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Abstract

In this paper, we present a scalable three dimensional parallel Delaunay image-

to-mesh conversion algorithm. A nested master-worker communication model

is used to simultaneously explore process- and thread-level parallelization. The

mesh generation includes two stages: coarse and fine meshing. First, a coarse

mesh is constructed in parallel by the threads of the master process. Then

the coarse mesh is partitioned. Finally, the fine mesh refinement procedure

is executed until all the elements in the mesh satisfy the quality and fidelity

criteria. The communication and computation are separated during the fine

mesh refinement procedure. The master thread of each process that initializes

the MPI environment is in charge of the inter-node MPI communication for data

(submesh) movement while the worker threads of each process are responsible for

the local mesh refinement within the node. We conducted a set of experiments

to test the performance of the algorithm on distributed memory clusters and

observed that the granularity of coarse level data decomposition, which affects

the coarse level concurrency, has a significant influence on the performance of

the algorithm. With the proper value of granularity, the algorithm is scalable

to 45 distributed memory compute nodes (900 cores).
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1. Introduction

1.1. Motivation

Most of the current supercomputer architectures consist of clusters of nodes,

each of which contains multiple cores that share the in-node memory. A hybrid

parallel programming model, which utilizes message passing (MPI) for the par-

allelization among distributed memory compute nodes and uses thread-based

libraries (Pthread or OpenMP) to exploit the parallelization within the shared

memory of a node, seems to be an excellent solution to take advantage of the

resources of such architectures. This leads to a trend to write hybrid paral-

lel programs that involve both process level and thread level parallelization.

However, writing new hybrid programming codes or modifying existing codes

for parallel mesh generation algorithms that are suitable to the supercomputer

architectures brings new challenges because of the data dependencies and the

irregular and unpredictable behavior of mesh refinement. It is a challenging task

for the image-to-mesh conversion of the ultrahigh-resolution three dimensional

images, such as BigBrain [1], considering the memory space and the execution

time. In the future we will need to mesh even higher resolution images with

level of detail up to the structure of individual neurons. We need a fine mesh

that contains a hundred trillion of elements to model a human brain which

might have more than 100 billion neurons with 1000 elements for each neuron.

In order to accomplish this in a reasonable amount of time, it is necessary to

develop and exploit exascale parallel mesh generation algorithm which scales

well on supercomputers. In this paper, we present a three dimensional hybrid

MPI and Threads parallel mesh generation algorithm which exploits the two

levels of parallelization by mapping processes to nodes and threads to cores and

is able to deliver high scalability on such supercomputer architectures.

Scalable, stable and portable parallel mesh generation algorithms with qual-

ity and fidelity guarantees are demanding for the real world (bio-)engineering
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and medical applications. The scalability can be measured in terms of the abil-

ity of an algorithm to achieve a speedup proportional to the number of cores.

The portability is the capability of an algorithm that it can be applied to dif-

ferent platforms without or with only a few minor modifications. The stability

refers to the fact that the parallel algorithm can create the meshes that retain

the same quality and fidelity as the meshes created by the sequential generator

it utilizes. The quality of mesh refers to the quality of each element in the mesh

which is usually measured in terms of its circumradius-to-shortest edge ratio

(radius-edge ratio for short) and (dihedral) angle bound. Normally, an element

is regarded as a good element when the radius-edge ratio is small [2, 3, 4, 5]

and the angles are in a reasonable range [6, 7, 8]. The fidelity is understood as

how well the boundary of the created mesh represents the boundary (surface)

of the real object. A mesh has good fidelity when its boundary is a correct

topological and geometrical representation of the real surface of the object.

Delaunay mesh refinement is a popular technique for generating triangular and

tetrahedral meshes for use in finite element analysis and interpolation in various

numeric computing areas because it can mathematically guarantee the quality

(the radius-edge ratio) of the mesh [9, 10, 11, 4].

