
Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for
Parallel and Adaptive Applications

Polykarpos Thomadakis, Christos Tsolakis and Nikos
Chrisochoides

CRTC, Department of Computer Science, Old Dominion
University, Norfolk, VA, USA.

Abstract
This paper presents a new design of the Parallel Runtime Environment
for Multi-computer Applications (PREMA). This framework provides
large-scale applications with one-sided communication, remote method
invocations and a global namespace on top of transparent object migra-
tions for implicit load balancing, scheduling, and latency hiding through
an easy-to-use interface, for exascale-era platforms. The framework has
been augmented with multi-threading, separating communication and
execution into different threads to provide asynchronous message recep-
tion and instant computation execution. It allows for implicit parallel
shared and distributed memory computations and guarantees correctness
through an interface for assigning access privileges to parallel tasks while
monitoring the load of the system and performing migrations. Scheduling
and load balancing are enhanced by introducing custom intra-node sched-
ulers and the ability to perform concurrent migrations. The motivation
for the development of the runtime system is to provide a dynamic run-
time for adaptive and irregular parallel applications like adaptive mesh
refinement. Evaluating the system on such an application indicates an
overall performance improvement of up to 50%, compared to static load
balancing, with an overhead of less than 1% when using up to 270 com-
puting nodes (i.e., 5600 cores); an improvement achieved by retaining
a better work-load distribution among the execution units. Evaluations
with a communication-intensive application with static load balanc-
ing reveals that no significant overhead is added despite the additional
bookkeeping needed to monitor the load of each processing element.

1

Springer Nature 2021 LATEX template

2 Multithreaded Runtime Framework for Parallel and Adaptive Applications

1 Introduction
Irregular applications pose challenges in handling scheduling and load bal-
ancing of large, distributed computing platforms. Their unstructured, and
dynamic computation and communication patterns make it very difficult to a
priori predict their workflow and computational profile at compile time. An
important characteristic is that the workload of individual work units may
vary drastically throughout the application’s execution, which makes it dif-
ficult to statically infer workload propagation. Another characteristic that
impedes such tasks is the prohibited use of global synchronization points which
could be used as points for information dissemination, decision-making, and
data redistribution. Global synchronization hinders the performance of asyn-
chronous applications due to the increased overheads they introduce for very
large, massively scalable platforms.

The ever-increasing intra-node parallelism further exacerbates the problem.
One can ignore the hardware structure and use message-passing to explore
concurrency at both inter-/intra-node levels (by mapping one MPI rank per
core), to simplify the programming model. A major issue in this approach is
that cores on the same node execute on distinct virtual memory address spaces.
Scheduling and load balancing require increased overheads for redistributing
data and workload, due to data marshaling and copying, while decision-making
implies expensive communication and coordination. Another approach is a
hybrid programming model where inter-node concurrency uses message pass-
ing (e.g., MPI), and intra-node concurrency utilizes multi-threading (e.g.,
OpenMP). This approach can improve performance since it allows cores in the
same node to share workload and data directly. However, it requires adapt-
ing the application to a new, more complex programming model. Applications
need to be adjusted to handle synchronization between threads, maintain
correctness, and avoid issues like race conditions and deadlocks.

In this paper, we present the Parallel Runtime Environment for Multicom-
puter Applications (PREMA) [1, 2]. PREMA implicitly handles inter- and
intra-node scheduling and load balancing and facilitates an approach between
the two (i.e., flat-MPI and hybrid programming paradigms), utilizing their
advantages and overcoming their disadvantages. It implements one-sided com-
munication and remote method invocations similar to Active Messages [3]
which are enhanced with a globally addressable namespace, transparent object
migrations, and message forwarding, as opposed to static global address-space
implemented in languages like Split-C [4] and UPC [5]. On top of this infras-
tructure, it provides a set of load balancing policies and an API that allows for
easy-to-use/implement custom inter/intra-node scheduling and load balancing
without modifying the application. All of the above features are supported by
a low-level multi-threading subsystem.

PREMA adheres to two principles. First, application data are encapsulated
in mobile objects. Second, communication patters follow an object-oriented
paradigm where mobile objects communicate with each other directly. Thus,
the runtime system abstracts the underlying structure of hardware, processing

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 3

elements, and memory spaces. Following this Mobile Object Driven (MOD)
programming model, it can utilize resources across shared and distributed
memory and perform efficient scheduling and load balancing while present-
ing a uniform programming interface that implicitly handles issues related
to concurrency. Messages that trigger remote or local method invocations
are assigned access privileges. Access privileges express how method invoca-
tions may use a mobile object (exclusively, shared), providing information
about data dependencies, which is used to maintain correctness and extract
parallelism.

The runtime system offers implicit, 2-level (inter- and intra-node) schedul-
ing and load balancing, as opposed to the previous version [1] that only
provided support at the inter-node level. Shared memory scheduling and load
balancing are provided through the parallel execution of computations on inde-
pendent objects or non-conflicting computations on the same set of mobile
objects by multiple threads. At the distributed level, load balancing is handled
by migrating mobile objects between nodes transparently. The load balanc-
ing and scheduling strategies used are isolated in a separate module, allowing
users to develop their application focusing only on correctness. At a later opti-
mization step, a user might decide to experiment with different strategies to
improve performance without needing to modify the application.

In summary, the contributions of this work include:

• An efficient and scalable runtime system for exascale-era platforms, pro-
viding one-sided communication, remote method invocations and a global
namespace on top of transparent object migrations, for implicit shared and
distributed memory load balancing and scheduling through a uniform inter-
face. This interface allows developers to efficiently encode algorithms without
the burden of capturing low-level architectural details, while allowing exper-
imentation with different scheduling policies and the implementation of
custom ones.

• An evolutionary methodology for porting legacy MPI systems to multi-core
platforms based on the principle of separation of concerns and the lessons
learned from this transition

2 Background
In recent years, the field of High-Performance Computing has expanded to
include the scaling of virtually any computational process, ranging from engi-
neering and simulations to data analytics and AI applications, with the new
applications incorporating elements from the whole spectrum of these fields.
The increasing irregularity of such applications, as well as the hardware that
they utilize, pose a great challenge for scientists. As the complexity of the appli-
cations increases, the demand to efficiently explore more concurrency grows,
leading to an extensive rewrite of scientific codes to remain scalable in the
new settings. Moreover, the introduction of new technologies as a result of

Springer Nature 2021 LATEX template

4 Multithreaded Runtime Framework for Parallel and Adaptive Applications

the trends in modern computer architectures, such as dynamic power manage-
ment, varying processor speeds, and deep memory hierarchies further increase
the burden for developers that not only need to implement the algorithmic
part of the application but also need to be up-to-date with the new hardware
technologies.

(a) (b)

Fig. 1 Applications that use parallel mesh generation as part of their workflow, ranging
from adaptive and irregular Computational Fluid Dynamics to more regular Nuclear fem-
tography applications (a) and an example output of a CFD application taking advantage of
the adaptive mesh generation application (b).

PREMA has been developed to separate the concerns of correctness and
scalability for applications with an irregular workflow. The application that
gave birth to such a need for our case is Parallel Mesh Generation, which is
the basis for multiple other application fields. In Figure 1a we present some
of the fields that take advantage of PREMA through the use of parallel mesh
generation in their algorithm. Figure 1b shows an adaptive mesh resulting
from our efforts towards “NASA 2030 CFD Vision”[6] for parallel error-based
mesh adaptation for CFD simulations. Using PREMA as an abstraction to
implement the algorithm, an application can scale from a single computer
with a few processors to a supercomputing cluster with almost no modifi-
cations. PREMA offers abstractions for enabling automatic task scheduling
and load balancing across shared and distributed memory platforms, while
access to local and remote data is provided through the same interface. More-
over, optimizations for new hardware architectures are introduced at this level
without affecting the application code. PREMA has been used with parallel
mesh generation codes, utilized in CFD applications (see Section 5, and [7]),
Nuclear Femtography and Bioinformatics, as well as other applications (see
Section 3.3).

3 Software Stack and Programming Model

3.1 Software Stack
PREMA consists of three software layers following the principle of separation
of concerns, namely the Data Movement and Control Substrate, the Mobile

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 5

Object Layer, and the Implicit Load Balancing layer. This section presents the
functionality provided by the three layers.

The Data Movement and Control Substrate (DMCS) [8] acts as a thin layer
that abstracts the underlying hardware and the communication library (MPI
in this case) from the application or the higher-level libraries that constitute
PREMA. By using this abstraction, PREMA can be easily ported to a dif-
ferent computing environment by only adapting the DMCS layer. Apart from
that, DMCS offers a message-driven programming model by implementing one-
sided communication and remote method invocations, similar to the Active
Messages [3] paradigm. Methods that are supposed to be available for remote
invocation are referred to as remote handlers in the context of the runtime
system, and they need to be explicitly registered as such before being used.
This paradigm allows the runtime system to hide remote data access latency
behind computations performed by both the system and the application.

The Mobile Object Layer (MOL) [9] builds on top of DMCS and extends
it with a globally addressable namespace while it introduces the construct of
mobile objects. A mobile object is an abstract, location-independent container
implemented by the runtime system to store application data. Data defined
as mobile objects can be freely moved to remote destinations while remaining
addressable from any node in the system through their unique identifiers, the
mobile pointers. This functionality is made possible by extending the remote
method invocation capabilities of DMCS to target mobile objects directly,
wherever they might reside. Thus, applications are encouraged to follow a
programming model oriented around mobile objects and invoke computations
through messages without knowledge about their locations. We refer to this
programming model as Mobile Object Driven (MOD).

A distributed directory maintains the last known locations of all the mobile
objects in the local and remote nodes. When sending a message to a mobile
object, the object’s last known location is retrieved from the sending node’s
directory, and the message is transmitted there. The target node might not
hold the mobile object anymore, in which case the message is forwarded based
on that node’s directory information. Once a forwarded message arrives at its
destination, an update message is sent back to the original sender, updating
the object’s last known location. There are more location-updating policies
available; the lazy updates presented in [10] is the one that exhibits the best
performance.

