
De-Noising Drift Chambers in CLAS12 using Convolutional Auto

Encoders

Polykarpos Thomadakisa,1,2, Angelos Angelopoulosa,1, Gagik Gavalianb,1, Nikos
Chrisochoidesa

aCRTC, Department of Computer Science, Old Dominion University, Norfolk, VA, USA

bJefferson Lab, Newport News, VA, USA

Abstract

Modern Nuclear Physics experimental setups run experiments with higher beam intensity
resulting in increased noise in detector components used for particle track reconstruction.
Increased uncorrelated signals (noise) result in decreased particle reconstruction efficiency. In
this paper, we investigate the usage of Machine Learning, specifically Convolutional Neural
Network Auto-Encoders (CAE), for de-noising raw hits from drift chambers in the CLAS12
detector. To the best of our knowledge, this is the first time CAE is employed to perform
such an operation in this field.
During the de-noising phase, it is important to remove as much noise as possible while
retaining the valid hits to avoid losing crucial information about the experiment. We show
that using CAE, it is possible to remove noise hits while retaining up to 94% of valid tracks
for a beam current of 110 nA while for lower beam currents (45 − 55 nA), we get up to
98% efficiency. Studies on experimental conditions with increasing noise show that CAE
performs better than conventional tracking algorithms in isolating hits belonging to tracks.
Specifically, the de-noising algorithm results in tracking efficiency improvements greater than
15%, in real data production procedures with nominal conditions, and up to two times better
efficiency in synthetically generated data with high luminosity conditions (90 − 110 nA),
indicating that machine learning can lead to significantly shorter times for conducting physics
experiments.

Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-
06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce this manuscript for U.S. Government purposes.

1Authors contributed equally.
2Correspoding author, pthom001.odu.edu

Preprint submitted to Elsevier October 20, 2021

1. Introduction

With the evolution in detector technologies and electronic components used in the Nuclear
Physics field, experimental setups become larger and more complex. Faster electronics en-
able experiments to run with higher beam intensity, providing more interactions per time
and more particles per interaction. Modern Nuclear Physics experiments include many in-
terconnected detector systems that detect results of interacting particles to analyze and test
physics models. The increased beam intensities present a challenge to the particle detectors
because of the higher amount of noise and uncorrelated signals. Higher noise levels lead to a
more challenging particle reconstruction process by increasing the number of combinatorics
to analyze and background signals to eliminate before detector data processing. On the other
hand, increasing the beam intensity in an experiment can provide physics outcomes faster
but only if combined with a highly efficient track reconstruction process. Thus, a method
that provides efficient tracking under high luminosity conditions can significantly reduce the
amount of time required to conduct physics experiments.

The recent developments in Artificial Intelligence (AI) field provide tools that can be used
in physics data processing in the place of conventional procedural algorithms to improve
data processing accuracy and speed. In this article, we developed AI methods (neural net-
works) for de-noising data from particle tracking detectors to improve track reconstruction
efficiency. This development was targeted at CLAS12 [1] Drift Chambers (DC) detector
([2]) at Jefferson Lab, Virginia. The developed neural network was used to pre-process data
for standard experimental running conditions and showed significant improvements in track
reconstruction efficiency (> 15%). The studies were extended to synthetically generated
data emulating much higher beam intensity running conditions to investigate how neural
networks can perform on future experiments. Results show that in high beam intensity ex-
perimental conditions AI-assisted methods outperform conventional algorithms in removing
uncorrelated signals (noise) and provide a significant increase in track reconstruction effi-
ciency of up to 80%. In summary, we show that (i) CAEs can be an efficient method to
remove excess noise hits from raw data with very low risk of losing valid hits in the process,
(ii) they provide good tracking efficiency in high beam conditions which can be improved
marginally with only a small penalty in their noise removing capabilities, (iii) CAEs can
perform substantially better than conventional algorithms with an increasing difference in
performance as the beam current increases. Moreover, as a by-product of this effort, we have
developed a software tool that can easily be reused for similar studies on other detectors and
different computing platforms.

The rest of the paper is organized as follows: Section 2 presents some background for this
work, providing more details about the CLAS12 detector, and the drift chambers, and briefly
introduces how Convolutional Neural Networks work. Section 3 presents a brief introduction
to auto-encoder neural networks and related work. Section 4 presents the proposed method,
different CAE architectures that we experimented with for this study, and how the input
and output datasets are processed. Section 5 describes the portable and easy-to-use soft-
ware we developed to perform the experiments for the different architectures and parameters
presented in this paper. Section 6 contains the performance evaluation of all tested neural

2

network architectures on nominal conditions (45 nA of beam current) for both track recon-
struction and noise removal efficiency. In section 7, we conduct a study about the effect of
increased beam current (up to 110nA) on the performance of the proposed method. Section
8 shows a performance comparison between our proposed method and the conventional al-
gorithm on nominal and high luminosity conditions. Finally, section 9 initiates a discussion
about the significance of our results and section 10 concludes this paper.

2. Background

2.1. CLAS12 Detector

The CEBAF Large Acceptance Spectrometer at 12 GeV (CLAS12 [1]) is located at Hall B,
one of the experimental halls at the Jefferson Lab in Newport News, VA, serving a variety
of physics experiments with different running conditions.

(a) (b)

Figure 1: View of CLAS12 detector showing Drift Chambers and Toroidal Magnet (on the left). Side view of
one of the sectors of Drift Chambers (on the right), consisting of three “regions” and covering 60◦ azimuthal
range.

The forward part of CLAS12 is built around a superconducting toroidal magnet (Figure 1a).
The six coils of the toroid divide the detector azimuthally into six sectors. Each sector con-
tains three multi-layer drift chambers [2] (DC) for reconstructing the trajectories of charged
particles originating from a fixed target. Figure 1b depicts the cross-section of one of the sec-
tors of drift chambers covering an azimuthal angular range of 60◦. One sector is composed
of three drift chambers (called “regions”), each consisting of two sections (called “super-
layers”).

Particles originating from the target within polar angular range from 5◦ to 40◦ leave signals
on all six super-layers and can then be reconstructed by a tracking algorithm. The track
reconstruction algorithm for CLAS12 [3] works in two stages, hit-based tracking, and time-
based tracking. In the hit-based tracking stage, uncorrelated noise hits in Drift Chambers are
identified and removed by the Simple Noise Removal (SNR) algorithm. The remaining hits
are then grouped into clusters within the wire layers of a given DC super-layer. To reduce
tracking inefficiencies attributed to wire malfunctions or intrinsic inefficiencies it is acceptable
for two layers to be missing within a super-layer when forming a cluster; the remaining wire
layers are sufficient to determine the cluster’s shape and find the track trajectory. After

3

identifying clusters in each super-layer and forming track candidates with combinations of
all of them (one from each super-layer), an initial fit to the track candidates is performed
to determine if the cluster combination forms a “good” track. Tracks identified as good
continue to the next stage (called time-based tracking), where timing information from hits
is applied in order to refine track fitting.