We present a Hybrid MPI and Threads parallel Delaunay Image-to-Mesh

(I2M) Conversion Isosurface-based algorithm that conforms to all of the above

requirements. The isosurface-based algorithms assume that the object to be

meshed is known only through an implicit function f : R3 → R such that

points in different locations evaluate f differently [4]. The isosurface is a level

set of a continuous function whose domain is 3D-space. In other words, it is a

surface that represents points of a constant value (e.g. pressure, temperature,

velocity, density) within a volume of space. Taking a multi-material segmented

image and a user-specified size function as inputs, the hybrid MPI and Thread

mesh generation algorithm recovers the isosurface of the object and meshes the

volume simultaneously. The surface is constructed using the Voronoi filtering

surface reconstruction method proposed by Amenta and Bern [12] and adapted

by Foteinos and Chrisochoides [4]: the facets of the Delaunay Triangulation
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which are restricted to the surface is a correct topological and geometric repre-

sentation of the surface. Therefore, our method is able to produce high-quality

elements respecting at the same time the exterior and interior boundaries of

tissues based on the refinement rules proposed previously [4, 13].

1.2. Contributions

In summary, the contributions of this paper are as follows.

• The algorithm proposed in this paper is the first hybrid MPI and Threads

parallel mesh generation algorithm which takes complex 3D multi-labeled

images as input directly.

• The algorithm is stable and creates meshes with the same quality and

fidelity guarantees as the meshes created within the shared memory node.

It uses the same refinement rules presented in our previous work [4, 13].

• The algorithm explores two levels of parallelization: process level (which

is mapped to a node with multiple cores) and thread level (each thread is

mapped to a single core in a node).

• We proposed a nested master-worker model to handle the inter-node MPI

communication and intra-node local mesh refinement separately in order

to overlap the communication (task request and data movement) and com-

putation (parallel mesh refinement). The master thread that initializes the

MPI environment is in charge of the inter-process MPI communication for

inter-node data movement and task request. The worker threads of each

process do not make MPI calls and are only responsible for the local mesh

refinement work in the shared memory of each node.

This article is an improved and extended version of the conference paper

[14]. The improvements can be summarized as follows:

• New functionality (a user-specified customized quality criteria) is added in

the new version implementation of the algorithm. The users can customize

the quality criteria to control the mesh quality in different regions.
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• The procedure on how the coarse mesh is created is given and the param-

eters that are used to control the quality of tetrahedra are explained.

• The fine level parallel mesh refinement is explained in details in additional

to the coarse level parallelization.

• We analyzed the quality of the meshes created by the algorithm and com-

pared it with a tightly-coupled Parallel Optimistic Delaunay Mesh gen-

eration algorithm (PODM) [13] to show that the algorithm is stable and

able to create meshes of the same quality as PODM.

• We tested the performance of the hybrid MPI and Threads algorithm and

compared it with other available implementations to demonstrate the scal-

ability of the algorithm. The experiments demonstrate that the algorithm

is scalable to 45 distributed memory compute nodes (900 cores) with a

efficiency more than 50%.

The rest of the paper is organized as follows. Section 2 presents the back-

ground of Delaunay mesh refinement and reviews the related prior work; Sec-

tion 3 describes the implementation of the hybrid MPI and Threads algorithm;

Section 4 presents experimental results and performance of our approach; Sec-

tion 5 concludes the paper and outlines the furture work.

2. Related Work

Delaunay mesh refinement works by inserting additional (often called Steiner)

points into an existing mesh to improve the quality of the elements (triangles

in two dimension and tetrahedra in three dimension). The basic operation of

Delaunay refinement is the insertion and deletion of points, which then leads

to the removal of bad quality elements and of their adjacent elements from the

mesh and the creation of new elements. If the new elements are of bad quality,

then they are required to be refined by further point insertions. One of the nice

features of Delaunay refinement is that it mathematically guarantees the termi-

nation after having eliminated all bad quality elements [2, 15]. In addition, the
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termination does not depend on the order of processing of bad quality elements,

even though the structure of the final meshes may vary. The insertion of a

point is often implemented according to the well-known Bowyer-Watson kernel

[16, 17]. Parallel Delaunay mesh generation methods can be implemented by

inserting multiple points simultaneously [18, 19, 13], and the parallel insertion

of points by multiple threads needs to be synchronized.

Blelloch et al. [20] proposed an approach to create a Delaunay triangula-

tion of a specified point set in parallel. They describe a divide-and-conquer

projection-based algorithm for constructing Delaunay triangulations of pre-

defined point sets. Kohout [21] proposed a parallel Delaunay triangulation algo-

rithm based on the randomized incremental insertion. The algorithm works on

a shared memory workstation up to eight cores. The difference between trian-

gulation algorithms [20, 22, 23, 24] and mesh algorithms is that the former only

triangulate the convex hull of a given set of points and therefore they guarantee

neither quality nor fidelity.