The Implicit Load Balancing Layer (ILB)[1] makes use of of both DMCS
and MOL to provide transparent and implicit data and load migration in
the event of load imbalance detection. Based on the observation that no sin-
gle load-balancing algorithm is optimal for all platforms and applications, the
ILB’s scheduler is implemented as a separate module that allows plugging-in
new policies without any modifications to the application. This design allows
developers to experiment with different methods without affecting their appli-
cation code. Moreover, for more experienced users, ILB provides an API to
develop custom load balancing policies.

Springer Nature 2021 LATEX template

6 Multithreaded Runtime Framework for Parallel and Adaptive Applications

In ILB, all mobile objects are associated with their pending computations,
which constitute their load. Thus, migrating mobile objects will implicitly
migrate work-load from one node to another, resulting in load balancing. Since
mobile objects contain user-defined data, the application needs to provide call-
back functions that let the runtime system pack, unpack, and retrieve their
sizes to migrate them between nodes. Another set of callbacks may also be
provided to pass information about the cost of migrating a mobile object and
dynamically calculate its load with respect to its pending handlers.

3.2 Programming Model
PREMA encourages the use of the MOD programming model. It exposes a
data-centric design where communications and computations happen between
mobile objects rather than processors. Parallelism is achieved by executing
handlers simultaneously on multiple nodes, cores, and mobile objects. Applica-
tions have their data broken into N chunks, encapsulated into mobile objects,
where N ≫ P and P is the number of processing elements. This technique is
known as over-decomposition and allows greater flexibility in intra/inter-node
scheduling and load balancing.

A typical application starts by performing some pre-processing steps and
then over-decomposes its data. Then it creates mobile objects for each chunk
of data, defines (de)serialization functions, and optionally distributes them to
available nodes. The core of the application logic is then expressed through
messaging among the mobile objects. Message handlers include computational
tasks, the creation of new mobile objects, and data transfers. By adhering to
this programming model, task executions are addressed to individual mobile
objects, whether they reside on the local or a remote node, abstracting the
actual data/hardware mapping from the application. Data encapsulated in a
single mobile object are guaranteed to be local, allowing the application to
access them directly in the context of handler execution.

Throughout the application’s execution, PREMA handles scheduling and
maintains the location of mobile objects. Moreover, it monitors nodes’ work-
load, initiating load balancing when necessary, and guarantees that messages
are delivered to their destination whether they are local, remote, or in the pro-
cess of migration. The application is not aware of any of these operations and
is developed as if all mobile objects were locally accessed through a unifrom
API.

3.3 Adapting to Application Needs
Even though we use scalable parallel mesh generation applications as a case
study for evaluation, PREMA is designed as a general-purpose runtime library.
PREMA supports different execution models [11, 7] and has been tested with
different applications. In addition to several parallel mesh generation meth-
ods [7], PREMA is used to implement a seismic wave simulation application
(section 5.3.3). In earlier efforts, we used DMCS and MOL (PREMA’s low-level

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 7

communication substrates) to develop an N-body simulation code [12]. These
use-cases include both legacy applications following a black-box approach [7],
and new applications developed with PREMA in mind (presented in this work).
In both cases, PREMA was successfully used to scale the applications using
different scheduling models like the master-worker model and diffusive load
balancing.

PREMA offers multiple abstractions at all levels of the runtime system
software stack. One can choose to use a subset of them depending on the
specific needs of their application as well as their familiarity with the runtime
system and expertise with load balancing policies. PREMA’s design allows
using a subset of its capabilities when there is no need for its extra features.
For example, a user that only needs an active messages library can just utilize
DMCS without building and studying the other software layers. At a later
stage, one might need the global namespace and messages provided by mobile
objects. If later implicit load balancing is desired, the application can be easily
extended to utilize ILB without much effort. Moreover, a user can choose how
the workload of a mobile object is calculated by providing a callback function
or a static value and explicitly disable or re-enable distributed load balancing
by calling the respective function ilb::enable_dist_balancing(bool).

Another feature that gives more flexibility to PREMA is the ability to use,
adapt, and modify load balancing policies that ship with PREMA or imple-
ment new ones through the provided API. Since there is no holy grail for load
balancing that fits all applications and platforms, this interface can be used
to experiment with different methods without the need to touch the applica-
tion’s code. For example, an application expert may prefer to utilize existing
load balancing strategies and choose the one that gives the best results for the
specific needs. Such a user might feel more comfortable only experimenting
with high-level parameters provided by existing strategies to improve perfor-
mance. An advanced user might try to extend an existing policy to extract
more performance, while an expert in load balancing might want to develop
a new one. Thus, PREMA can accommodate users with different needs, skills
and experiences.

Figure 2 shows the abstract class (API) that a user can extend to imple-
ment virtually any new policy. Four methods need to be implemented to allow
the new policy to communicate with PREMA and receive updates about the
system state. In summary, these methods provide: (1) the trigger for starting
a new load balancing phase (dist_balance()), (2) updates from PREMA to
the policy regarding the load of each mobile object (notify()), (3) abstractions
to implement shared memory scheduling (push(), pop()). In the appendix we
present the implementation of two simplified load balancing policies, a master
worker and a diffusive scheme.

Springer Nature 2021 LATEX template

8 Multithreaded Runtime Framework for Parallel and Adaptive Applications

1 class ilb::scheduler
2 {
3 public:
4
5 // Initialize required structures here
6 scheduler() {};
7 // Free structures here when application terminate
8 virtual ~scheduler() {};
9

10 // This method is periodically called by PREMA to check and start distributed load
balancing when needed

11 virtual void dist_balance() = 0;
12
13 // Notify scheduler about a change to mo’s load and update node level load
14 virtual void notify(ilb::mobile_object mo) = 0;
15
16 // Thread with ID thread_id tries to get some handler to execute
17 virtual ilb::handler* pop(int thread_id) = 0;
18
19 // Thread with ID thread_id tries pushes a new handler to the scheduler
20 virtual void push(int thread_id, ilb::handler* hdlr, ilb::mobile_object mo) = 0;
21 }

Fig. 2 PREMA’s minimal interface to declare a new load balancing policy.

4 Leveraging Multi-core Architectures

4.1 Multi-threaded Design
In order to efficiently handle multi-core platforms, PREMA is natively inte-
grated with a low-level multi-threading library. Utilizing multi-core platforms
improves PREMA’s performance on both communication and computation
aspects by making them truly asynchronous, increasing the opportunities to
overlap them and hide latencies. Moreover, it allows applications to seamlessly
utilize multi-core platforms without explicitly dealing with concerns raised by
shared memory concurrency.

4.1.1 Data Movement and Control Substrate

We perform the integration with the low-level multi-threading library at the
level of DMCS which is the basis of PREMA’s software stack. DMCS con-
sists of three components, the handler-execution, communication and
application components (Fig.3). Note that this structure remains internal to
DMCS and is not exposed to the application. An application implicitly uti-
lizes these components by requesting local or remote handler invocations. The
functionality handled by each component is described below.

The communication component is responsible for handling operations
destined for remote nodes. It consists of a loop responsible for sending/re-
ceiving messages as well as signaling other components of PREMA regarding
message requests related to/targeting them. We offer two configurations; either
a dedicated thread is used to perform the communication, or any of the threads
in the handler execution component is assigned this task periodically. When
a thread of the two other components desires to send a message, it pushes

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 9

Fig. 3 The DMCS execution model. Each hardware thread is associated with a scheduler
S1, ..., SN that might use one or more private or shared work pools consisting of handlers
invocation requests. A handler created locally can target the local or a remote node. The
computation component (dark gray box) keeps a list of incoming handlers which it will
assign to one of the work pools and outgoing handlers that will be delivered thought the
communication library

a request to its respective list which is handled appropriately by the com-
munication component. Ongoing messaging requests are maintained by this
component and their progress is checked periodically. Once a completed request
is found, it is freed and any thread waiting for its completion is signaled to
resume its execution.

Two types of messages are used, fixed and split-phase, based on whether the
size of the message exceeds a predefined threshold. When the size of the data to
be sent is less than this threshold, a fixed size message will be used regardless
of the data size. This message will contain a header needed from the runtime
system, followed by the actual data that will be passed to the remote handler.
When the size of the data is greater than the threshold, split-phase messages
are used. Split-phase messages consist of two parts; a fixed-size message and
a variable-sized message. The former contains the message header that will
inform the receiver about the existence of a second message and the actual size
of its data. The latter contains the actual message data. This information can
then be used by the receiver to issue a second receiving operation, eliminating
the need to query the network for the size of the next incoming message.

The use of fixed-size messages also allows to preallocate a pool of such
messages for each thread that can be used to send or receive remote handlers.
Incoming messages will be received into a preallocated message of one of the
threads’ pools and will be pushed to its list of pending remote handlers until
it is scheduled by the handler-execution component. Once the handler is exe-
cuted, the preallocated message will be pushed back to the pool for reuse.
Likewise, a thread that desires to issue a remote method request will use one
of the preallocated messages in its pool. Thus, new memory allocations are

Springer Nature 2021 LATEX template

10 Multithreaded Runtime Framework for Parallel and Adaptive Applications

avoided for both small and large messages except for the case where the pool
runs out of preallocated messages and needs to be resized.

The handler-execution component executes the remote method invo-
cation requests. This is the component where the bulk of computations are
running and where the parallelism is exploited for application and system-
related operations. When a new handler request is issued -either locally or
from a remote node- an object containing this request is created by the issuer
and is pushed, by the issuer if it’s local or the communication thread if it
is remote, to a pool of handler requests. The user can decide the number of
threads that this component utilizes and whether or not to bind the threads
to specific hardware cores. The default number of threads is that of the avail-
able cores of the node minus one reserved for the application and optionally
one for the communication component, if such configuration is desired. Each
thread is associated with a handler request pool and is responsible to service
it. If the associated work pool is empty, a thread will employ work stealing
with random victim selection [13] to avoid remaining idle and to balance the
load in the node. When the thread’s work pool is empty and a steal attempt
fails, the thread will backoff [14] for an exponentially increasing amount of
time (that is constrained to a maximum value) until it succeeds in finding some
work, in which case the backoff period is reset to zero. By enforcing this delay
both the memory contention and the amount of power wasted is reduced. The
scheduling part of this component can be modified through an interface which
is mainly utilized by higher-level libraries of PREMA as discussed later.