2.1.1. Drift Chambers

The Drift Chambers in CLAS12 are used for tracking charged particles. Each sector is com-
posed of three drift chambers (called “regions”) with each region consisting of two sections
(called “super-layers”). Each super-layer has six layers of wires (12 wire planes in each “re-
gion”) with those residing on the two adjacent super-layers oriented at ±6◦ stereo angles.
Each layer of wires has 112 hexagonal cells spanning a range from about 5◦ to 40◦ in polar
angle.

6

12

18

24

30

36

D
C

 L
ay

er

0 20 40 60 80 100
Wire Number

6

12

18

24

30

36

D
C

 L
ay

er

0 20 40 60 80 100
Wire Number

0 20 40 60 80 100
Wire Number

0 20 40 60 80 100
Wire Number

Figure 2: Example events from drift chambers. Points represent hits in drift chambers with wire number
(112 wires per layer) on the x-axis and layer number (total of 36) on the y-axis.The gray point are all the
hit wires in the event, and red point hits that are associated with reconstructed tracks.

Figure 2 presents some example events shown for one sector at a time. The top row depicts
raw hits detected on a sector while the bottom depicts only those belonging to identified
tracks. Hits present in the top row but missing on the bottom comprise the noise hits of the
event. Particles passing through each super-layer of chambers leave signal in one or two wires
in each layer. Wires with signals on each super-layer close to each other are grouped into
segments. A track candidate is formed from 6 segments (one per super-layer) in each sector
and then further validated by fitting. The efficiency of track reconstruction relies on cleanly
identifying segments in each super-layer. With increased noise which arises from running
with high beam intensity, removal of noise hits with conventional algorithms becomes less
efficient, and with loss of segment the tracking efficiency suffers. With this work we will study
how Convolutional Auto-Encoders can improve the segment finding algorithm by removing
uncorrelated hits from noisy raw data.

4

2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural networks known to perform
better on data where spatial locality is important (e.g. images). A common CNN consists
of Convolutional Layers, Pooling Layers and a Fully Connected Layer. Convolutional layers
are the most important layers in a CNN, consisting of an input, a number of kernels and an
output (aka feature map).

• The input to a CNN layer is an N-dimensional array (for example, a colored image
with height, width and rgb values) given as an input to the network or produced by a
previous layer.

• A kernel is a 2-dimensional array of weights, usually 3x3, that is used to apply con-
volution on the input. The kernel is shifted on the input, based on a stride, and on
each shift a dot product is applied between the respective area of the input and the
kernel to produce a single element of the output (also known as feature map). The
process continues until the whole input has been processed and the whole matrix of
the feature map has been produced. The weights of the kernel are the parameters
learned by the neural network and are adjusted between iterations through the process
of backpropagation and gradient decent.

• The result produced by applying convolution on the input using the provided kernel is
the output (feature map) of the layer. An activation function is finally applied on the
output array (e.g. ReLU [4]) to introduce non-linearity in the model.

The size of the output is affected by 3 parameters: the number of kernels, the stride used
during convolution and the type of padding. The number of kernels determines the depth
of the output, e.g. n kernels would generate n outputs, thus an output of depth n. By
increasing the depth of the output we can extract more features through the extra number
of weights to be trained. As mentioned before, the stride determines the step that the kernel
moves over the input to apply dot product. A stride larger than one would generate an
output of size smaller than the input. Padding can be either valid or same. A valid padding
adds no padding to the input which will result in an output of smaller size for kernels greater
than 1x1. This occurs because the kernel will be shifted on the input and apply dot-product
fewer times than the size of the input. In other words, when a row or column of the kernel
exceeds either side of the input the dot-product will be aborted. In same padding the input
is padded by zeros to ensure that the output will be of the same size as the input.

Examples of the convolution process between a 5x5 array and 3x3 kernel(s) for valid and
same padding and strides of 1x1 and 2x2 are shown in figure 3. When valid padding is used
the kernel can only be applied 3 times horizontally with a stride of 1x1 before moving to the
next row. This process is repeated until no more steps are left to be taken both horizontally
and vertically for a total of 9 applications of the dot-product (3x3 output). When using
a stride of 2x2, the kernel is shifted by 2 elements at a time horizontally and 2 elements
vertically when a row is completed which allows the application of only 4 dot-products in
total (2x2 output). The exact same process is followed when same padding is applied with
the only difference being the introduction of more elements on the edges of the input array
to ensure that the output of the convolution (assuming stride 1) will be of the same size as

5

Figure 3: Examples of convolution between a 5x5 array and one (top) or two (bottom) 3x3 kernel(s). The
figures show the convolution process with a stride of 1x1 (green square area) and a stride of 2x2 (red square
area). The resulting outputs are generated by applying dot product between the kernel and the respective
are of the input, starting from the gray area and shifting the kernel based on the stride (the output for
stride 1x1 is generated by shifting the kernel one step at a time, like the green area, while for stride 2x2 by
shifting it two steps at a time, like the red square area). The top figure represents the sizes of the outputs
when using valid padding while the bottom shows the output for same padding. The sizes of the outputs
are affected by both the stride and the padding because those affect how many times the kernel can shift on
the input and apply the dot-product.

the input. In both cases the number of kernels equals the depth of the output.

Pooling layers perform downsampling by sweeping a 2-dimensional filter over their input and
applying some aggregation function to generate the output. The process is very similar to
convolution with the difference being that instead of a dot-product an aggregation function
is applied (see fig. 4 for an example). The aggregation can either be the maximum or the
average value of values in the area under the filter , hence the names max pooling or average
pooling respectively. This process is used to reduce the amount of parameters to be learned
as well as to prevent overfitting.

The fully connected layer is a feed-forward network residing at the end of the CNN.

3. Related Work

To the best of our knowledge, there is no prior work that has utilized AI to denoise data
from hits coming from drift chambers. However, there is prior work on other fields that have
used auto-encoders for different applications, including image denoising which inspired our
work. Auto-encoders[5] are a type of Artificial Neural Network employed to learn efficient

6

Figure 4: Example of the pooling operations on a 5x5 array using a 3x3 pooling array. The 3x3 array is
shifted up the input, just like in convolution, but instead of dot-product an aggregation function is applied.
Since the pooling array is of size larger than 1x1 the resulting array size is smaller than the input. Based on
the type of aggregation used, the pooling is called max pooling or average pooling respectively.

data encodings. In the simplest case, an auto-encoder is trained to recreate input data to
its output. This process is performed in order to extract a representation of the data (code),
in an unsupervised manner. This representation can then be used to recreate the input on
the output, using the decoder.