Andra et al. [25] proposed a parallel mesh generation algorithm based on

domain decomposition that can take advantage of the classic 2D and 3D Delau-

nay mesh generators for independent volume meshing. It achieves superlinear

speedup but only on eight cores. Galtier and George [26] described an approach

of parallel mesh refinement. The idea is to prepartition the whole domain into

subdomains using smooth separators and then to distribute these subdomains to

different processors for parallel refinement. The drawback of this method is that

mesh generation needs to be restarted form the beginning if the created sepa-

rators are not Delaunay-admissible. A parallel three-dimensional unstructured

Delaunay mesh generation algorithm [27] was proposed which addresses the load

balancing problem by distributing bad elements among processors through mesh

migration. However, the efficiency of the algorithm is only 30% on 8 cores.

Linardakis [28] presented a two dimensional Parallel Delaunay Domain De-

coupling (PD3) method. The PD3 method is based on the idea of decoupling

the individual subdomains so that they can be meshed independently with zero

communication and synchronization by reusing the existing state-of-the-art se-
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quential mesh generation codes. In order to eliminate the communication and

synchronization costs, a proper decomposition that can decouple the mesh is

required. However, the construction of such a decomposition is an equally chal-

lenging problem because its solution is based on Medial Axis [29, 30] which

is very expensive and difficult to construct (even to approximate) for complex

three dimensional geometries.

An idea of updating partition boundaries when inserted points happen to

be close to them was presented [31] and extended [32] as a Parallel Constrained

Delaunay Meshing (PCDM) algorithm. In PCDM, the edges on the boundaries

of submeshes are fixed (constrained), and if a new point encroaches upon a

constrained edge, another point is inserted in the middle of this edge instead.

As a result, a split message is sent to the neighboring core, notifying that it

also has to insert the midpoint of the shared edge. This approach requires the

construction of the separators that will not compromise the quality of the final

mesh, which is still an open problem for three dimensional domains.

Foteinos and Chrisochoides [33, 13] proposed a tightly-coupled Parallel Op-

timistic Delaunay Mesh generation algorithm (PODM). This approach works

well on a NUMA architecture with 144 cores and exhibits near-linear scalabil-

ity. PODM scales well up to a relatively high core count compared to other

tightly-coupled parallel mesh generation algorithms [34]. However, it suffers

from communication overhead caused by a large number of remote memory ac-

cesses, and its performance deteriorates for a core count beyond 144 because of

the network congestion caused by the communication among threads. The best

weak scaling efficiency for 176 continuous cores is only about 49% on Black-

light, a cache-coherent NUMA distributed shared memory (DSM) machine in

the Pittsburgh Supercomputing Center.

In our previous work [35], we described a three-dimensional locality-aware

parallel Delaunay image-to-mesh conversion algorithm. The algorithm employed

a data locality optimization scheme to reduce the communication overhead

caused by a large number of remote memory accesses. An over-decomposed

block-based partition approach was proposed to alleviate the load balancing
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problem and to make LAPD ensure both data locality and load balance. How-

ever, it scaled to only about 200 cores on a distributed shared memory archi-

tecture.

Parallel Delaunay Refinement (PDR) [19, 36] is a theoretically proven method

for managing and scheduling the insertion points. This approach is based on the

analysis of the dependencies between the inserted points: if two bad elements

are far enough from each other, the Steiner points can be inserted independently.

PDR requires neither the runtime checks nor the geometry decomposition and it

can guarantee the independence of inserted points and thus avoid the evaluation

of data dependencies. The work has been extended to three dimensions [18].

Using a carefully constructed spatial decomposition tree, the list of the candi-

date points is split up into smaller lists that can be processed concurrently. The

construction of a coarse mesh is the basis and starting point for the subsequent

parallel procedure. There is a trade-off between the available concurrency and

the sequential overhead: the coarse mesh is required to be sufficiently dense

to guarantee enough concurrency for the subsequent parallel refinement step;

however, the construction of such a dense mesh prolongs the low-concurrency

part of the computation.