The application component consists of the main function of the applica-
tion. In this component, the application can start the runtime system, register
the methods to be run remotely, define the number of threads to be used in
the handler-execution component, orchestrate the logic of the application, etc.
Once all the preprocessing steps have been completed, the application can
issue remote handler requests from this component to produce work for the
other components. Once the former two components are active, the application
thread can be released to the runtime system, contributing to the handler-
execution threads work until a condition (e.g the current phase of the algorithm
has finished) is met.

Before adopting DMCS to a multi-threaded design, each available core
ran on a separate instance/process (i.e., similar to running one MPI rank per
core). This design created the issue that each processing element (PE) could
only work on its own tasks, having no access to the workload/handlers of
others in the same node. Thus, being susceptible to resource under-utilization
in cases where only a subset of the PEs is the target of handler executions.
Moreover, because all of its operations (i.e., communication, handler execution,
application workflow) ran on a single thread/core, it required explicitly calling
a polling function that handled the progress of all operations. Even though
this design provided a sequential execution model that simplified the process
of writing applications on top of it, it could not take advantage of the benefits

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 11

provided by shared memory architectures. The new design addresses those
issues and further improves its performance.

In summary, the multi-threaded design allows all processing elements in
a single computing node to access any pending handler invocations targeting
this node. Parallelism is explored by executing multiple handlers concurrently
while resources are utilized efficiently by allowing individual threads to steal
their peers’ work. Moreover, no explicit polling operation is required since
progress is handled implicitly by background threads. Implementing intra-node
work-sharing/stealing in the previous single-threaded design would require
expensive inter-process communication and data copies, increasing the over-
heads sustained by orders of magnitude. DMCS does not offer abstractions
to handle issues related to concurrency implicitly; instead, those are handled
by MOL/ILB. This choice was made to keep DMCS as lightweight as possi-
ble since the inclusion of such mechanisms would increase the critical path of
one-sided communication and handler executions.

An important lesson learned from porting a low-level communication sub-
strate, like DMCS, to a truly multi-threaded model supported by the hardware
is that incorporating message passing with intra-node parallelism can signif-
icantly affect the latencies incurred. We found that maintaining per thread
message pools and funneling communication operations to a single thread at a
time can help to mitigate such effects. Moreover, implementing only the nec-
essary functionality at this low level helps to avoid overheads that may arise
when aiming for ease of use and forcing correctness (e.g., checking whether the
arguments of a message are valid). Finally, this decision also adheres to the
principle of separation of concerns that is maintained throughout the design
of PREMA.

4.1.2 Mobile Object Layer

Running mainly inside DMCS remote handlers, the MOL leverages the
multi-threaded DMCS layer and is amplified with the ability to perform its
operations in parallel. This allows running multiple remote handlers that tar-
get the same or different mobile objects concurrently and even initiate parallel
object migrations from a single node. However, these operations require access
to the distributed directory and since they can run in parallel, they have to be
performed in a thread-safe manner.

To avoid the contention issues that could be created by using a lock and
a simple C++ STL map, a custom hash table with chaining1 is used instead.
This approach allows elements to be inserted in different entries of the table
safely but still exhibits possible race conditions for colliding elements. Using a
lock per table entry could solve this problem, however, it is too conservative to
require a lock for each access since the majority of accesses are expected to be
lookups that do not modify the directory. Instead, for insertions, the atomic
operation compare and swap (CAS) is used, while for deletions the element is
marked as invalid and is reused instead of being removed from the list. The

1in case of collisions a list is used to keep the colliding elements in the same entry of the table

Springer Nature 2021 LATEX template

12 Multithreaded Runtime Framework for Parallel and Adaptive Applications

combination of CAS and no deletions results in a thread-safe list that does not
suffer from the ABA [15] problem.

MOL message handlers are assigned access privileges that express how they
may use the target mobile object, exclusively (e.g., write) or shared (e.g., read).
PREMA utilizes this information to extract parallelism and maintain cor-
rectness. Moreover, MOL guarantees the execution order of message handlers
issued to a mobile object from within a single handler context. For example,
a mobile object that issues multiple message handlers to the same target is
guaranteed that all of its issued messages will execute in order. Handler invo-
cations that target the same mobile object with exclusive access are serialized
while handlers with shared access are allowed to run concurrently. When tar-
geting different mobile objects, handler invocations are non-conflicting whether
they desire shared or exclusive access since data enclosed in mobile objects are
independent by definition.

To maintain ordering, messages are assigned an identifier representing the
version (lversioni) of the information in the local copy of the distributed
directory and an increasing sequence number (lseqi) maintained by each node
i for each mobile object in the distributed directory. When a new message
handler arrives from node i, lversioni and lseqi are checked against the receiver
j information lversionj , lseqj and are only considered for execution if they
are consistent. If it is determined that preceding messages are still on the
way, the out of order message are set aside until earlier messages have been
received. Once messages are in order, their access privilege is finally examined
to make decisions about the execution. For operations that do not run inside
MOL handlers but may also target mobile objects, a set of locks is introduced
that offers the same functionality for exclusive and shared access. An example
of such need is when a mobile object has to be migrated; it has to be locked
exclusively first, so that no handler tries to access it in an inconsistent state,
and then packed and sent to its new location.

In summary, the multi-threaded design allows the same functionalities pro-
vided by the single-threaded model, while utilizing all PEs of a computing
node. This enables implicit shared memory load balancing which would be even
heavier to implement in MOL using distributed memory paradigms because of
the use of over-decomposition that would require hundreds of mobile objects
in a single node to communicate with each other through inter-process com-
munications. Applications can take advantage of the added concurrency by
simply annotating message handlers with access privileges. Thus, by utilizing
MOL and the MOD programming model, an application can efficiently run on
multi-core platforms without explicitly dealing with concerns like, maintaining
consistency and avoiding critical sections.

The key to achieve efficiency in a data-flow-centric system, like MOL, is
the implementation of the lock-free distributed directory. At the distributed
memory level this problem was handled by using partial independent copies of
the directory, holding possibly out of date information that was updated lazily
in order to avoid excessive communications. At the shared memory level, we

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 13

Fig. 4 High level representation of DMCS, MOL and ILB interactions.

used a lock-free hash table that allowed quick, concurrent access to different
mobile objects. By allowing low-overhead concurrent access to different mobile
objects and keeping information related to each mobile object in a per object
structure, instead of a global structure, one avoids thread contention unless it
becomes absolutely necessary (i.e., handlers targeting the same mobile object).

Also, because of over-decomposition, the chances of having too many
requests for concurrent access to a single mobile object is expected to be rela-
tively low, thus, contention is also expected to be low. Even when that is not
the case, using atomic operations instead of locks (when possible) mitigates
performance issues.

4.1.3 Implicit Load Balancing

ILB is responsible for scheduling and load balancing at both the shared and
distributed memory levels. At the distributed memory level, ILB maintains
the workload of each mobile object and, consequently, the workload of each
node. Also, it encapsulates the operations required to maintain load balance
across nodes, including information dissemination, bookkeeping, and decision
making. The operations requiring inter-node communication are built utiliz-
ing the DMCS layer and can run in parallel, allowing concurrent mobile object
migrations from the same or different nodes. Running such operations in par-
allel improves response time, makes it easier to overlap them, and enables
more sophisticated load balancing schemes. On the other hand, it increases the
complexity of developing new load balancing algorithms; however, this com-
plexity is constrained to the scheduler module, which a typical user does not
need to modify or adapt unless a new policy needs to be developed. Mobile
object-specific locks are convenient in this context since policies can use them
to guarantee that no handler is running on a mobile object before trying to
migrate it. After exclusively locking an object, it is safe to pack and migrate
it to another node along with its workload. By design, the scheduling interface
does not need to check whether the pending handlers in its pools target mobile
objects that might have migrated. Such handlers are invalidated during the
packing process and are ignored when popped from the scheduling interface.

Springer Nature 2021 LATEX template

14 Multithreaded Runtime Framework for Parallel and Adaptive Applications

The ILB scheduler is periodically called by the handler-executing threads
once they have finished pending work in the DMCS and MOL layers. Before ini-
tiating distributed load balancing, a scheduler would usually prefer to execute
the local workload. The workload consists of pending ILB handlers residing
in the local work pools of the scheduler (and internally in the respective list
of individual mobile objects). ILB handlers are assigned exclusive or shared
access, holding the same principles as discussed for the MOL. When a handler
is safe to be executed (i.e., it is in order and does not conflict with others),
it is pushed to the local scheduler work pools through the respective callback
(see section 3.3). By enforcing all dependencies to be resolved before the local
scheduler is informed about a new handler, we relieve the scheduling policy
from having to maintain execution order correctness. In contrast, the load of
local mobile objects is updated even before the respective handler is able to
execute. This allows the scheduler to be informed about the whole workload
of a node regardless of whether it has dependencies or not.

A high-level representation of the interactions between the different layers
is presented in Fig. 4. When a new message is available, it is received from
the communication component of DMCS and assigned to one of the handler-
executing threads (light gray arrows). If it is a load balancing request, it is
routed directly to ILB. If it is an application request targeting a mobile object
mo2, it will pass through the MOL to look up the object’s location using the
distributed directory. If the mobile object is not local, the request is forwarded
to the object’s last known location. Otherwise, the request is passed to ILB,
which will update the load of the respective mobile object and push the request
to its work pool. The ILB scheduler, which runs independently, can schedule
some requests or initiate load balancing by sending such requests to other
nodes using the DMCS interface. When the application needs to invoke a
handler remotely to some mobile object mo1 (dark gray arrows), a new request
is created by ILB with relevant information attached. The request is passed
to MOL, which finds the location of the mobile object and sends the request
using the DMCS layer.

Last but not least, ILB offers the ilb_multicast operation. This handler
execution request can be sent to multiple mobile objects and will only start
running when all of those mobile objects reside in the same node. Its inputs are
the mobile objects needed to be in the same node, a buffer for the arguments,
and the index of the mobile object on which it should start running. Once
called, it migrates (if needed) the mobile objects on the same node, locks them
so that they cannot be moved by another handler, and schedules the requested
handler. This operation was implemented to support applications that may
require access to multiple mobile objects in a single handler before they can
start their computations like the one presented in [16]. An effort that uses this
functionality can be found in [7] but is out of the scope of this paper.