X H Y

Encoder DecoderCode

Input Output

Figure 5: Schematic representation of an encoder with 3 hidden layers.

Auto-encoders consist of three components (see Fig. 5):

1. The encoder that encodes the input data X

2. The decoder that reconstructs the encoded data in the output Y

3. The hidden layer H that learns the encoding of the input data as defined by the encoder
and is used by the decoder to reconstruct the input

The process followed by an auto-encoder is defined as the following transition:

H = enc(X)

Y = dec(enc(X))

7

Y = dec(H)

where enc and dec are the functions applied by the encoder and the decoder, respec-
tively.

Using an auto-encoder where the hidden layer is of the same or larger size as the input and
output layers could cause the network to over-fit the data and learn the identity function. To
prevent such a case an auto-encoder needs to be augmented with some technique to avoid
over-fitting (i.e. avoid losing generalizability). The applied techniques need to help the
network find the optimum in the trade-off between bias and variance. In other words, the
auto-encoder needs to be capable of reconstructing each specific input efficiently, while also
generalizing well enough to represent the key characteristics of the data as a whole. Some
of the techniques that can be employed to prevent over-fitting while allowing the model to
generalize are:

1. Employing regularization (Regularized Auto-encoders)

2. Using a network architecture that creates a hidden layer of lower dimensions compared
to the input and output (Under-complete Auto-encoders)

Regularization in the context of auto-encoders has been implemented in different ways.
Some of the regularized auto-encoders that have been employed extensively in the past
include:

1. Sparse auto-encoders[6], where an additional sparsity penalty is imposed, forcing the
network to deactivate several neurons of the hidden layer based on the input data. As
a result, the active code generated is still lower in dimension even though its number
of neurons are equal to or larger than those of the input/output.

2. Contractive auto-encoders[7], where the goal is to make the reconstruction process less
sensitive to small variations in the data. This is achieved by imposing a penalty that
helps to carve a representation that better captures the local directions of variations
dictated by the data, corresponding to a lower-dimensional non-linear manifold, while
being more invariant to the vast majority of directions orthogonal to the manifold.

3. De-noising auto-encoders[8], where the network is given a corrupted input and is
trained to reconstruct the uncorrupted input. During this process, the network learns
the important aspects of the data while filtering out the noise.

4. Variational auto-encoders[9] are different from other auto-encoders, providing a sta-
tistical manner to describe the samples of the data-set in latent space. Therefore, in
a variational auto-encoder, the encoder outputs a probability distribution in the code
instead of a single value.

For the under-complete auto-encoders, the network encodes data in a lower dimension by
transitioning from layers with a high to a low number of neurons. The reverse sequence of
layers is then applied to recreate the input layer on the output. Throughout this sequence
of layers, the model has to maintain its ability to reconstruct an accurate copy of the input.
To achieve that, it has to learn and store information that better characterizes the data in
a smaller set of neurons. Thus, the code learned in this process comprises a compressed
representation of the data.

8

In the special case that an under-complete auto-encoder consists of a single hidden layer and
only linear activation functions, it produces the same representations as Principal Component
Analysis[10]. In other words, an auto-encoder generalizes PCA to non-linear data, one of
its first applications in the literature. Other applications where auto-encoders have been
applied extensively are Dimensionality Reduction[11], Information Retrieval[12], Anomaly
Detection[13] and Image Processing[8].

Auto-encoders can either be implemented as Multi-Layer Perceptrons (MLP) [14], by set-
ting the number of neurons per layer appropriately or as convolutional neural networks
(CNN) [15]. An under-complete CNN auto-encoder is very similar to an under-complete
MLP auto-encoder. Its hidden layers’ dimensionality gradually decreases to a point where
the code is generated. Then the dimensionality gradually increases until it matches that
of the input. However, in CNN’s the dimensionality of each hidden layer is not explicitly
set (like the number of neurons of each layer in MLPs), instead, it is derived by the sizes,
padding, and strides of the kernels as well as the pooling layers (if any).

4. Method

4.1. Data Representation

Before we can experiment with machine learning for our needs, we have to define a represen-
tation for the detector data. As described in Section 2, each sector of the CLAS12 detector
has three regions, each with two super-layers that consist of six layers of 112 hexagonal cells,
for a total of 4032 (3× 2× 6× 112) cells. Each cell reports a value of 1 if a hit was detected
or 0 otherwise. For our initial attempt with Multilayer Perceptron Autoencoders, each data
point consisted of these 4032 values as features, without any pre-processing. For the CAE
network, we reshaped the data point features into a 36×112 structure that better represents
the spatial locality of the cells. This representation casts our problem to an image denoising
application where convolutional autoencoders have been shown to perform well [8]. Specifi-
cally, the data generated by the detector were treated as a 2D black and white image, where
a black pixel (value 1) indicates a sensor activation and a white pixel (value 0) implies no
sensor activation. For training the neural network we used experimental data. The input
to the network was comprised of an image that contains all hits in one sector and as an
output image created from hits that belong to reconstructed track by conventional tracking
algorithms. In the training and validation sample there were mixture of events of one, two
or three tracks in the output sample.

4.2. Neural Network Architectures

Several different CAE architectures were considered as shown in Table 1, all of them under-
complete. The set of models presented in this table are variations of models we found to
be working relatively well for our problem after a more wide experimentation with different
neural network architectures. The models exhibit variations in the number of layers, the
type of pooling layers as well as the approach to modify the dimensionality of the hidden
layers (e.g. through kernel strides versus pooling).

Model 0 is a regular CNN autoencoder. The encoder of model 0 consists of two convolutional
layers, each followed by a max-pooling layer. The decoder, which follows just after the

9

max-pooling layer, consists of two convolutional layers followed by two upsampling layers
(upsampling layers perform the reverse operation of pooling layers, they increase the size
of their input by duplicating rows/columns). The shrinking in dimensions, in this case, is
performed by the max-pooling layers, while the convolution kernels are using same padding
to keep the dimensionality of their outputs intact. Models 0a - 0f follow similar architectures
with variations, including stacked convolutional layers (0a-0f) instead of single (i.e. two
back-to-back convolutional layers without any pooling layer between them), average pooling
instead of max pooling (0c), and different numbers of layers (0e). Models 1 & 2 decrease the
dimensions of the hidden layers by using only the convolutional layers. They achieve that
by employing strides with a dimensionality larger than 1x1. The upscaling (increase of the
size of the input) that was performed by the upsampling layers in the previous models is
achived here by deconvolution layers (deconvolution kernels perform a transpose convolution
operation, the specifics about this operation is outside the scope of this work).