We presented a scalable three dimensional parallel Delaunay image-to-mesh

conversion algorithm (PDR.PODM) for distributed shared memory architec-

tures [37]. PDR.PODM combined the best features of two previous parallel

mesh generation algorithms, the Parallel Optimistic Delaunay Mesh generation

algorithm (PODM) and the Parallel Delaunay Refinement algorithm (PDR).

PDR.PODM is able to explore parallelization early in the mesh generation pro-

cess because of the aggressive speculative approach employed by PODM. In

addition, it decreases the communication overhead and improves data local-

ity by making use of a data partitioning scheme offered by PDR. Although it

shows nice scalability up to about 300 cores, the performance deteriorated when

more cores are applied for the tests performed on a distributed shared memory

architectures as shown in Fig. 8d.

A number of other parallel mesh generation algorithms have been published,
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which are not the Delaunay-based algorithms. De Cougny, Shephard and Oztu-

ran [38] proposed an algorithm in which the parallel mesh construction is based

on an underlying octree. Lohner and Cebral [39], and Ito et al. [40] developed

parallel advancing front schemes. Globisch [41, 42] presented a parallel mesh

generator which uses a sequential frontier algorithm.

Ibanez et al. [43] proposed a hybrid MPI-thread parallelization of adaptive

mesh operations. They presented an implementation of non-blocking inter-

thread message passing from which they built non-blocking collectives and

phased message passing algorithm. A variety of operations for handling adaptive

unstructured meshes are implemented based on these message passing capabili-

ties and the phased communication and migration times are directly determined

by neighborhood sizes. They presented new workflows enabled by the ability

to vary the number of threads during runtime. The algorithm shows a good

speedup in the experiment within a node of two processes and sixteen cores.

Gorman et al. [44] presented an optimisation based mesh smoothing algo-

rithm for anisotropic mesh adaptivity. The smoothing kernel they proposed

solved a non-linear optimisation problem by differentiating the local mesh qual-

ity with respect to mesh node position and employing hill climbing to maximise

the quality of the worst local element. It is shown that this approach is effective

at raising globally the minimum element quality of the mesh. The algorithm

is able to reduce the cost while maintaining its effectiveness in improving over-

all mesh quality. The method was parallelised using a hybrid OpenMP/MPI

programming method and graph coloring to identify independent sets. The ex-

perimental results shown that the smoothing kernel is very effective at raising

the minimum local quality of the mesh and it achieves a good scaling perfor-

mance within a shared memory compute node.

3. MPI and Threads Implementation

In this section, we present a hybrid MPI and BoostC++ Threads parallel

image-to-mesh conversion implementation for distributed memory clusters. The
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algorithm explores two levels of concurrency: coarse-grain level concurrency

among subregions and medium-grain level concurrency among cavities. As a

result, the implementation of our algorithm exploits two levels of parallelization:

process level parallelization (which is mapped to a node with multiple cores) and

thread level parallelization (which is mapped to a single core in a node).

In the coarse-grain parallel level, the master process first creates an coarse

mesh in parallel using all its threads. Then it decomposes the whole region (the

bounding box of the input image) into subregions and assigns the bad elements

of the coarse mesh into subregions based on the coordinates of their circumcen-

ters. Finally, the master process uses a task scheduler to manage and schedule

the tasks (subregions) to worker processes through MPI communication. In

subsection 3.2, we describe a method how to select and schedule a subset of

independent subregions to multiple processes, which can be refined simultane-

ously without synchronization. In the medium-grain parallel level, the process

of each compute node launches multiple threads that follow the refinement rules

of PODM in order to refine the bad elements of each subregion in parallel by

inserting multiple points simultaneously. Fig. 2 and Fig. 3 give a high level

description of our hybrid MPI and Threads parallel mesh generation algorithm.

3.1. Parallel Coarse Mesh Generation

The coarse mesh is created in parallel by the multiple threads of the master

process that is running on master node. First, the master thread of the master

process sequentially creates the initial mesh, i.e., the six tetrahedra that tessel-

late the bounding box of the input image. This is the only sequential meshing

step in our algorithm. Then, this initial mesh is refined in parallel by all threads

of the master process to a certain level and the coarse mesh is created [4, 13].