In summary, the multi-threaded design of ILB allows efficient utilization of
multi-core nodes while monitoring their workload and providing load balanc-
ing. Using an easy-to-use API, one can quickly implement custom shared and

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 15

distributed memory (2-level) scheduling and load balancing policies without
the need to handle dependencies or reason about mobile object locality. Work
units that are available at the scheduling module are either safe to execute
(i.e., have no dependency conflicts) or have already been invalidated by the
runtime. As opposed to a single-threaded design, load balancing among cores
in the same node does not need to go through the process of mobile object
(de)serialization and expensive rounds of synchronization. Instead, just passing
a pointer between threads is enough to share workload. Moreover, it enables
concurrently migrating multiple mobile objects while computations are also in
progress, thus, hiding and overlapping latencies in a single node.

By utilizing the mobile object-specific locks, one is able to safely and
correctly maintain the load of individual objects and monitor their pend-
ing handlers in the respective lists by only serializing conflicting operations
on the same mobile object. The lessons learned from implementing a 2-level
implicit load balancing framework is to separate the concerns between local
and global decision making as well as between correctness and performance.
Monitoring the information for each level separately allows for easier, cleaner
and more efficient implementation. Handling correctness at a lower level also
improves performance and mitigates errors. Moreover, maintaining workload
and pending handler information in a per-object fashion rather than a global
one improves performance and avoids excessive contention.

4.2 Correctness
Formally proving correctness in a complex system like PREMA is a difficult
task. Formal methods, Markov chains, discrete event simulations, or Petri nets
could be some approaches to tackle this problem. Such a systematic study for
correctness is left as future work and is outside the scope of this paper. As
an initial step towards proving correctness, we try to demonstrate that our
system is free of inherent deadlock problems based on its design.

Starting from the lowest layer, DMCS, the communication component is
implemented using only non-blocking MPI calls to avoid deadlocks in the two-
sided communication model. The message receiving part of the component
uses MPI_Iprobe() to check for messages from any source. Once an incoming
message is found, the respective memory is allocated, and the receiving call
is issued safely. The sending part also uses asynchronous sending operations.
Progress for both sending and receiving is checked periodically between or
in parallel to method invocations. The asynchronous messaging operations,
along with the restriction that only one thread per MPI rank can send/receive
messages at a time, guarantee that messaging will not lead to deadlocks.

In the threading component, threads are associated with thread-safe work
pools that hold handler invocation requests and share their work through steal-
ing. To guarantee correctness, handlers encapsulate tasks that do not rely on a
future handler invocation for progression. Handlers can issue blocking messag-
ing calls, which internally progress message-passing, and use mutual exclusion
(locks) if they are acquired and released in the context of a single handler

Springer Nature 2021 LATEX template

16 Multithreaded Runtime Framework for Parallel and Adaptive Applications

(i.e., no inter-handler lock-unlock) but cannot block waiting for a handler that
has not yet started executing. For example, it is safe for multiple handlers to
compete for the same lock as long as they release it before completing their exe-
cution. This restriction guarantees that all handlers complete at some point,
and there is no case of deadlocks.

The MOL builds on top of DMCS’ handler threads and follows the same
restrictions. In [9] it is formally proven that MOL, with a single thread, is
always able to keep this information up to date and consistent no matter how
many migrations take place in the distributed system. We build upon this for
the multi-threaded version to maintain correctness. As presented in section 4,
we use a thread-safe hash table to track mobile objects and maintain atomic
access per mobile object entry. Atomic access guarantees that information like
messaging sequence numbers and directory version identifiers are checked and
updated safely in the presence of multiple threads. Moreover, handlers target-
ing mobile objects are associated with an access type that lets users define
mutual exclusion at a higher level, leaving PREMA to handle the correct sub-
mission of conflicting handlers. The information about the access type of a
handler executing on a mobile object is also maintained in the distributed
directory entry. When a new handler is about to be executed on a mobile
object, its access type is checked against the current mobile object state. If
another handler is already running on the object with a conflicting access type,
the new handler is suspended in a thread-safe list of waiting tasks, maintained
per mobile object. When the current handler completes, it resubmits its depen-
dent handlers back to the main work pool. By utilizing access types, PREMA
can guarantee that no conflicting handlers will run concurrently, relieving the
application from this burden and improving performance.

The ILB utilizes DMCS and MOL to route handler invocation requests
to the appropriate mobile object and inject them into its thread-safe pool of
pending work. Updates to the load balancing policy are also triggered in this
process, constraining the policy implementations to the same restrictions as
handler invocations. ILB utilizes the mobile object-specific locks of MOL to
guarantee that a mobile object cannot migrate while there is at least one han-
dler executing on it. Respectively, it also guarantees that while a mobile object
is in the process of packing and migration, no handler can start running on it.
Moreover, handlers targeting migrated mobile objects are automatically inval-
idated, removing this burden from the scheduling policy. Thus, given that the
handler invocations and the load balancing policies are implemented under the
above restrictions, ILB and PREMA are free of inherent deadlock situations.

In summary, arguments can be made for the absence of inherent deadlocks
at the communication, handler execution, message ordering/forwarding and
scheduling/workload-related bookkeeping. However, a complete formal proof
of the correctness is beyond the scope of this work.

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 17

5 Performance Evaluation

5.1 Experimental Setup
The following experiments have been conducted on a computing cluster con-
sisting of 190 Intel(R) Xeon(R) (E5-2660 v1-2, E5-2670 v2, E5-2698 v3,
E5-2683 v4) computing nodes. Each node has two CPUs of 16-32 threads in
total, 128 GB of memory, and runs Red Hat Linux. We used the MPICH 3.1.3
MPI implementation as the communication library and gcc 6.3.0 for compil-
ing. The SW4lite proxy application was run on a newer cluster with Intel(R)
Xeon(R) Gold 6148 @ 2.4 GHz CPUs of 40 cores each, using OpenMPI 3.1.4.

5.2 Communication
We first evaluate the performance of the communication-related functionali-
ties of PREMA. Communication is an important part of the runtime system
since PREMA adopts a message-driven execution model. We evaluate the per-
formance of each layer of PREMA using a simple ping-pong benchmark and
compare the results with those of an MPI implementation. For DMCS, we
use two processes residing on two different nodes; process 0 sends a remote
method invocation request of size X to process 1 and blocks waiting for the
response. On arrival, the remote method executes and sends a request of the
same size back to process 0. This request unblocks process 0 and triggers it to
send the next message. This pattern is repeated 1000 times for each message
size, and the average latency/bandwidth is reported. For MOL and ILB, the
procedure is the same, but the messages are sent between two mobile objects,
which reside in processes 0 and 1, respectively.

In Fig. 5a one can see that DMCS, MOL, and ILB add a roughly fixed
amount of overhead to the latency that is independent of the message size.
The performance of each layer is bound by the performance of lower layers
and the performance of MPI. Since the overhead is stable, its effect is more
noticeable in smaller messages where the MPI time is low, and the overhead
is a significant percentage of the overall time, as seen in Fig. 5b. The effects
on the bandwidth seem to be less significant for both small (Fig. 5d) and
large messages (Fig. 5c). ILB experiences the highest penalties since an ILB
message has to go through DMCS and MOL and be registered with the load
balancing module before being scheduled. However, we believe the overhead
added is acceptable given the provided functionality.

As mentioned before, DMCS uses pools of preallocated, fixed-size mes-
sages which consist of the headers required by the remote handler requests.
By maintaining those pools, the overhead accountable to memory allocations
is reduced, and querying for the size of incoming messages is avoided. As a
result, the latency for initializing the message delivery process is reduced and
turns out to be relatively stable among different invocations. When the argu-
ments of a handler are small enough to fit inside a fixed-size message, they

Springer Nature 2021 LATEX template

18 Multithreaded Runtime Framework for Parallel and Adaptive Applications

(a) (b)

(c) (d)

Fig. 5 Ping-pong measurements for all three layers of PREMA compared to MPI. Com-
parison of (a) latency, (b) latency for small messages, (c) bandwidth and (d) bandwidth for
small messages.

are copied into it; otherwise, they are sent as a separate message. In the for-
mer case, the receiver has the preallocated messages ready to receive, while in
the latter, the buffer can be allocated, and the receiving call can be issued as
soon as the headers are received, even before the message with the actual data
has been sent. This implementation helps to overlap the time taken from the
sender to send the second message with the time it takes for the receiver to
prepare for the delivery.

Figure 6 shows the advantage of using preallocated, fixed-size messages.
Small messages (smaller than 2KB) highly benefit from this optimization
whether the handler arguments are copied into the header (up to size 512B
for this case) or sent as a separate message (1KB message). Using preallo-
cated messages reduces latency (Fig. 6a) by almost 50%, compared to not
using them (39 compared to 77µs). Furthermore, the bandwidth (Fig. 6b) is
also significantly affected for small messages larger than 64B with up to 100
percent improvement. For messages larger than 2KB, the performance of the
two approaches is similar because the cost of sending the messages themselves
becomes the dominant factor.

5.3 Load Balancing

5.3.1 Synthetic Benchmark

Next, we evaluate the performance of PREMA in terms of load balancing,
overall application runtime, and the overhead imposed by the runtime system.
We start with a simple synthetic benchmark to test the system in a fully con-
trolled and isolated environment. Using such benchmarks allows for avoiding

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 19

(a) (b)

Fig. 6 Ping-pong measurements for DMCS without preallocated messages. The effect of
using preallocated messages in (a) latency and (b) bandwidth. The performance for messages
larger than 1KB is comparable to the optimized version and is not shown here.

any unexpected behavior that a real application could demonstrate that could
affect the performance of the system.

The benchmark begins by creating mobile objects on process 0 and dispers-
ing them to the available cores; computations are then invoked on each of the
mobile objects via PREMA‘s messaging mechanism. When all computations
on a mobile object have been completed, a notification is sent back to pro-
cess 0. Once all completion notifications have been received, the benchmark
terminates. We assign ten mobile objects to each available core and specify a
weight (workload) from two categories, light and heavy, for each mobile object.
The average execution time of a heavyweight mobile object is 2.5x the execu-
tion time of a lightweight, and 20 percent of the mobile objects are assigned
to the heavy category. Each instance of PREMA consists of the same amount
of cores, and we employ a diffusive load balancing algorithm to evaluate its
performance.