Model Architecture

0 C48(4x6) ; MP(2,2) ; C48(4,6) ; MP(2,2) ; C48(4,6) ; US(2,2) ; C48(4,6) ;US(2,2) ; C1(4x6)

0a C48(5x4) ; MP(2,2) ; 2*C48(4x3) ; MP(3,2) ; 2*C48(4,3) ; US(3,2) ; 2*C48(5x4) ; US(2,2) ; C1(5x4)

0b 2*C54(4x3) ; MP(2,2) ; 2*C54(4x3) ; MP(3,2) ; 2*C54(4x3) ; US(3,2) ; 2*C54(4,3) ; US(2,2) ; C1(4x3)

0c C48(5x4) ; AP(2,2) ; C48(4x3) ; AP(3,2) ; C48(4,3) ; US(3,2) ; C48(5x4) ; US(2,2) ; C1(5x4)

0d 2*C54(4x3) ; MP(2,2) ; 2*C54(4x3) ; MP(3,2) ; 2*C54(4x3) ; US(3,2) ; 2*C54(4,3) ; US(2,2) ;
2*C54(4x3) ; C1(4x3)

0e 2*C128(4x3) ; MP(3,2) ; 2*C128(4x3) ; US(3,2) ; 2*C128(4x3) ; C1(4x3)

0f 2*C28(4x3) ; MP(2,2) ; 2*C28(3x3) ; MP(3,2) ; 2*C28(3x3) ; US(3,2) ; 2*C28(3x3) ; US(2,2) ;
2*C28(4x3) ; C1(4x3)

1 C64(k:6x6,s:6x1) ; C64(k:2x2,s:2x1) ; DC64(k:2x3,s:2x1) ; DC1(k:6x6,s:6x1)

2 C64(k:3x3,s:3x1) ; C64(k:2x2,s:2x1) ; MP(1,2) ; C64(k:2x2) ; US(1,2) ; DC64(k:2x2,s:2x1) ;
DC1(k:3x3,s:3x1)

Table 1: Architectures of the models. “C#” stands for “Convolution 2D with # feature maps”, “DC#”
stands for “Deconvolution 2D with # feature maps”, “MP” stands for “Max Pooling 2D”, “AP” stands for
“Average Pooling 2D”, and “US” stands for “Up-Sampling 2D”. For convolutions with stride (models 1,2),
“k” stands for kernel size and “s” for stride size.

All models presented use Rectified Linear Unit [4] activation function for all layers except
the last layer where Sigmoid[16] activation is used. The sigmoid layer in the end restricts
the network outputs in the range of [0,1]. In order to assign a pixel to a class of black or
white we initially set a cutoff threshold at 0.50. In section 7.2 we experiment with different
values for this threshold and present its impact on our results. We use Nesterov momentum
Adam (Nadam) [17] as the optimizer and binary cross-entropy as the loss function for all
models.

The architecture of one of the models (0b) is shown in Figure 6. The input to the network
is a single image of dimension 36x112. The model then creates feature maps of dimensions
36x112, 18x56, and finally encoding the input in feature maps of dimension 6x28. This down-
sampling process is then reversed to produce an output of dimension 36x112 that represents
the input data without the noise. Two consecutive convolution layers with 4x3 kernels are
used before max pooling and up-sampling layers.

10

Figure 6: Schematic representation of model 0b from Table 1

4.3. Data Post-processing

The de-noising operation may remove some valid hits, misidentifying them as noise, which
can cause small gaps in the particle tracks. To mitigate this issue, a simple hit reconstruction
algorithm can be employed. The algorithm iterates each hit present in the de-noised data and
marks any hits within a radius of one sensor around it in the raw(noisy) data. All marked
hits are then added to the de-noised data. This process recovers many of the missing hits
but may also introduce additional noise. However, the improved efficiency it generates by
far outweighs the impact of the introduced noise. We plan to introduce such a step in the
future, however, in this work all results presented do not include it. The reason for this is
that timing cuts are necessary in order to reinstate a hit, and at the hit based level here we
do not have access to time of the hit.

5. Software Implementation

To conduct this study, we implemented a framework that simplifies the process of training,
validation, and prediction. Our software3 is written in Python programming language to ac-
celerate the development process and make the software easily maintainable, reusable, and
extensible. We use TensorFlow [18] with keras[19] as a frontend for the creation, training,
and validation of machine learning models. By employing TensorFlow, our machine learn-
ing operations are optimized to run efficiently on both CPUs and GPUs, achieving high
performance. Since our datasets are sparse, we use the svmlight data format [20] which is
designed for labeled data with sparse features. To load and store datasets we make use of
the scikit-learn [21] library. scikit-learn is also utilized to generate validation datasets by
randomly picking data entries from the training dataset. To enable easy distribution of the
software, we provide a YAML[22] file that contains the required dependencies that can be
provided to software like Anaconda [23] to handle all software dependencies.

3Code & data as well as a more detailed guide available at: https://github.com/gavalian/clas12ai/
tree/master/path_denoise_2d/

11

https://github.com/gavalian/clas12ai/tree/master/path_denoise_2d/
https://github.com/gavalian/clas12ai/tree/master/path_denoise_2d/

The software consists of three separate operations, train, test and predict. Each opera-
tions is implemented as a subcommand that accepts its own parameters (similar to how git
commands work: git commit 〈args〉, git branch 〈args〉, etc.).
The train subcommand, as shown from its name, is used to train a new model. It takes
a set of required and optional arguments; the required ones include the dataset to use for
training, the model architecture to be used (explained later), and the directory where the
trained model shall be stored. In addition to the trained model, the train subcommand will
also generate a graph presenting the training and validation error for each training epoch,
which allows the user to quickly check if the created model is under/overfitting the data.
Optionally, the user can also set the number of training epochs to go through (default: 10),
the batch size (default: 16) and a separate validation file (default: 10% of the training set).
The test subcommand performs the respective testing operation; Accepted arguments in-
clude the trained model to use, the dataset to test it on, the directory to store the performance
results (all required), and the batch size (optional). When testing completes, it generates a
report for the user with the accuracy results, the percentage of noise removed, etc., as well as
the histograms presented later in the paper. It also prints random examples comparing the
raw input (noisy data), the clean data (ground truth), and the reconstructed input (denoised
data). The results are both printed on the screen and stored in a CSV-format file to allow
for further investigation into the data.
The predict subcommand is what will be used once the performance evaluation has been
completed and the model architecture and the related parameters have been chosen. It re-
ceives the same arguments as test and outputs a new svmlight-format file that contains
each of the original raw(noisy) data followed by the reconstructed(denoised) data generated
by them.

Extending the framework with new models is simple. A new model architecture can be
implemented by subclassing a built-in abstract class and implement two methods; namely
the build(), and preprocess() methods. The build() method is where the architecture of
the new model is described using Keras notations, compiled, and returned to the framework.
The preprocess() method is provided so that the user can perform any processing that
might be needed for the specific model, application, and dataset. For example, to test CNN
auto-encoders the input needs first to be transformed to a 36x112x1 tensor to fit CNN’s
expected input format (width× height× channels).

