comput. Aided Des. 85(C), 10–19 (2017). DOI 10.1016/j.cad.2016.07.010

23. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to summarize
benchmark results. Communications of the ACM 29(3), 218–221 (1986). DOI 10.1145/
5666.5673

24. Foteinos, P.: Real-Time High-Quality Image to Mesh Conversion for Finite Element
Simulations. Ph.D., The College of William and Mary, United States – Virginia (2013)

25. Foteinos, P., Chrisochoides, N.: Dynamic Parallel 3D Delaunay Triangulation. In: W.R.
Quadros (ed.) Proceedings of the 20th International Meshing Roundtable, pp. 3–20.
Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-642-24734-7 1

26. Foteinos, P., Chrisochoides, N.: 4D space–time Delaunay meshing for medical images.
Engineering with Computers 31(3), 499–511 (2014). DOI 10.1007/s00366-014-0380-z

Tasking framework for Adaptive Speculative Parallel Mesh Generation 31

27. Foteinos, P.A., Chrisochoides, N.P.: High quality real-time Image-to-Mesh conversion
for finite element simulations. Journal of Parallel and Distributed Computing 74(2),
2123–2140 (2014). DOI 10.1016/j.jpdc.2013.11.002

28. Furrer, F.J.: Future-Proof Software-Systems: A Sustainable Evolution Strategy.
Springer Vieweg (2019). DOI 10.1007/978-3-658-19938-8

29. Hoi, S.C.H., Sahoo, D., Lu, J., Zhao, P.: Online Learning: A Comprehensive Survey.
arXiv:1802.02871 [cs] (2018). ArXiv: 1802.02871

30. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and Sys-
tems 7(3), 404–425 (1985). DOI 10.1145/3916.3988

31. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Op-
timistic parallelism requires abstractions. In: Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’07, pp.
211–222. Association for Computing Machinery, New York, NY, USA (2007). DOI
10.1145/1250734.1250759

32. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Transactions on Database Systems 6(2), 213–226 (1981). DOI 10.1145/319566.319567

33. Marot, C., Pellerin, J., Remacle, J.F.: One machine, one minute, three billion tetrahedra.
International Journal for Numerical Methods in Engineering 117(9), 967–990 (2019).
DOI 10.1002/nme.5987

34. Nave, D., Nikos Chrisochoides, Chew, L.P.: Guaranteed: Quality Parallel Delaunay Re-
finement for Restricted Polyhedral Domains. In: Proceedings of the Eighteenth Annual
Symposium on Computational Geometry, SCG ’02, pp. 135–144. ACM, New York, NY,
USA (2002). DOI 10.1145/513400.513418

35. Rainey, M., Newton, R.R., Hale, K., Hardavellas, N., Campanoni, S., Dinda, P., Acar,
U.A.: Task parallel assembly language for uncompromising parallelism. In: Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, p. 1064–1079. Association for Computing Machinery, New
York, NY, USA (2021). DOI 10.1145/3453483.3460969

36. Raman, A., Kim, H., Mason, T.R., Jablin, T.B., August, D.I.: Speculative parallelization
using software multi-threaded transactions. In: Proceedings of the fifteenth International
Conference on Architectural support for programming languages and operating systems,
ASPLOS XV, pp. 65–76. Association for Computing Machinery, New York, NY, USA
(2010). DOI 10.1145/1736020.1736030

37. Rauchwerger, L., Padua, D.: The LRPD test: speculative run-time parallelization of
loops with privatization and reduction parallelization. ACM SIGPLAN Notices 30(6),
218–232 (1995). DOI 10.1145/223428.207148

38. Saltz, J., Mirchandaney, R., Crowley, K.: Run-time parallelization and scheduling of
loops. IEEE Transactions on Computers 40(5), 603–612 (1991). DOI 10.1109/12.88484.
Conference Name: IEEE Transactions on Computers

39. Seo, S., Amer, A., Balaji, P., Bordage, C., Bosilca, G., Brooks, A., Carns, P., Castelló,
A., Genet, D., Herault, T., Iwasaki, S., Jindal, P., Kalé, L.V., Krishnamoorthy, S.,
Lifflander, J., Lu, H., Meneses, E., Snir, M., Sun, Y., Taura, K., Beckman, P.: Argobots:
A Lightweight Low-Level Threading and Tasking Framework. IEEE Transactions on
Parallel and Distributed Systems 29(3), 512–526 (2018). DOI 10.1109/TPDS.2017.
2766062

40. Steele, G.L.: Making asynchronous parallelism safe for the world. In: Proceedings of the
17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’90, pp. 218–231. Association for Computing Machinery, New York, NY, USA
(1989). DOI 10.1145/96709.96731

41. Thomadakis, P., Tsolakis, C., Chrisochoides, N.: Multithreaded runtime framework for
parallel and adaptive applications. IEEE Transactions on Parallel and Distributed
Systems. (2021). URL https://crtc.cs.odu.edu/pub/papers/journal_86.pdf. (under
review)

42. Thoman, P., Dichev, K., Heller, T., Iakymchuk, R., Aguilar, X., Hasanov, K.,
Gschwandtner, P., Lemarinier, P., Markidis, S., Jordan, H., Fahringer, T., Katrinis,
K., Laure, E., Nikolopoulos, D.S.: A taxonomy of task-based parallel programming
technologies for high-performance computing. The Journal of Supercomputing 74(4),
1422–1434 (2018). DOI 10.1007/s11227-018-2238-4

https://crtc.cs.odu.edu/pub/papers/journal_86.pdf

32 Christos Tsolakis et al.

43. Tomasulo, R.M.: An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal of Research and Development 11(1), 25–33 (1967). DOI 10.1147/rd.111.0025.
Conference Name: IBM Journal of Research and Development

44. Tsolakis, C., Chrisochoides, N., Park, M.A., Loseille, A., Michal, T.R.: Parallel
Anisotropic Unstructured Grid Adaptation. In: AIAA Scitech 2019 Forum, AIAA
SciTech Forum. American Institute of Aeronautics and Astronautics, San Diego, Cali-
fornia (2019). DOI 10.2514/6.2019-1995

45. Tsolakis, C., Chrisochoides, N., Park, M.A., Loseille, A., Michal, T.R.: Parallel
Anisotropic Unstructured Grid Adaptation. AIAA Journal (2021). DOI 10.2514/1.
J060270

46. Tsolakis, C., Thomadakis, P., Chrisochoides, N.: Exascale-Era Parallel Adaptive Mesh
Generation and Runtime Software System Activities at the Center for Real-Time Com-
puting (2020). URL https://epcced.github.io/ELEMENT/workshops.html. (presenta-
tion), Accessed on 2021-03-08

47. Watson, D.F.: Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes. The Computer Journal 24(2), 167–172 (1981). DOI 10.1093/comjnl/
24.2.167

48. Willhalm, T., Popovici, N.: Putting Intel® threading building blocks to work. In: Pro-
ceedings of the 1st international workshop on Multicore software engineering, IWMSE
’08, pp. 3–4. Association for Computing Machinery, New York, NY, USA (2008). DOI
10.1145/1370082.1370085

49. Ying, V.A., Jeffrey, M.C., Sanchez, D.: T4: Compiling sequential code for effective spec-
ulative parallelization in hardware. In: Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, ISCA ’20, p. 159–172. IEEE Press
(2020). DOI 10.1109/ISCA45697.2020.00024

https://epcced.github.io/ELEMENT/workshops.html

	Introduction
	Related Work
	Method
	Case Studies
	Conclusion
	Future Work