For the MPI version of the benchmark, we replace the mobile objects with
plain data objects and perform only static load balancing. Once an MPI rank
has received all of its data, it will execute the computations for all of them and
then terminate. Note that even though PREMA uses one core exclusive for
message handling, for fairness, this core is counted as an available core when
calculating the number of mobile objects to distribute to each node since the
MPI version can utilize all cores of the node for computations.

The performance comparison for the benchmark is shown in Fig. 7. The
workload distribution achieved indicates the impact of using PREMA com-
pared to the MPI implementation. Figures 7a and 7b compare the workload
distribution of 320 cores using plain MPI (320 ranks) and PREMA (10 ranks
(nodes) of 32 threads each). In Fig. 7a the heaviest workloads have been gath-
ered roughly to the first 130 cores for an overall running time of 683 seconds.
Fig. 7b shows the results after porting the benchmark on top of PREMA,
where the workload has been redistributed equally among the available cores
decreasing the overall running time to 495 seconds, an improvement of 27.53
percent.

Figures 7c and 7d show the performance of the same benchmark when
we quadruple the number of cores and work units. The pattern for the work-
load distribution remains the same, and as such, we see the same performance

Springer Nature 2021 LATEX template

20 Multithreaded Runtime Framework for Parallel and Adaptive Applications

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 Per core work-load breakdown running the synthetic benchmark, for MPI with (a)
320, (c) 1280, (e) 3200, (g) 5600 cores and PREMA with (b) 320, (d) 1280, (f) 3200 and (h)
5600 cores. Each core is a different MPI instance (rank) for the MPI cases. For the cases with
PREMA one core per instance is reserved for communication, (b) and (d) have one instance
per 32 cores while (f) and (h) have an instance per 16 cores. The black dashed line indicates
the overall running time including initialization computations and termination time.

breakdown as before. Fig. 7d shows that PREMA is not affected at all by
the vast increase in the number of cores and tasks that it needs to balance.
Even though the overall runtime slightly increases, it is not a penalty from
PREMA itself but by the initialization stage of MPI and the distribution of
the initial workload of the problem. This is made more apparent by looking

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 21

at the MPI case, where the dashed line is further higher from the computa-
tions bars since many more ranks need to be initialized. Figures 7e, 7f and 7g,
7h present the results for 3200 and 5600 cores, where the size of the problem
has increased accordingly. However, for these cases, PREMA uses 16 cores per
instance instead of 32, which increases the number of PREMA instances, as
well as the number of cores reserved for communication. In other words, there
are fewer cores for computations per hardware node than before (2 communi-
cation cores vs 1 communication core per node). Despite these modifications,
PREMA maintains a fair workload distribution and is not affected much by the
MPI initialization step (mainly because far fewer MPI ranks are initialized).
The overall improvement for the two cases is 27.42 and 31.63 percent, respec-
tively. Table 1 presents the overhead of PREMA, the minimum and maximum
refinement time, which is also the factor that impacts the overall running time
the most. The minimum/maximum refinement time corresponds to the run-
ning time of the worker that finished all of its tasks at the earliest/latest,
respectively. The effectiveness of the dynamic load balancing can be noticed
by how the variance between these two values has been reduced compared to
the variance in the MPI version while maintaining a very low overhead of, on
average, 0.05 seconds.

5.3.2 Parallel Mesh Refinement Application

The initial motivation for the development of PREMA is to separate the
concerns of performance and algorithmic correctness for parallel mesh refine-
ment applications. To evaluate its performance with such applications, we
used our in-house developed tetrahedral mesher CDT3D [17] as an application
benchmark.

CDT3D uses as input a triangulation of a Piecewise Linear Complex (PLC)
of the domain to be discretized. The basic steps involve: creating a Delau-
nay Tetrahedralization of the boundary points using Delaunay point insertion,
recovering the boundary using topological transformations and edge/face par-
titioning, and finally refining the mesh. During the mesh refinement procedure,
points are created using an Advancing Front type point placement and are then
inserted by direct subdivision of the containing tetrahedra. The connectivity of
the mesh is then optimized using a combination of topological transformations.

For this experiment, the first two steps (i.e., Delaunay Tetrahedraliza-
tion and Boundary Recovery) were executed sequentially, as they are needed
to bootstrap the mesh and are less time-consuming in comparison to mesh
refinement. The resulting mesh was then partitioned into N sub-domains with
N >> #cores using an octree adapted to the mesh density (see Figure 8).
The sub-domains are registered as mobile objects and then serialized and
distributed among the available processes by PREMA. This decomposition
scheme was selected to create sub-domains with a similar number of tetra-
hedra for a balanced initial workload per sub-domain. The surface of each
sub-domain is constrained (i.e., remains unchanged during the refinement),
and thus, there is no need for communication between the subdomains. In the

Springer Nature 2021 LATEX template

22 Multithreaded Runtime Framework for Parallel and Adaptive Applications

future, we plan to relax this requirement by either allowing modifications on
the boundary and consequently introducing a small amount of communication
along the boundaries of the sub-domains or by pre-refining the sub-domain
boundaries in a separate preprocessing stage.

Fig. 8 Subdomains of the initial coarse mesh that is used to bootstrap the parallel refine-
ment process. The input is a surface mesh of a nacelle inside a cylindrical domain. An
adaptive octree is used to decompose the volume mesh to equal meshes based on the number
of tetrahedra in each leaf. Subdomains are the unit of worked captured by mobile objects in
this case and are used to perform dynamic load balancing in the distributed system.

Porting CDT3D on top of PREMA requires only writing the appropriate
handlers and callbacks which will initialize and execute the CDT3D mesher.
More specifically, the handlers and callbacks used in this experiment are the
following:

• Pack/Unpack Sub-domain callbacks, for migrations
• Initialize, for bootstrapping mesher’s data structures
• Refine, for the sub-domain refinement
• Callback for calculating the weight (computational cost) of a handler

The application is run with ILB and plain MPI to evaluate the load bal-
ancing quality. The preprocessing step is identical in both cases; once the
sub-domains are created, they are assigned to the available worker cores. Fig. 9
depicts the performance comparison of ILB versus MPI using the mesh refine-
ment application. Figures 9a, 9b and 9c, 9d show the results when MPI and
PREMA are utilizing 640 and 1280 cores respectively. Cores are allocated in
the same manner as described in section 5.3.1 using the same mesh size of 30
million elements, over-decomposed into 4.5 thousand sub-domains. The pre-
processing and decomposition times are not included in the graph since they
are identical for all cases. The same diffusive load balancing policy is used
where each PREMA instance can only share its load with a specific subset of
the instances available; if no instance in the set has enough load, a new set of
instances is picked. The performance improvement that ILB offers compared to
the MPI implementation with static load balancing for those two cases is 40.5
and 26 percent, respectively, by dynamically redistributing the available sub-
domains to the starving workers. As can be seen from table 2 the maximum
refinement time decreases from 340 to 197 seconds (40%), and the difference
between the maximum and minimum refinement time is reduced from 326 to

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 23

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9 Per core work-load breakdown running the CDT3D benchmark, for MPI with (a)
640, (c) 1280, (e) 3200, (g) 5600 cores and PREMA with (b) 640, (d) 1280, (f) 3200 and
(h) 5600 cores. Each core is a different MPI instance for the MPI cases. For the cases with
PREMA one core per instance is reserved for communication, (b) and (d) have one instance
per 32 cores while (f) and (h) have an instance per 16 cores. (a), (b), (c) and (d) use an initial
mesh of 30 million elements , decomposed into 4.5 thousand sub-domains while (e), (f), (g)
and (h) use an initial mesh of size 110 million elements decomposed into 27 thousand sub-
domains. The black dashed line indicates the overall running time including initialization,
computations and termination time.

116 seconds while the overhead imposed from the load balancing is on average
0.48 seconds per core utilized.

For the 1280 cores case, the difference between the maximum and minimum
refinement time decreases from 223 to 131 seconds, while the maximum time

Springer Nature 2021 LATEX template

24 Multithreaded Runtime Framework for Parallel and Adaptive Applications

Table 1 Time breakdown and comparison with the plain MPI version for different core
allocations using the synthetic benchmark. The overhead presented is per thread utilized.
The maximum and minimum refinement time correspond to the time spent by the most
and least loaded thread in the lifetime of the benchmark. Maximum refinement time
dominates the overall running time.

#cores PREMA overhead Min refinement Max refinement
(sec) (sec) (sec)

Max Min Avg PREMA MPI PREMA MPI
320 0.84 0.0001 0.07 464.8 324.9 494.4 (-27.4%) 681.8
1280 0.76 0.0001 0.05 464.9 324.7 497.6 (-29.3%) 704.1
3200 0.35 0.0001 0.04 480.7 322.6 515.2 (-25.5%) 691.9
5600 0.48 0.0003 0.04 479.2 310.6 515.9 (-28.1%) 717.8

decreases from 225 to 162 seconds (26%). Figures 9e, 9f and 9g, 9h show
the results of running the application with an initial mesh of size 110 million
elements decomposed into 27 thousand sub-domains on 3200 and 5600 cores.
The performance gain is even larger in these cases since the increased mesh
size caused a higher load imbalance. The improvement exhibited is 56 and 43.6
percent, respectively. In table 2 one can see the high variation of refinement
time for MPI, which is mitigated by PREMA’s implicit load balancing. More
specifically, while for MPI the refinement time varies by up to 754 and 488
seconds, PREMA manages to take the variance down to 239 and 215 seconds,
respectively. For all these cases, the time attributable to the runtime system is
negligible. Table 2 shows the overhead of PREMA being less than one percent
of the overall runtime and the decrease in variation between minimum and
maximum refinement time.

An important observation from Fig. 9 is that even though the load distri-
bution has been improved it is still not optimal; some cores ran for a much
longer time than the average. The same observation is apparent from Table
2; the variance between the minimum and maximum refinement time is much
larger than the one noticed in the synthetic benchmark, caused by the mesh
decomposition quality. Even though the adaptive octree creates sub-domains
of similar size, the refinement time per sub-domain can differ dramatically.