After that it decomposes the whole region (the bounding box of the input image)

into subregions and assigns the bad elements of the coarse mesh into subregions

based on the coordinates of their circumcenters. If the circumcenter of a tetra-

hedron falls inside a subregion, the tetrahedron is assigned to the bad element

list of that subregion. The most important parameter is the circumradius up-
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per bound r̄I which is used to control the volume upper bound of tetrahedra in

the inital mesh. This number determines the number of elements of the coarse

mesh. The larger r̄I is, the larger the created tetrahedra are and thus less el-

ements created because the volume of the input object is fixed. If r̄I is too

small, the meshing time of the coarse mesh is too long because a large number

of elements are created; if it is too large, there is not enough concurrency for

the subsequent refinement procedure because there are not enough elements in

the coarse mesh. In our experiments, we use r̄I = 4r̄t , where r̄t represents

the target radius upper bound for the final mesh. The other parameter is the

circumradius to shortest edge ratio (radius-edge ratio for short) and is set to 2.

(a) (b)

Figure 1: (a) A diagram that illustrates the design of nested master-worker model. (b) A
two dimensional illustration of three-dimensional buffer zones. It is an example with two
subregions (the cyan and magenta subregions), which can be refined independently and si-
multaneously. The dark green and dark red regions around these two subregions form their
first level buffer zones respectively. The light green and light red regions represent the second
level buffer zones. The conflict between two multi-threaded processes working on different
subregions is eliminated during the refinement. Each subregion has an integer flag that rep-
resents the process rank (node ID) where the actual data (submesh) inside each subregion is
stored.

3.2. Coarse Level Data Decomposition and Task Scheduler

We used a simple but efficient way to decompose the whole input image into

subregions, which consists in partitioning the bounding box into cubes. Each

cube is considered as a subregion and the elements inside one cube constitute

the submesh of a subregion. Then, we assign tetrahedra to different subregions
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based on the coordinates of their circumcenters. Each subregion has a queue

of elements that are inside the subregion. We use a two-level buffer scheme

to select and schedule independent subregions to multiple processes, which can

be refined simultaneously without synchronization. Consider a subregion and

the twenty six neighbor subregions form its first level buffer zone (dark red or

dark green region shown in Fig. 1b). When a subregion is under refinement,

the point insertion operation might propagate to one neighbor subregion of its

first level buffer zone. This leads to the update operation of the element queue

of that neighbor subregion. If two subregions that are under refinement by two

processes have a common neighbor subregion, the synchronization is needed in

the neighbor subregion. We use a second level buffer zone (light red and light

green regions in Fig. 1b) in order to ensure that the first level buffer zones of

two subregions under refinement are not overlapping and the synchronization is

eliminated.

A subregion is considered as a task that can be dealt with by one process and

the subregions in its second level neighbors are considered as dependent tasks.

A subregion which is outside the second level neighbors is an independent task

and can be refined by another process concurrently. We used a task queue

and task scheduler to schedule the independent tasks that can be refined by

multiple processes simultaneously based on the two level buffer zones. The idea

of the task scheduler is straightforward: if one task (subregion) is popped up

from the task queue during the refinement, all its dependent tasks, i.e., its first

and second level buffer neighbors are also popped up. This guarantees that two

subregions that are scheduled to be refined simultaneously are at least two layers

(subregions) away from each other and independent. During the refinement

procedure, the point insertion operation might propagate to one subregion of its

first level buffer zone. Therefore, if the submesh of one subregion was scheduled

to one worker process for refinement, the submeshes of its first level neighbors

also need to move to the local memory of the worker process. Each subregion

has an integer flag that represents the process rank (node ID) where the actual

data (submesh) inside each subregion is stored as shown in Fig. 1b. The worker
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process sends data request messages to collect the submeshes of one subregion

and its first level neighbor subregions from other workers based on the integer

flags (lines 6 to 18 in Fig. 3).

3.3. Nested Master-Worker Model

We propose a nested master-worker model in order to take advantage of the

two level parallelization on multicore distribute clusters. Fig. 1a is a diagram

that illustrates the design of nested master-worker model. The master process

running on a node (called master node) creates the coarse mesh, manages and

schedules the taskes (subregions) and the worker processes running on other

nodes (worker nodes) communicate with each other and master process for task

request and data migration. Within each node, the process is multithreaded

and each thread runs on one core of the node.