6. Model Comparison Results

6.1. Experimental Setup

For all the experiments presented in the following sections we used a single NVIDIA Tesla
V100 GPU, Tensorflow 2.0 and CUDA 10.2.

6.2. Results

In this section we present the training and testing process as well as performance results
of the machine learning models described in section 4 . For each model presented in Table
1 we experimented using real data generated by the CLAS12 drift chambers running on
nominal conditions (i.e. 45nA of beam current). All models were trained on the same

12

dataset of 60000 samples, consisting of events with single or multiple tracks. Training data
used is from experimental reconstructed data, where input sample is simply an image of all
hits in the drift chamber sector, and output image is all hits belonging to track (or tracks)
that were reconstructed by conventional tracking algorithm (after de-noising the hits with
standard SNR algorithm). Testing results presented are gathered by running the generated
models on a different dataset of 60000 samples.

0 0a 0b 0c 0d 0e 0f 1 2
Model

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy

Track hits fraction
Noise fraction

0 0a 0b 0c 0d 0e 0f 1 2
Model

5

10

15

20

25

30

D
e-

N
oi

si
ng

 P
ow

er

Figure 7: Model efficiency comparison. The efficiency of track trajectory hits reconstruction (blue squares)
and remaining noise fraction after de-noising (orange circles) are plotted as a function of model (left panel).
The noise reduction power (green triangle), defined as fraction of noise hits in the raw sample divided by
the fraction of noise hits in the reconstructed image (right panel).

Figure 7 shows the evaluation results for all 9 models. The distribution of hit reconstruction
efficiency (blue rectangles) presents the fraction of valid hits that were retained in the inferred
image after applying the de-noising CAE over those belonging to a track in the raw input
(i.e. shows the effectiveness of each model in retaining hits belonging to a track). The noise
level (orange circles, left panel) is the hits in the reconstructed image that do not belong to a
track as a fraction of the hits belonging to a track. In the original data sample, the average
noise level is 250%. By applying the de-noiser, the noise level was reduced to 10%-27%,10
to 25 times less noise. Table 2 presents more detailed performance results of the models
with respect to noise removal. Based on these results, we define the noise reduction power
metric as the ratio of noise before and after de-noising is applied. The de-noising power as
a function of the model can be seen in Figure 7 right panel (green triangles).

Metric (%) 0 0a 0b 0c 0d 0e 0f 1 2

Noise Mean Before De-noising 252 252 252 252 252 252 252 252 252

Noise RMS Before De-noising 163 163 163 163 163 163 163 163 163

Noise Mean After De-noising 12 10.1 10.3 9.9 10.4 13 12 23 27.5

Noise RMS After De-noising 24 22 21 21 22 25 23 30 32

Noise Removed After De-noising 95 96 96 96.1 95.7 94.7 95.2 90.9 89

Table 2: Evaluation results for all models with respect to denoise efficiency. Noise level in the first four rows
is the hits in the de-noised image that do not belong to a track as a fraction of the hits belonging to a track.
The last row presents the percentage of noise that was removed by the autoencoder models.

13

6
12
18
24
30
36

D
C

 L
ay

er

6
12
18
24
30
36

D
C

 L
ay

er

6
12
18
24
30
36

D
C

 L
ay

er

6
12
18
24
30
36

D
C

 L
ay

er

6
12
18
24
30
36

D
C

 L
ay

er

0 20 40 60 80 100
Wire Number

6
12
18
24
30
36

D
C

 L
ay

er

0 20 40 60 80 100
Wire Number

0 20 40 60 80 100
Wire Number

Figure 8: Examples of the performance of the CNN denoising autoencoder. The first column shows the
raw (noisy) input given to the network, the middle one shows the noise-free image and the last column
presents the result reconstructed by the autoencoder. Dashed lines represent boundaries of drift chamber’s
super-layers.

From these results, it is clear that CAEs are able to de-noise and reconstruct given input
accurately, including the case when there are multiple tracks in a single input. The best
model, considering a combination of low noise fraction, high track hits fraction and high
denoising power, (0b, see Figure 6) achieved a mean valid hit detection accuracy of over
95.5% with the mean amount of noise not exceeding 11.05%. 0b achieved very similar
denoising efficiency to 0a and 0c, however, it performs better in track hits accuracy so we
choose it as our best model. We should note though that since the performance of the models
is very close to each other the ranking can change between different training sessions due
to the randomness that is introduced from the learning process. Figure 8 shows examples
of input together with the expected, clean output and the model predictions. Models 1 &
2 produced the worst results which could be attributed to the fact that whole columns of
the input are skipped when using a stride of 2 and since our features are mostly presented
in the vertical dimension, a lot of them could be lost. The training process for the best
model requires approximately 17 minutes to complete on our hardware setup using the
aforementioned dataset of 60000 samples. De-noising a single event requires on average 250
µs in our experimental setup, however, when running as part of the reconstruction process
on JLab’s computing facility which only consists of CPUs, it takes approximately 90ms per

14

event. The tracking code itself takes 520 ms per event (but this is background dependent),
however, we noticed that de-noised files run faster which means that we will gain some of
the lost time back from 90ms. More detailed benchmarks will be done once the de-noiser is
fully integrated into the workflow.

7. Systematic Studies

7.1. Luminosity Studies

In section 6 we showed that CAEs are very efficient in de-noising data from CLAS12 drift
chambers, removing up to 96% of the initial background hits while retaining more than
95% of track related ones. Next, we will study how increased noise (by-product of high
luminosity) can affect the accuracy of our de-noising auto-encoder. We used experimental
data with 45 nA to train the best network we developed (model 0b) and all our studies
are performed using this model. Higher luminosity testing samples were produced using a
standard background merging software [24] developed for CLAS12. The generation of these
testing samples is performed in the following steps:

1. An initial set of events is taken from low luminosity (low beam current) experimental
data where the noise level is minimal.

2. The low luminosity run is then merged with background generated from experimental
data on different beam current runs.

As a result we produced data samples corresponding to 45 nA, 50 nA, 55 nA, 90 nA, 100 nA
and 110 nA for our studies.

The testing samples were then analyzed with CAE to extract track hits reconstruction effi-
ciency and background hits removal efficiency.

40 50 60 70 80 90 100 110
Beam Current (nA)

0

20

40

60

80

100

H
its

 F
ra

ct
io

n

Hit reconstruction efficiency
Noise hits fraction

45nA 50nA 55nA 90nA 100nA 110nA
Beam Current (nA)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

ks
 F

ra
ct

io
n

4 segments 5 segments 6 segment

Figure 9: Reconstructed hits fraction for real signal and background hits (left) as a function of initial beam
current. The fraction of tracks reconstructed with 4,5 and 6 segments fully recovered from de-noised data
sample (right).