For example, the refinement of a single sub-domain could last as much
as the refinement of a hundred others, dominating the overall time of the
refinement. Since concurrency is exploited by running refinement on different
sub-domains using one thread per sub-domain, adding more threads will not
lower the refinement time of a single sub-domain. This is also why PREMA
does not scale as expected when increasing the number of cores. To address
this issue, we plan to modify the application to incorporate data decomposition
on top of domain decomposition, which will allow parallelism inside a sub-
domain. We will also look into more effective decomposition methods for the
initial work distribution.

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 25

Table 2 Time breakdown and comparison with the plain MPI version for different core
allocations using the CDT3D mesh refinement application. As in table 1, the overhead
presented is per thread utilized. The maximum and minimum refinement time correspond
to the time spent by the most and least loaded thread in the lifetime of the application.
Maximum refinement time dominates the overall running time.

#cores PREMA overhead Min refinement Max refinement
(sec) (sec) (sec)

Max Min Avg PREMA MPI PREMA MPI
640 0.7 0.004 0.18 80.4 13.9 197.12 (-42.1%) 340.7
1280 0.82 0.001 0.05 31.12 2.1 162.2 (-27.9%) 225.1
3200 37.9 0.04 0.65 86.1 9.8 325.2 (-57.4%) 764.4
5600 29.5 0.02 0.48 51.2 1.6 266.8 (-45.5%) 489.9

Fig. 10 Simulation produced by the SW4 seismic wave simulation application. Image
adapted from the Computationl Infrastructure for Geodynamics [18].

5.3.3 Seismic Wave Simulations

SW4lite [19] is a proxy application that models the workflow of SW4 [20],
an application that implements substantial capabilities for 3D seismic mod-
eling (see Figure 10 for an example). Sw4lite is a simplified version of SW4
intended for testing performance optimizations in a few important numerical
kernels of SW4 and was developed to support the Exascale Proxy Applications
Project [21].

Even though this application is not impacted by load imbalance, it is
communication-intensive and tightly coupled, a good candidate to showcase
PREMA’s low overhead and applicability even on applications that are not
the main target of PREMA. We make the case here that even an applica-
tion that consists of different kernels, where only a portion of them benefits
from dynamic load balancing, can be ported to PREMA without negatively
affecting the other kernels.

The proxy application starts by decomposing the original 2D grid into sev-
eral partitions equal to the number of available processes. The processors are
positioned into a logical 2D grid and are assigned a partition of the applica-
tion grid. A preprocessing step follows before the main kernel of the proxy
starts. The main computation kernel runs in an iterative fashion consisting

Springer Nature 2021 LATEX template

26 Multithreaded Runtime Framework for Parallel and Adaptive Applications

of computations intercepted by two cycles of neighbor-to-neighbor communi-
cation per iteration. The communication pattern for each cycle is as follows:
Each processor sends some data of the partition it holds to its left neighbor
and waits to receive the respective data from its right neighbor. Once the data
are received, the same pairs of processors share data in the opposite direction.
Next, the same process repeats for the y-axis; each processor sends another
portion of its data to its bottom neighbor and waits to receive the respective
data from its top neighbor. Then the communication continues in the opposite
direction. Processors located on the edges of the grid only send/receive data
to/from the available neighbors. Figure 11a shows the communication pattern
schematically.

The following process was followed to port the application on top of
PREMA :

• Each of the partitions of the decomposed 2D grid is registered as a mobile
object.

• Each MPI rank holds partitions equal to the number of cores it utilizes.
• Preprocessing computations are performed by invoking remote handlers on

each partition.
• Two-sided communication is replaced with one-sided asynchronous remote

method invocations.

Specifically, the four-step communication pattern, part of the application’s
iterative process, has been modified to ensure correctness. In contrast with
two-sided MPI, where the receiver can explicitly request for the data to be
received, PREMA’s message receiving is implicit; thus, we need to make sure
that the receiver is ready to accept the data without corrupting its state. The
communication in each direction begins with the receiving neighbor requesting
the data. The sender will then send the respective data when it is ready. In this
way, it is guaranteed that both neighbors’ data are consistent after the first
and third communication steps. The requests for the second and fourth steps
are implicit as they are received as part of the actual data sent in the first and
third steps. Figure 11b demonstrates the modified communication pattern.

For this paper, the problem LOH.1 presented in [22] is supplied as the
input to SW4lite. PREMA runs using one MPI rank per available socket,
consisting of ten hardware cores, while each computing node holds four sockets
for a total of 40 cores per node. In this case, we use the configuration where
PREMA does not have a dedicated thread for communication, but the handler
execution threads run the communication functions periodically. The plain
MPI version runs with one MPI rank to one core mapping. Figure 11c shows the
performance comparison for the two approaches. We can see from the graphs
that the performance of PREMA is equal and, in some cases, even better
than the performance of the MPI implementation, even though the application
would not benefit from load balancing and an extra step of message passing
per iteration has been added. This is achieved by overlapping communications
with computations (since both are asynchronous) and sharing threads available

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 27

in a socket to handle different requests. It is important to note that all load
monitoring-related operations are run for PREMA, even though there is no
need for load balancing, and there is no significant overhead.

(a) (b)

120 250 500 750 1000 1250 1500 1750 2000
0

100

200

300

400

500

600
MPI

PREMA

Number of Cores

T
im

e
(s

)

(c)

Fig. 11 The communication pattern of the (a) plain MPI SW4lite implementation, (b)
modified implementation on top of PREMA. The blue arrows in (b) depict the data requests
that have been added for PREMA implementation of SW4lite.(c) The performance compar-
ison between the two implementations for different numbers of cores.

6 Related Work
Systems like AC [23], Split-C [24] and UPC [5] are some of the first systems
to provide a partitioned global address space (PGAS) environment for parallel
computing as an extension to the C language. They follow the same single-
program multiple data (SPMD) model as MPI, where all computing nodes run
the same code with different sets of data. Global access is provided through
arrays spread among all computing nodes, with each node having affinity to a
specific subset of the array. However, data migration is not supported natively,
and the user needs to maintain the address space consistency if this is desired.
Another issue with the aforementioned systems is that accessing remote and
local data is done in a uniform way, making it difficult for the user to under-
stand which data access will cause inter-node communication; thus, they rely
heavily on compiler optimizations for performance.

Springer Nature 2021 LATEX template

28 Multithreaded Runtime Framework for Parallel and Adaptive Applications

Other systems (e.g. Co-array Fortran [25], Global Arrays [26], Titanium
[27]) followed a similar way of expressing global access but made inter-node
communication explicit by using a different interface between local and remote
accesses to avoid such issues. However, the user will still need to maintain data
consistency if data migrations are desired. CHAOS++[28] avoids this kind
of limitation by natively allowing data migrations and implicitly maintaining
consistency for them along with their pointers using mobile objects; however,
it does not provide automatic load balancing.

Chapel [29] and X10 [30] are PGAS languages that use a more asynchronous
approach based on the abstraction of locales or places, respectively. Places
can be abstract or real machine locations where data or computations reside.
Work and data are then assigned to them explicitly by the programmer using
the language’s interface. Work is assigned by creating asynchronous tasks that
can run in any location and then synchronize to notify completion. High-level
mechanisms to map data to locales also exist; however, this mapping is static
and cannot be changed dynamically. As a result of the explicit assignment of
data and the inability to change data mappings dynamically, dynamic load bal-
ancing has to be explicitly implemented by the application developer. Legacy
systems like PREMA were designed to accommodate the needs of their time;
to remain relevant, such systems need to evolve to serve the requirements of
modern times.

HPX [31] is a distributed asynchronous many-task runtime system library
that exposes an adaptive GAS model where objects can migrate between com-
puting nodes, allowing for distributed load balancing. References and tasks to
such possibly migrated objects are maintained and forwarded automatically.
Even though there are efforts to integrate implicit load balancing with the sys-
tem [32], to the best of our knowledge, HPX does not currently support such
a feature nor an API to develop custom policies. Charm++ [33] is a system
with similar characteristics to PREMA. Programs consist of medium-grained
cooperating message-driven objects called chares. When a method is about to
be invoked to an object, a message is sent to it implicitly. The execution of the
code within a chare is then triggered asynchronously. Each chare is mapped to
a physical processor by the runtime system transparently, allowing for dynamic
change of the assignment of chares to processors during the execution. Thus,
dynamic load balancing is provided implicitly to the application.

The Open Community Runtime (OCR) [34] is a fine-grained, asynchronous,
task-based event-driven runtime. An OCR application consists of data blocks
that encapsulate application data and can be referenced globally, event-driven
tasks (EDTs) that perform the computations, and events that define the
relationships between EDTs. A directed acyclic graph is composed of those
components that resemble the application logic and is passed to the runtime,
which manages data placement and schedules EDTs based on the dependencies
defined in the graph. This approach makes porting a legacy MPI application on
top of OCR quite complicated and error-prone. In contrast, PREMA supports
a simple API similar to MPI, making this task simpler.

Springer Nature 2021 LATEX template

Multithreaded Runtime Framework for Parallel and Adaptive Applications 29

Legion [35] is a high-level parallel programming system for distributed
heterogeneous architectures. Logical regions describe data organization and
expose relationships used for locality and concurrency exploitation. Each task
is explicitly associated with the regions it will access and the type of access
needed (e.g., read-only, read-write). Legion can then map data to nodes
in the distributed system and invoke the tasks accordingly. Because of the
implicit distribution of data and work units, Legion requires applications to
use regions as data structures, prohibiting them from allocating memory using
C/C++ conventions for data that persist after a task completes. This approach
induces an extended rewrite of legacy code, which may not always be feasible,
particularly when external libraries are used.

Other systems provide implementations of activate messages for different
use cases. Some target high performance at the expense of usability (e.g.,
DCMF [36], LAPI [37], GasNet [38]) and are designed mainly as low-level
substrates for higher-level libraries. Others target ease of use but might suffer
in performance (e.g. CORBA [39], Java RMI [40]) or try to get the best of
the two (e.g. AM++ [41], ARMI [42]). Such systems implement some of the
functionalities provided by DMCS and MOL but do not offer support for a
global namespace of implicitly migrating objects in response to load balancing.