In the implementation, the MPI communication and local shared memory

mesh refinement is separated in order to overlap the communication and com-

putation. The master thread of each process that runs on each compute node

initializes the MPI environment. Then it creates new worker threads and pins

each worker thread on one core of the compute node. Therefore, the number

of threads of each process (master and worker threads) is equal to the number

of cores of each node. The master thread initializes the MPI environment and

communicates with the master thread of other processes that run on other nodes

for data movement and task requests. The worker threads of each process do

not make MPI calls and are only responsible for the local mesh refinement work

in the shared memory of each node.

Fig. 2 and Fig. 3 list the main steps of master process and worker process of

the nested master-worker model respectively. In the algorithm, each subregion

is considered as a task and the submesh inside the subregion is the actual data.

If we denote P0 as the master process and Pi, Pj as worker processes, the main

steps of the algorithm can be summarized as follows: (i) the master process P0

creates the coarse mesh, decomposes the coarse mesh and initializes the task

queue and scheduler (lines 1 to 5 in Fig. 2); (ii) a worker process Pi sends a
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Master Process(P0)(I, δ̄t, δ̄I , g)

Input: I is the input segmented image;

δ̄t is the circumradius upper bound of the elements in the final mesh;

δ̄I is the circumradius upper bound of elements in the coarse mesh;

g is value of granularity;

1: Generate an coarse mesh in parallel that conforms to δ̄I ;

2: Use a uniform octree to decompose the whole region into subregions based on g;

3: Find the buffer zones of each subregion of the octree;

4: Distribute the coarse mesh to octree leaves based on their circumcenter coordinates;

5: Push all octree leaves to a task queue Q;

6: while (1)

7: Probe the message;

8: if The message is a task (subregion) request message from a worker process Pi;

9: if Q! = ∅
10: Receive message from Pi;

11: Get one subregion L from task queue Q;

12: Send L and its neighbors’ submeshes Location information to Pi;

//Location is an array that contains the process ranks,

//which hold the submesh of L or its first level neighbors.

13: Set process Pi to status HAS WORK;

14: else if Q == ∅ && at least one worker process’s status is HAS WORK;

15: Receive message from Pi;

16: Put Pi to waiting task list WTL;

17: Send a message to Pi with status WAIT IN LIST;

18: else if Q == ∅ && all worker processes’ statuses are NO WORK;

19: Send termination message to Pi;

20: Send termination message to every process that is waiting in the WTL;

21: if the number of terminated workers == the number of workers

22: break;

23: endif

24: endif

25: endif

26: if The message is a data (submesh) request message from Pi

27: Receive the message from Pi;

28: Pack data (submesh);

29: Send data (submesh) to Pi;

30: endif

31: if The message is a feedback from Pi that just finished the refinement work

32: Receive the message from Pi;

33: Set Pi to status NO WORK;

34: Update task queue Q based on the feedback message from Pi;

35: while Q! = ∅ && waiting task list WTL is not empty

36: Get one subregion from Q;

37: Pop one process Pj from waiting task list WTL;

38: Send subregion and neighbors Location information to Pj ;

39: Set Pj to status HAS WORK;

40: endwhile

41: endif

42: endwhile

Figure 2: A high level description of Master Process’s (P0) work.
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Worker Process(Pi)()

1: while (1)

2: Send a task (subregion) request to master process P0;

3: Probe the message;

4: if The message is a task message from master process P0;

//The message contains a task L and its first level neighbors.

5: Receive the message from P0;

6: Send data (submesh) request to each process Pk in Location array;

7: while (1)

8: Probe the message;

9: if The message is a data (submesh) request message from a process Pj ;

10: Receive the message from Pj ;

11: Send data (local submesh) to Pj ;

12: else if The message contains data (submesh) from a process Pk

13: Receive the message from Pk;

14: number of submeshes received += number of submeshes Pk holds;

15: if number of submeshes received == number of submeshes needed

16: break;

17: endif

18: endwhile

19: Pass the submesh to worker threads for mesh refinement;

20: while the worker threads are doing the mesh refinement

21: Probe the message;

22: if The message is a data (submesh) request message from a process Pj ;

23: Receive the message from Pj ;

24: Send data (local submesh) to Pj ;

25: endif

26: endwhile //Local Mesher has finished the refinement work;

27: Send feedback message with mesh refinement information to P0;

28: else if The message is a message from P0 with status WAIT IN LIST

29: while Pi is waiting for new task

30: Probe the message;

31: if The message is a data (submesh) request message from a process Pj ;

32: Receive the message from Pj ;

33: Send data (local submesh) to Pj ;