The results are shown in Figure 9. The blue dots of the figure on the left panel depict the
fraction of valid hits reconstructed as a function of beam current. The red dots show the
fraction of noise hits present in the de-noised data as a function of beam current. As shown

15

in the figure, network performance drops slowly with the luminosity resulting in average
efficiency of about 76% for 110 nA beam current. Sample images for different luminosity can
be seen in Figure 10. One sample from each luminosity (background) setting is presented
in each row, along with the clean event (the middle column) that represents only hits that
belong to a reconstructed track and the auto-encoder reconstructed image (right column).
As seen in the example images, there are a few traces of background still present in the
reconstructed image, however, these will be eliminated by the tracking algorithm during
track candidate selection. It is worth noting that more than 90% of the initial background
is removed by the neural network, simplifying the clustering process significantly.

6
12
18
24
30
36

D
C

 L
ay

er

45 nA

6
12
18
24
30
36

D
C

 L
ay

er

50 nA

6
12
18
24
30
36

D
C

 L
ay

er

55 nA

6
12
18
24
30
36

D
C

 L
ay

er

90 nA

6
12
18
24
30
36

D
C

 L
ay

er

100 nA

0 20 40 60 80 100
Wire Number

6
12
18
24
30
36

D
C

 L
ay

er

0 20 40 60 80 100
Wire Number

110 nA

0 20 40 60 80 100
Wire Number

Figure 10: Examples of network de-noising with raw data on the left column, the ground truth image in
the middle and reconstructed image on the right. The rows represent one example from each background
setting corresponding to 45, 50, 55, 90, 100 and 110 nA respectively. Dashed lines represent boundaries of
drift chamber’s super-layers.

Even though hit reconstruction efficiency indicates the reconstruction efficiency of our method,
it does not fully describe its capability to reconstruct full tracks. To quantify its track re-
construction efficiency, we need to measure the network’s ability to reconstruct enough hits
that would lead to full track reconstruction. In the reconstruction procedure of CLAS12,
a track can be fully reconstructed if segments of the track are identified in any five or four
consecutive super-layers. By employing a separate neural network, the missing segment po-
sitions can be predicted based on the existing 5 (or 4) segments and recovered from the raw

16

input data. A detailed description of this procedure is presented in [25] and [26].

Given that tracks can be recovered from incomplete segments reconstructed, we will deter-
mine the fraction of events that have retained 4, 5, or 6 segments by the CAE to evaluate
its track reconstruction efficiency. Before that, we should note that the segment recovery
efficiency is also subject to some other considerations. Segments ideally consist of hits in
all six layers of a super-layer. However, if hits in 2 or more layers are recovered, there is
enough information about the position and direction (or angle relative to wire planes) of the
segment to recover the rest of the hits of the segment from raw hits data. With all these
considered, we analyzed the output images of the CAE to measure how many segments are
reconstructed for each event. The results are shown in Figure 9 (right) where track recon-
struction efficiency is presented as a function of beam current. Tracks where at least four of
their segments are recovered can be fully reconstructed, resulting in a track reconstruction
efficiency of more than 75% under running conditions of 110 nA.

7.2. Reconstruction Threshold Studies

As mentioned in section 4 we used a cutoff threshold of 0.5 to assign each of the output values
of the CAE to a class of no hit detection (values < 0.5) or hit detection (values ≥ 0.5). In
the following studies, we investigate whether modifying this threshold can improve the de-
noising and track reconstruction efficiency. We rerun our luminosity studies with varying
cut-off thresholds ranging from 0.05 to 0.5 with a step of 0.05. The resulting distributions
can be seen in Figure 11a, where the noise level is presented as a function of the cut-off
threshold for different beam currents.

0.0 0.1 0.2 0.3 0.4 0.5
Threshold

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
oi

se
 F

ra
ct

io
n

45 nA
50 nA
55 nA
90 nA
100 nA
110 nA

(a)

40 50 60 70 80 90 100 110
Beam Current (nA)

1

2

3

4

5

6

7

8

A
ll

H
its

/T
ra

ck
 H

its

(b)

Figure 11: Noise reduction efficiency for all beam currents as a function of cutoff threshold (left). The ratio
of all hits in the event to the hits belonging to a reconstructed track as a function of beam current, before
applying de-noising(right).

As expected, lowering the cut-off threshold for pixel reconstruction does increase the noise
level, though the noise is still significantly lower than in the original noisy data. For com-
parison, Figure 11b shows the ratio of all hits to those that are part of a track for the initial

17

noisy data under high luminosity. For 110 nA, the ratio of noise in the raw data sample is
about 6.5, while using the CAE with the lowest threshold of 0.05 yields a noise level of 0.37.
Even though this change in the threshold affects the noise level slightly, it gives a significant
improvement in hit and track reconstruction efficiency. Figure 12a shows the hit efficiency
improvement as exhibited by lowering the cut-off threshold. For the highest beam current
of 110 nA, the hit efficiency improves from 0.76 to 0.89. The same analysis is performed to
measure the final track reconstruction efficiency after de-noising. The results are shown in
Figure 12b. The same trend as with hit reconstruction efficiency is observed in track recon-
struction efficiency. In this case, the improvement is even bigger with the track efficiency for
110 nA increasing from 76% to 94%. Figure 12c presents the Receiver Operating Charac-
teristic Curve (ROC)[27] curve produced by running model 0b on the 110 nA dataset where
true positive rate corresponds to the ratio of hits correctly identified and false positive rate
to the noise that was wrongly maintained in the output. The curve confirms that our model
accurately classifies hits and noise. In the next section, we show that the results obtained for
high beam currents are significantly better than the standard tracking procedure for similar
data.

0.0 0.1 0.2 0.3 0.4 0.5
Threshold

0.75

0.80

0.85

0.90

0.95

1.00

H
it

R
ec

on
st

ru
ct

io
n

E
ffi

ci
en

cy

45 nA
50 nA
55 nA
90 nA
100 nA
110 nA

(a)

40 50 60 70 80 90 100 110
Beam Current [nA]

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ac

k
R

ec
on

st
ru

ct
io

n
E

ffi
ci

en
cy

0.05
0.10
0.20
0.30
0.40
0.50

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Noise

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 H

its

(c)

Figure 12: Hit reconstruction efficiency for all beam current data samples as a function of cutoff threshold
(a). The track segment reconstruction efficiency as function of beam current for different cutoff thresholds
(b). ROC curve for model 0b running on the 110 nA dataset (c).