7 Conclusion and Future Work
We have presented the new design and implementation of our runtime sys-
tem PREMA. We have shown the advantages of enhancing it with multiple
threads dedicated to specific operations like message passing and computation
and stated the lessons learned from this process. The new implementation is
able to leverage both shared and distributed memory parallelism implicitly
through a uniform interface by exploiting task access privileges. We presented
the abstract interface that one can utilize to develop custom 2-level schedul-
ing and load balancing policies. The multi-threaded model does not heavily
impact the latency and bandwidth of the communication library while enabling
more efficient communication and computation overlapping. Furthermore, we
demonstrated the performance improvements of using PREMA with a parallel
3D advancing front mesh refinement application. We have noted an improve-
ment of up to 56% compared to an MPI implementation without load balancing
in varying sizes of core allocations ranging from 640 to 5600 cores with a neg-
ligible overhead of less than one percent. We have also demonstrated that
the performance of tightly coupled and communication-intensive applications
that do not need dynamic load balancing is not affected significantly by the
additional load monitoring-related operations of PREMA.

In the future, we intend to replace our threading mechanism with that
provided by Argobots [43] to take advantage of their lightweight user-level
threads and context-switching, which will be enhanced with task dependencies.
Furthermore, support for efficient utilization of deep memory hierarchies that
consist of many layers of memory (e.g., High Bandwidth Memory, Non-Volatile

Springer Nature 2021 LATEX template

30 REFERENCES

RAM, burst buffers) will be implemented. Leveraging from this extension, we
will implement out of core support based on our work in the past [44] which was
utilizing the previous version of PREMA. Another aspect that will leverage
from this extension is the support of process fault-tolerance, which can be
implemented using the mobile objects as the data that is checkpointed and
recovered instead of whole process states. Finally, PREMA will be extended
to support distributed heterogeneous systems that incorporate a mix of CPUs
and GPUs. These additions will further reinforce the capabilities and features
that enable efficient utilization of exascale-era platforms.

Acknowledgments
This work is funded in part by the Dominion Fellowship, the Richard T. Cheng
Endowment at Old Dominion University and NSF grant no: CNS-1828593.

References
[1] K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali, “A load bal-

ancing framework for adaptive and asynchronous applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 15, pp. 183–192,
February 2004.

[2] P. Thomadakis, C. Tsolakis, K. Vogiatzis, A. Kot, and N. Chrisochoides,
“Parallel software framework for large-scale parallel mesh generation and
adaptation for cfd solvers,” in AIAA Aviation Forum 2018, (Atlanta,
Georgia), June 2018.

[3] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
messages: A mechanism for integrated communication and computation,”
SIGARCH Comput. Archit. News, vol. 20, pp. 256–266, Apr. 1992.

[4] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta,
T. von Eicken, and K. Yelick, “Parallel programming in split-c,” in
Proceedings of the 1993 ACM/IEEE Conference on Supercomputing,
Supercomputing ’93, (New York, NY, USA), p. 262–273, Association for
Computing Machinery, 1993.

[5] W. W Carlson, J. M Draper, D. Culler, K. Yelick, E. Brooks, K. Warren,
and L. Livermore, “Introduction to upc and language specification,” 04
1999.

[6] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie,
and D. Mavriplis, “CFD Vision 2030 Study: A Path to Revolution-
ary Computational Aerosciences,” Tech. Rep. CR-2014-218178, Langley
Research Center, Mar. 2014.

[7] K. Garner, P. Thomadakis, T. Kennedy, C. Tsolakis, and N. Chriso-
choides, “On the end-user productivity of a pseudo-constrained parallel
data refinement method for the advancing front local reconnection mesh
generation software,” in AIAA Aviation Forum 2019, (Dallas,Texas), June
2019.

Springer Nature 2021 LATEX template

REFERENCES 31

[8] K. Barker, N. Chrisochoides, D. Nave, J. Dobellaere, and K. Pingali, “Data
movement and control substrate for parallel adaptive applications,” Con-
currency and Computation:Practice and Experience, pp. 77–105, February
2002.

[9] N. Chrisochoides, K. Barker, D. Nave, and C. Hawblitzel, “Mobile
object layer: A runtime substrate for parallel adaptive and irregular
computations,” Adv. Eng. Softw., vol. 31, pp. 621–637, Aug. 2000.

[10] A. Fedorov and N. Chrisochoides, “Location management in object-
based distributed computing,” in 2004 IEEE International Conference on
Cluster Computing (IEEE Cat. No.04EX935), pp. 299–308, Sept 2004.

[11] D. Nave, N. Chrisochoides, and L. Chew, “Guaranteed-quality parallel
delaunay refinement for restricted polyhedral domains,” Computational
Geometry, vol. 28, no. 2, pp. 191–215, 2004. Special Issue on the 18th
Annual Symposium on Computational Geometry - SoCG2002.

[12] M. Balasubramaniam, K. Barker, I. Banicescu, N. Chrisochoides,
J. Pabico, and R. Carino, “A novel dynamic load balancing library
for cluster computing,” in Third International Symposium on Parallel
and Distributed Computing/Third International Workshop on Algorithms,
Models and Tools for Parallel Computing on Heterogeneous Networks,
pp. 346–353, 2004.

[13] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computa-
tions by work stealing,” J. ACM, vol. 46, pp. 720–748, Sept. 1999.

[14] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switching
for local computer networks,” Commun. ACM, vol. 19, pp. 395–404, July
1976.

[15] D. Dechev, P. Pirkelbauer, and B. Stroustrup, “Understanding and effec-
tively preventing the aba problem in descriptor-based lock-free designs,” in
2010 13th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, pp. 185–192, May 2010.

[16] A. Chernikov and N. Chrisochoides, “Parallel guaranteed quality Delau-
nay uniform mesh refinement,” SIAM Journal on Scientific Computing,
vol. 28, no. 5, pp. 1907–1926, 2006.

[17] F. Drakopoulos, C. Tsolakis, and N. P. Chrisochoides, “Fine-Grained
Speculative Topological Transformation Scheme for Local Reconnection
Methods,” AIAA Journal, vol. 57, pp. 4007–4018, July 2019. Publisher:
American Institute of Aeronautics and Astronautics.

[18] “Computational Infrastructure for Geodynamics :: Software.”
https://geodynamics.org/cig/software/sw4/. [Accessed November 21,
2021].

[19] “Sw4lite.” https://github.com/geodynamics/sw4lite, 2019. [Accessed Jan-
uary 23, 2021].

[20] N. Petersson and B. Sjögreen, “Sw4 v1.1 [software],” 2014.
[21] “Exascale project,” 2019. [Accessed January 23, 2020].
[22] S. D. et al., “Tests of 3d elastodynamic codes: Final report for lifelines

project 1a01,” tech. rep., Pacific Eartquake Engineering Center, 2001.

Springer Nature 2021 LATEX template

32 REFERENCES

[23] W. W. Carlson and J. M. Draper, “Distributed data access in ac,”
SIGPLAN Not., vol. 30, pp. 39–47, Aug. 1995.

[24] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. S. Lumetta, T. von Eicken, and K. A. Yelick, “Parallel programming in
split-c,” Supercomputing ’93. Proceedings, pp. 262–273, 1993.

[25] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
SIGPLAN Fortran Forum, vol. 17, pp. 1–31, Aug. 1998.

[26] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Aprà, “Advances, applications and performance of the global arrays
shared memory programming toolkit,” International Journal of High
Performance Computing Applications, vol. 20, pp. 203–231, 06 2006.

[27] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: A high performance java dialect,” Concurrency - Practice and
Experience, vol. 10, pp. 825–836, 1998.

[28] C. Chang, J. Saltz, and A. Sussman, “Chaos++: A runtime library for
supporting distributed dynamic data structures,” in Parallel Programming
Using C++, 1995.

[29] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perform. Comput. Appl., vol. 21,
pp. 291–312, Aug. 2007.

[30] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: An object-oriented approach to non-
uniform cluster computing,” SIGPLAN Not., vol. 40, pp. 519–538, Oct.
2005.

[31] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “Hpx: A
task based programming model in a global address space,” in Proceedings
of the 8th International Conference on Partitioned Global Address Space
Programming Models, PGAS ’14, (New York, NY, USA), pp. 6:1–6:11,
ACM, 2014.

[32] P. Amini, Adaptive Data Migration in Load-Imbalanced HPC Applica-
tions. PhD thesis, Louisiana State University and Agricultural and
Mechanical College, 2020.

[33] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on C++,” SIGPLAN Not., vol. 28, pp. 91–108,
Oct. 1993.

[34] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee,
J. Fryman, I. Ganev, R. Knauerhase, M. Lee, B. Meister, B. Nickerson,
N. Pepperling, B. Seshasayee, S. Tasirlar, J. Teller, and N. Vrvilo, “The
open community runtime: A runtime system for extreme scale comput-
ing,” in 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7, Sept 2016.

[35] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Express-
ing locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,

Springer Nature 2021 LATEX template

REFERENCES 33

Storage and Analysis, SC ’12, (Los Alamitos, CA, USA), pp. 66:1–66:11,
IEEE Computer Society Press, 2012.

[36] S. Kumar, G. Dózsa, G. Almási, P. Heidelberger, D. Chen, M. E.
Giampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. E. Smith,
and C. J. Archer, “The deep computing messaging framework: generalized
scalable message passing on the Blue Gene/P supercomputer,” in ICS ’08,
2008.

[37] G. Shah, J. Nieplocha, H. Mirza, C. Kim, R. Harrison, R. Govindaraju,
K. Gildea, P. DiNicola, and C. Bender, “Performance and experience
with LAPI - a new high-performance communication library for the
ibm rs/6000 sp,” in Proceedings of the First Merged International Par-
allel Processing Symposium and Symposium on Parallel and Distributed
Processing, pp. 260 – 266, 01 1998.

[38] D. Bonachea and P. H. Hargrove, “Gasnet-ex: A high-performance,
portable communication library for exascale,” in Languages and Com-
pilers for Parallel Computing (M. Hall and H. Sundar, eds.), (Cham),
pp. 138–158, Springer International Publishing, 2019.

[39] A. L. Pope, The CORBA Reference Guide: Understanding the Com-
mon Object Request Broker Architecture. USA: Addison-Wesley Longman
Publishing Co., Inc., 1998.

[40] J. Waldo, “Remote procedure calls and java remote method invocation,”
IEEE Concurrency, vol. 6, no. 3, pp. 5–7, 1998.