34: endif

35: endwhile

36: else if The message is a termination message from P0

37: break;

38: endif

39: endwhile

Figure 3: A high level description of a Worker Process’s (Pi) work.
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task (subregion) request to master process P0 (line 2 in Fig. 3); (iii) P0 receives

the task request from Pi, pops one task (subregion L) and its dependent tasks

(neighbors) from the task queue and sends the subregion and its neighbors’

submeshes Location information to Pi (lines 8 to 13 in Fig. 2); (iv) Pi sends

data request to each process Pj who has the submeshes that Pi needed (lines 4

to 18 in Fig. 3); (v) after getting all the submeshes of L and its neighbors, the

worker threads of Pi start the mesh refinement; (vi) Pi sends feedback message

to master process P0 and P0 updates the task queue based on the feedback

message (lines 31 to 41 in Fig. 2); (vii) if all the refinement work is done, P0

sends termination message to each worker process Pi and master process exits

after all worker processes terminate (lines 18 to 24 in Fig. 2).

A worker process does not send the submeshes of a subregion and neigh-

bors back to master process after it has finished the refinement work. Instead,

it sends a feeback message that only contains the number of bad elements of

each subregions to the master process. The master process updates the task

queue based on the feedback message to decide whether a subregion needs to

be pushed back to the task queue for further refinement. A data (submeshes)

collection operation is needed when a worker process gets a task (subregion) to

refine. The worker process sends data request to other worker processes who

hold the submeshes in their local memories. A worker process is likely to send

data requests to other worker processes and receive data requests from these

worker processes simultaneously. In order to handle the interleaving messages

among the worker processes and avoid deadlocks, non-blocking MPI communi-

cation and a message polling approach are used when the master thread of a

worker process try to collect the submeshes it needs from other worker processes

(lines 6-18 in Fig. 3). When the worker threads of a process are doing the refine-

ment work, the master thread is still able to receive and response to the data

requests from other workers (lines 20-26 in Fig. 3) since the communication and

computation are separated.
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3.4. Fine Level Parallel Mesh Refinement

Once a process is assigned a task (a subregion), the worker threads of this

process start to refine the submesh of the subregion in parallel. In the algorithm,

each worker thread Ti of a process maintains its own Bad Element List (BEL)

which contains the elements that violate the quality or fidelity criteria [4] and

have been assigned to this thread for further refinement.

The basic operation of Delaunay refinement is the insertion of a point p

to eliminate a bad element. The cavity is a set of elements that violate the

Delaunay property because their circumsphere contains the inserted point p.

The elements in the cavity are deleted and p is connected to the vertices of the

boundary of the cavity to create new elements. The cavity is constructed and

re-triangulated according to the well known Bowyer-Watson kernel [16, 17]. If

a vertex of an element is already locked by another thread during the cavity

expansion, a rollback occurs [13, 33]. This happens when two threads try to

refine bad elements that are close to each other in a submesh. If a rollback

happens, the operation is stopped and the changes are discarded. When a

rollback occurs, the thread moves on to the next bad element in its Bad Element

List (BEL).

One of the challenges is that the algorithm needs to maintain load balance

in two levels: the coarse-grain level load balance among processes and fine-grain

level load balance among threads within a process. In the coarse-grain level, we

utilized the method called over-decomposition [45] to deal with the load balanc-

ing problem among processes. We over-decomposed the whole region so that

the number of subregions is much larger then the number of processes to en-

sure that each process has enough subregions to refine. This method introduces

some overhead but it does help to alleviate the load balancing problem among

processes. A study of optimal load balancing strategies among processes, while

keeping the overhead and communication cost small, is part of our future work.

In the fine-grain level, a load balancing list is used to spread the elements among

threads of a process. Each thread has the flexibility to communicate with other

threads that belong to the same process during the refinement. A worker thread
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Figure 4: (a) A uniform mesh that the tetrahedra in the mesh meet the same quality criteria.
(b) A non-uniform mesh that a dense and better quality mesh is created in the critical region.

Ti pushes back its Thread ID to the load balancing list, if the bad element list

BELi of a thread Ti does not contain any elements. Then, Ti goes to sleep and

is able to be awaken by another thread Tj when Tj produces some work for Ti.