18

8. Studies with experimental data

From our systematic studies, we established that using a threshold of 0.05 for hit reconstruc-
tion was efficient in removing a significant fraction of noise hits while significantly improving
the track hits reconstruction efficiency. The next step of our study was to use the presented
CAE in the data reconstruction workflow of the CLAS12 detector. We used our CAE as
a stand-alone module to de-noise raw data from drift chambers before passing them to the
reconstruction process. We used two sets of data to measure the effect of de-noising on the
reconstruction software. One data set was created by merging background to experimental
data taken with beam current of 5 nA and producing six data sets with experimental condi-
tions corresponding to 45 nA, 50 nA, 55 nA, 90 nA, 110 nA and 110 nA. The second data
set was taken from experimental data with beam current 40 nA and 50 nA. For all data
sets the CAE was used to produce de-noised data set. Both data sets (original data and the
de-noised data) were then processed with CLAS12 reconstruction software.

40 50 60 70 80 90 100 110 120
Beam Current (nA)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 R

ec
on

st
ru

ct
ed

 T
ra

ck
s

Conventional (raw)
Denoised
Denoised (AI assisted)

40 50 60 70 80 90 100 110 120
Beam Current (nA)

1.0

1.2

1.4

1.6

1.8

2.0
Tr

ac
k

M
ul

tip
lic

ity
 R

at
io

Background Merged
Experimental Data

Figure 13: Track reconstruction efficiency (for 6 super-layer tracks) as a function of beam current for raw data
(orange circles), for de-noised data (brown triangles), and for de-noised data running through AI assisted
track reconstruction [26] (green diamonds) (left). Track reconstruction gain with de-noising algorithm, ratio
of reconstructed 6 super-layer tracks with CAE to conventional raw data reconstruction for different beam
current settings for background merged files (blue circles) and for real data (orange squares) (right).

The resulting files were analyzed on an event-by-event basis to measure the track reconstruc-
tion efficiency after de-noising. We isolated tracks from the original 5 nA data (reconstructed
with six super-layers) and examined whether the same tracks were reconstructed from the
background merged file (both raw and de-noised version). Figure 13 (left panel) shows the
fraction of tracks reconstructed from background-merged files for both data sets (raw and
de-noised) as a function of beam current. The three different tests represent reconstruc-
tion using the CLAS12 tracking algorithm on raw (un-altered) data (orange circles), data
pre-processed with the de-noising CAE (brown triangles), and finally, results from using the
CLAS12 reconstruction, augmented with AI-assisted track identification software [26], on
de-noised data. As shown in the figure, passing data through the de-noising CAE leads to a
significant improvement in the fraction of tracks that can be recovered in high background
conditions compared to using conventional methods. The main reason for this improvement
is that in high background conditions the conventional algorithm fails to isolate clusters in
each super-layer to have all track candidates considered for track composition. Using CAE

19

helps to reduce noise, thus enabling the conventional tracking algorithm to more efficiently
reconstruct clusters and, as a result, reconstruct more tracks.

The improvements of the CAE assisted tracking is shown in Figure 13 (right panel), which
presents the ratio between tracks reconstructed with and without applying the CAE de-
noising step. The track ratio presented is tracks reconstructed by conventional algorithm
only, without AI assisted track candidate classification, just to emphasize that with conven-
tional algorithm the gain from de-noising alone is very significant. As can be seen from the
figure, CAE improves the track yield in normal experimental conditions (i.e. 40 nA-50nA) by
about 12%− 15% while achieving a much larger improvement at higher background settings
(about 75% at 110 nA). The improvement is also apparent on experimental data (without
background merging), where we extract the ratio of reconstructed 6-super-layer tracks of
CAE de-noised data over raw conventional reconstruction (Figure 13, right panel), for ex-
perimental data with 40 nA and 50 nA. The experimental data with different beam currents
show similar (consistent) improvements in track multiplicity.

9. Discussion

In this work, we developed methods for de-noising drift chamber data for the CLAS12
detector. The proposed Convolutional Auto-Encoders were trained on six-segment tracks,
along with whole raw hits from experimental data, to remove noise hits and retain those
belonging to a track. We developed this method as a stand-alone software that has to be run
on raw data files before they are processed with standard CLAS12 reconstruction software.
Applying this method as a preprocessing step presents some limitations on discovering its
full potential in track reconstruction. One such limitation comes from the fact that not
all pixels in each segment are reconstructed by CAE, leading to potential loss of efficiency.
CLAS12 tracking software relies on having at least four layers (out of six) activated in each
super-layer to form a cluster. If the CAE preserves three hits out of six, this cluster will
not be reconstructed by CLAS12’s software because our stand-alone program removes the
hits from the list of potential signals from the raw data set. To overcome this limitation
the CLAS12 tracking software has to be modified to take into account suggested hits from
CAE and then try to perform clustering by retrieving nearby hits from raw data; such a
modification will improve the segment reconstruction efficiency even further.

The results presented in this paper are preliminary and do not include all the improvements
discussed above. However, they already show significant improvement in the number of
tracks reconstructed by standard CLAS12 tracking code after applying de-noising to the
data set. In normal experimental conditions (at 45nA), we get an improvement of 12− 15%,
in the number of tracks reconstructed, while in high luminosity conditions (above 100nA),
we observe improvements of more than 75%. These results have a significant impact on
how experiments run. The length of an experiment (time allocated to run with the accel-
erator provided beam) is determined by the integrated luminosity requirements needed to
produce physics results. The running conditions, i.e. target length and beam current, are
chosen so that tracks are reconstructed with high efficiency. As can be seen from our results,
track reconstruction efficiency with our current (not optimized) implementation at 110 nA
is higher than the standard reconstruction efficiency (without de-noising) at current experi-

20

mental running conditions (45nA beam). By employing de-noising for track reconstruction
algorithms, one can run experiments in a much shorter time to achieve the same statistical
yield for the same physics outcome.

This project took about 4-5 months to complete. This includes finding the suitable Machine
Learning algorithm to apply (CNN), inspired by image denoising applications, gathering the
training and testing datasets, experimenting with different architectures, activation functions
and error estimators, and finally experimenting with different thresholds. Finding the appro-
priate architecture was the most time consuming process as it required manually adjusting
the parameters of the model and then training and testing until satisfactory results were
obtained. We intend to continue our efforts to further improve our model as it is integrated
in JLab’s data processing pipeline.

10. Summary

In this work, we used Convolutional Auto Encoder neural networks to de-noise raw data from
CLAS12 drift chambers. The Convolutional Auto Encoder showed very good performance
in removing noise hits, reducing them by more than 90% while retaining 76% of the hits
belonging to track trajectories. Further studies with threshold adjustment improved aver-
age track trajectory hit reconstruction to 94% with an insignificant increase in noise hits.
The developed software was used to de-noise several sets of data which then ran through
CLAS12’s standard reconstruction software. We compared the reconstructed tracks yield to
standard (non de-noised) data track yield, showing that the de-noising significantly improves
track reconstruction efficiency for six-segment tracks. For high background conditions (such
as for data > 90nA) the gains in track reconstruction are much higher, up to 1.8 times
improvement for 110nA. This software will be rigorously tested in CLAS12 data processing
environment in parallel with standard reconstruction packages and will be implemented in
the data processing workflow for assisting tracking algorithm in high background running
conditions.

11. Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and NSF grant no.
CCF-1439079 and the Richard T. Cheng Endowment. The authors would like to thank
Raffaella De Vita for help in processing data with CLAS12 reconstruction software. This
work was performed using the Turing and Wahab computing clusters at Old Dominion
University.

21

References

[1] V. Burkert, et al., The CLAS12 Spectrometer at Jefferson Laboratory, Nuclear In-
struments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 959 (2020) 163419. doi:10.1016/j.nima.2020.

163419.

[2] M. Mestayer, et al., The CLAS12 drift chamber system, Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment 959 (2020) 163518. doi:10.1016/j.nima.2020.163518.

[3] V. Ziegler, et al., The CLAS12 software framework and event reconstruction, Nucl.
Instrum. Meth. A 959 (2020) 163472. doi:10.1016/j.nima.2020.163472.

[4] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines,
in: Proceedings of the 27th International Conference on International Conference on
Machine Learning, ICML’10, Omnipress, Madison, WI, USA, 2010, p. 807–814.

[5] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning internal representations by
error propagation, in: Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Vol. 1: Foundations, MIT Press, Cambridge, MA, USA, 1986, p.
318–362.

[6] A. Ng, et al., Sparse autoencoder, Stanford CS294A Lecture notes 72 (2011) (2011)
1–19.

[7] S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Ex-
plicit invariance during feature extraction, in: Proceedings of the 28th International
Conference on International Conference on Machine Learning, ICML’11, Omnipress,
Madison, WI, USA, 2011, p. 833–840.

[8] J. Xie, L. Xu, E. Chen, Image denoising and inpainting with deep neural networks,
Advances in neural information processing systems 25 (2012) 341–349.

[9] D. P. Kingma, M. Welling, An introduction to variational autoencoders, Foundations
and Trends® in Machine Learning 12 (4) (2019) 307–392. doi:10.1561/2200000056.

[10] I. T. Jolliffe, PRINCIPAL COMPONENT ANALYSIS: A BEGINNER’S GUIDE —
I. Introduction and application, Weather 45 (10) (1990) 375–382. doi:10.1002/j.

1477-8696.1990.tb05558.x.

[11] W. Wang, Y. Huang, Y. Wang, L. Wang, Generalized autoencoder: A neural network
framework for dimensionality reduction, in: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, 2014, pp. 490–497.

[12] A. Krizhevsky, G. E. Hinton, Using very deep autoencoders for content-based image
retrieval., in: Proceedings of the European Symposium on Artificial Neural Networks,
ESANN ’11, Bruges, Belgium, 2011.

22

https://doi.org/10.1016/j.nima.2020.163419
https://doi.org/10.1016/j.nima.2020.163419
https://doi.org/10.1016/j.nima.2020.163518
https://doi.org/10.1016/j.nima.2020.163472
https://doi.org/10.1561/2200000056
https://doi.org/10.1002/j.1477-8696.1990.tb05558.x
https://doi.org/10.1002/j.1477-8696.1990.tb05558.x

[13] M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction, in: Proceedings of the MLSDA 2014 2nd Workshop on Machine
Learning for Sensory Data Analysis, MLSDA’14, New York, NY, USA, 2014, p. 4–11.
doi:10.1145/2689746.2689747.

[14] F. Murtagh, Multilayer perceptrons for classification and regression, Neurocomputing
2 (5) (1991) 183–197. doi:https://doi.org/10.1016/0925-2312(91)90023-5.

[15] Y. LeCunn, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.

[16] J. Han, C. Moraga, The influence of the sigmoid function parameters on the speed
of backpropagation learning, in: Proceedings of the International Workshop on Arti-
ficial Neural Networks: From Natural to Artificial Neural Computation, IWANN ’96,
Springer-Verlag, Berlin, Heidelberg, 1995, p. 195–201.

[17] T. Dozat, Incorporating nesterov momentum into adam, in: International Conference
on Learning Representations, Workshop Track, ICLR ’16, Caribe Hilton, San Juan,
Puerto Rico, 2016.

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., Tensorflow: A system for large-scale machine learning,
in: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), 2016, pp. 265–283.

[19] F. Chollet, et al., Keras (2015).
URL https://github.com/fchollet/keras

[20] C.-C. Chang, C.-J. Lin, Libsvm: A library for support vector machines, ACM Trans.
Intell. Syst. Technol. 2 (3) (May 2011). doi:10.1145/1961189.1961199.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in python,
Journal of machine learning research 12 (Oct) (2011) 2825–2830.

[22] The Official YAML Web Site.
URL https://yaml.org/

[23] Anaconda software distribution (2020).
URL https://docs.anaconda.com/

[24] S. Stepanyan, et al., CLAS12 FD charge particle reconstruction efficiency and the beam
background merging, CLAS12-NOTE, 2020-005 (2020).

[25] G. Gavalian, Auto-encoders for track reconstruction in drift chambers for clas12 (2020).
arXiv:2009.05144.

[26] G. Gavalian, P. Thomadakis, A. Angelopoulos, V. Ziegler, N. Chrisochoides, Using
artificial intelligence for particle track identification in clas12 detector (2020). arXiv:

2008.12860.

23

https://doi.org/10.1145/2689746.2689747
https://doi.org/https://doi.org/10.1016/0925-2312(91)90023-5
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1145/1961189.1961199
https://yaml.org/
https://yaml.org/
https://docs.anaconda.com/
https://docs.anaconda.com/
http://arxiv.org/abs/2009.05144
http://arxiv.org/abs/2008.12860
http://arxiv.org/abs/2008.12860

[27] A. P. Bradley, The use of the area under the roc curve in the evaluation of ma-
chine learning algorithms, Pattern Recogn. 30 (7) (1997) 1145–1159. doi:10.1016/

S0031-3203(96)00142-2.
URL https://doi.org/10.1016/S0031-3203(96)00142-2

24

https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2

	Introduction
	Background
	CLAS12 Detector
	Drift Chambers

	Convolutional Neural Networks

	Related Work
	Method
	Data Representation
	Neural Network Architectures
	Data Post-processing

	Software Implementation
	Model Comparison Results
	Experimental Setup
	Results

	Systematic Studies
	Luminosity Studies
	Reconstruction Threshold Studies

	Studies with experimental data
	Discussion
	Summary
	Acknowledgments