[41] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++: A
generalized active message framework,” in Proceedings of the 19th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
PACT ’10, (New York, NY, USA), p. 401–410, Association for Computing
Machinery, 2010.

[42] N. Thomas, S. Saunders, T. Smith, G. Tanase, and L. Rauchwerger,
“ARMI: A high level communication library for STAPL,” Parallel Pro-
cessing Letters, vol. 16, pp. 261–280, June 2006.

[43] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castelló, D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé,
S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun,
K. Taura, and P. Beckman, “Argobots: A lightweight low-level threading
and tasking framework,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 3, pp. 512–526, 2018.

[44] A. Kot, A. Chernikov, and N. Chrisochoides, “The evaluation of an
effective out-of-core run-time system in the context of parallel mesh
generation,” in IEEE International Parallel and Distributed Processing
Symposium, pp. 164–175, May 2011.

Springer Nature 2021 LATEX template

34 REFERENCES

Appendix I
The goal of this appendix is to present the (simplified) implementation of two
load balancing strategies, Master Worker and Diffusion, utilizing PREMA’s
scheduler API. The two strategies have been used to scale different irregular
applications ([7], Section 5.3.2), while significantly reducing code complexity
(removing load balancing-related code) and line count (e.g., 1200 vs 2500 LOC
in the first application) compared to the respective MPI implementations.

I.1 Master Worker
Figure 12 presents the simplified master-worker implementation. The derived
class assigns a single node as the master and defines a load threshold under
which a worker node is considered underloaded (line 3). Each node keeps a
custom map (provided by PREMA) that holds mobile objects along with their
workload and tracks the overall node workload. When a worker finds its load
under the threshold, it sends a remote request to the master for a new mobile
object migration (lines 5-7). If the master holds enough load, it picks a mobile
object, packs it, and sends it to the requesting worker (lines 27-30). Otherwise,
it requests the worker to wait and pushes its rank to a list of waiting workers
(lines 33-34). In the reception of the master’s reply, the worker unpacks and
installs the packed object to the local node, which updates PREMA about the
migration(lines 38-41). If there is no mobile object to unpack, the worker sets
a flag that it should wait from the master for a new workload when it becomes
available (line 44). In this simplified case, we use a simple list to maintain
handler invocation requests and support the push()/pop() operations; a more
sophisticated implementation could use work pools per thread, per mobile
object, or a combination of the two. Method notify() keeps the mobile objects
- load map and node workload up to date and is called each time the node
workload changes.

Springer Nature 2021 LATEX template

REFERENCES 35

1 class simple_master_worker : public ilb::scheduler {
2 public:
3 simple_master_worker(size_t low_limit, int master_rank) : m_low_limit (low_limit),

m_master(master_rank), m_worker_waiting(0) {}
4 void dist_balance() {
5 if(prema::my_rank() != m_master && ! m_worker_waiting)
6 if(m_mo_map.get_total_load() < m_low_limit) // Worker checks if load dropped below

threshold
7 dmcs::send(m_master, work_request); // request work from master
8 else
9 while(m_mo_map.get_total_load() > 0 && !m_waiting.empty()) { // master sends work to

waiting nodes while there enough workload
10 int dst = m_waiting.front();
11 m_waiting.pop_front();
12 work_request(dst);
13 }
14 }
15 // update node’s and mo’s load
16 void notify(ilb::mobile_object mo) {m_mo_map.insert(mo->get_load(), load);}
17
18 ilb::handler* pop(int thread_id) {
19 ilb::handler* hdlr = m_hldr_pool.front(); // pick the next handler in the pool
20 return hdlr;
21 }
22 void push(int thread_id, ilb::handler* hdlr, ilb::mobile_object mo) {
23 m_hldr_pool.push_back(hdlr); // insert a new handler in the work pool
24 }
25 void work_request(int src) {
26 if(m_mo_map.get_total_load() > 0) { // if enough load
27 ilb::mobile_object mo = m_mo_map.pop(); // master picks mo with largest workload
28 void* buffer = mo->pack(); // packs it
29 dmcs::send(src, work_request_reply, buffer); //and migrates it to requesting worker
30 }
31 else { // not enough load
32 m_waiting.push_back(src); // keep track of waiting workers
33 dmcs::send(src, work_request_reply, NULL); // put worker to wait
34 }
35 }
36 void work_request_reply(int src, void* buffer) {
37 if(buffer != NULL) { // master replied with mo (workload)
38 m_worker_waiting = 0;
39 ilb::mobile_object mo(buffer); // unpack mo
40 mo.install(); // and notify PREMA
41 }
42 else // wait until master has work to share
43 m_worker_waiting = 1;
44 }
45 private:
46 int m_master, /* rank of the master node */, m_worker_waiting;
47 size_t m_low_limit; // low threshold to request for load
48 ilb::mo_work_map m_mo_map; // map wrt load for mobile_objects, also keeps total workload
49 list<handler*> m_hldr_pool; // list of pending handlers
50 list<int> m_waiting; // list of workers waiting for work from master
51 }

Fig. 12 Sample implementation of the Master-Worker model using PREMA’s API.

Springer Nature 2021 LATEX template

36 REFERENCES

I.2 Diffusion
Figure 13 presents the simplified diffusive scheme implementation. In this

scheme, each node assigns a “neighborhood” of other nodes from which it can
request workload. In each new load balancing phase, the underloaded node
tries to steal from the node with the largest workload in the neighborhood.
If no neighbor has enough workload, a new neighborhood is assigned for the
next load balancing phase. In this implementation, dist_balance() checks if the
node is underloaded and initiates a new load balancing phase by requesting
the workload levels of its neighborhood. Once the underloaded node receives
all the responses, it chooses the neighbor with the highest load and requests for
mobile object migration or assigns a new neighborhood if not enough workload
exists(lines 25-36). The receiver of a migration request picks its mobile object
with the largest workload and, if its workload is enough, packs and sends it to
the underloaded node. Otherwise, it refuses to migrate any work (lines 39-44).
Depending on this response, the requester will either unpack and install the
received mobile object or replace the neighbor in the neighborhood set and
prepare for a new load balancing phase.

Springer Nature 2021 LATEX template

REFERENCES 37

1 class simple_diffusion : public ilb::scheduler {
2 public:
3 simple_diffusion(size_t neighbors_cnt, size_t low_limit, bool replace, size_t min) :

m_neighs_cnt(neighbors_cnt), m_low_limit (low_limit), m_replace_neighs(replace),
m_pending(false){

4 m_neighbors = assign_new_neighbors();// Pick a set of m_neighs_cnt neighbors
5 }
6 void dist_balance() {
7 if(!m_pending && (m_mo_map.get_load() < m_low_limit)){ // low workload and no lb pending
8 m_pending = true; m_levels_recv_cnt = 0; //new lb phase
9 // Request neighbors’ workload levels

10 for(int n: m_neighbors) { dmcs::send(n, load_level_request); }
11 }
12 }
13 // update node’s and mo’s load
14 void notify(ilb::mobile_object mo) {m_mo_map.insert(mo->get_load(), load);}
15 ilb::handler* pop(int thread_id) {
16 return m_hldr_pool.front(); // pick the next handler in the pool
17 }
18 void push(int thread_id, ilb::handler* hdlr, ilb::mobile_object mo) {
19 m_hldr_pool.push_back(hdlr); // insert a new handler in the work pool
20 }
21 void load_level_request(int src) {
22 dmcs::send(src, load_level_request_reply, m_mo_map.get_load()); // Send my workload
23 }
24 void load_level_request_reply(int src, size_t load){
25 m_levels_recv_cnt++; // Count how many neighbors replied
26 m_load_to_neigh[src] = load; // Track their loads
27 if(m_levels_recv_cnt == m_neighs_cnt){ // If received load levels from all
28 int max_neigh = max_load_neigh(m_load_to_neigh); // neighbor with largest workload
29 size_t max_load = m_load_to_neigh[max_neigh]; // Get max workload value
30 if(max_load == 0){ // Found no neighbor with workload
31 if(m_replace_neighs){ m_neighbors = assign_new_neighbors();} // set new neighbors
32 m_pending = false; // End this lb phase
33 }
34 else{ dmcs::send(max_neigh, work_request);} // Found workload, request
35 m_load_to_neigh.clear();
36 }
37 }
38 void work_request(int src) {
39 if(m_mo_map.get_total_load() > m_low_limit){ // If I have enough load
40 ilb::mobile_object* mo = m_mo_map.top();
41 if(mo->get_load() > m_min_to_send){ // and my mo’s workload is large enough
42 m_mo_map.pop();
43 void* buffer = mo->pack(); // pack mo
44 dmcs::send(src, work_request_reply, buffer); // and send it to source
45 } else{ dmcs::send(src, work_request_reply, NULL);} // Otherwise, send NULL
46 }
47 }
48 void work_request_reply(int src, void* buffer) {
49 if(buffer != NULL) { // received a mo (workload)
50 ilb::mobile_object mo(buffer); // unpack mo
51 mo.install(); // and notify PREMA
52 }else{ assign_one_new_neighbor(src); } // No mo (worload) received, replace neighbor
53 m_pending = false; // Done with this lb phase
54 }
55 private:
56 size_t m_low_limit, m_level_recv_cnt;
57 ilb::mo_work_map m_mo_map; // map wrt load for mobile_objects, also keeps total workload
58 list<handler*> m_hldr_pool; // list of pending handlers
59 list<int> m_neighobrs; // list of neighbors
60 bool m_pending; // Indicates if in the process of load balancing
61 bool m_replace; // are we replacing neighbors if they do not have workload?
62 }

Fig. 13 Sample implementation of a Diffusive model using PREMA’s API.

	Introduction
	Background
	Software Stack and Programming Model
	Software Stack
	Programming Model
	Adapting to Application Needs

	Leveraging Multi-core Architectures
	Multi-threaded Design
	Data Movement and Control Substrate
	Mobile Object Layer
	Implicit Load Balancing

	Correctness

	Performance Evaluation
	Experimental Setup
	Communication
	Load Balancing
	Synthetic Benchmark
	Parallel Mesh Refinement Application
	Seismic Wave Simulations

	Related Work
	Conclusion and Future Work