After a thread Tj completes a Delaunay insertion operation, it checks all the

newly created elements and puts the ones that are regarded as bad elements to

the BEL of the first thread Ti found in the load balancing list. Tj also removes

Ti from the load balancing list.

The hybrid MPI and Thread algorithm can generate uniform mesh as demon-

strated in Fig. 4a. In this case, the tetrahedra in all regions meet the same

quality criteria (element size bound, radius-edge ratio and dihedral angle). It is

also able to create non-uniform mesh, i.e., the elements in different region meet

different quality criteria, as shown in Fig. 4b. In this case, only the quality

of elements in a certain region (often called critical region) is required while

the mesh quality of other regions are not required. In the algorithm, the users

can customize the quality criteria for different regions and pass these criteria

as input parameters to control the mesh quality in different regions. If the ap-

plications only require the mesh quality improvement in a certain region, the

algorithm is able to create a dense and high-quality mesh inside the critical

region while keeping a coarse mesh outside the region.
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4. Performance

4.1. Experimental Platform, Inputs and Evaluation Metrics

We have conducted a set of experiments to assess the performance of the

hybrid MPI and Threads parallel mesh generation algorithm. The experimental

platform is the Turing cluster computing system at High Performance Com-

puting Center of Old Dominion University. We tested the performance of our

implementation on Turing with its two subclusters: Phi cluster and Ed-Main

cluster. Phi cluster contains 9 Intel Xeon Phi nodes each with 2 Xeon Phi MIC

cards and 20 cores. Ed-Main cluster of Turing contains 190 multi-core compute

nodes each containing between 16 and 32 cores and 128 Gb of RAM. We have

used two 3D multi-tissued images as inputs in the experiments: (i) the CT ab-

dominal atlas obtained from IRCAD Laparoscopic Center [46], and (ii) the knee

atlas obtained from Brigham & Women’s Hospital Surgical Planning Labora-

tory [47]. We performed the experiments on Phi cluster using up to 180 cores

and on Ed-Main cluster up to 900 cores (45 compute nodes, the maximum num-

ber of nodes available for us in the experiments). We use the Weak Scaling

Speedup S (The ratio of the sequential execution time of the fastest known

sequential algorithm (Ts) to the execution time of the parallel algorithm (Tp))

and Weak Scaling Efficiency E (The ratio of speedup (S) to the number

of cores (p): E = S/p = Ts/(pTp)) to evaluate the scalability of parallel mesh

generation algorithms [48, 49].

In the weak scaling case, the number of elements per core remains approxi-

mately constant. In other words, the problem size (i.e., the number of elements

created) increases proportionally to the number of cores. For example, with the

input image abdominal atlas, the number of elements generated equals about

6.64 million on a single core. It increases approximately to 1.17 billion tetra-

hedra for 180 cores on Phi cluster and up to 3.86 billion tetrahedra for 1200

cores on Ed-Main cluster. In the experiments, it is impossible to control the

problem size increased exactly by p times when the number of cores is increased

from 1 to p because of the irregular nature of the unstructured tetrahedra mesh.
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Figure 5: (a) Dihedral angle distribution of the final mesh created by the hybrid MPI and
Thread method. (b) Dihedral angle distribution of the final mesh created by the PODM.

Therefore, an alternative definition of speedup is used which is more precise for

a parallel mesh generation algorithm. We measure the number of elements gen-

erated every second during the experiment. Then the speedup can be calculated

as S(p) = elements per sec(p)
elements per sec(1) .

4.2. Mesh Quality Analysis

In this subsection, we analyze the quality of the meshes created by our

algorithm. The quality of mesh refers to the quality of each element in the

mesh which is measured by Delaunay methods in terms of its circumradius-

to-shortest edge ratio (radius-edge ratio for short) and (dihedral) angle bound.

The radius-edge ratio of a tetrahedron is defined as the ratio of its circumradius

to the length of its shortest edge. The radius-edge ratio of the created mesh

is theoretically guaranteed by the Delaunay refinement method and the actual

Table 1: Mesh quality comparison of our method and PODM. The two input images are
abdominal atlas and knee atlas.

Abdominal Atlas Knee Atlas

MPI+Threads PODM MPI and Thread PODM

number of elements 1,355,131 1,352,737 832,569 831,674
number of vertices 244,066 244,027 185,752 185,703

edge-radius ratio bound 2 2 2 2
min dihedral angle 4.89◦ 4.78◦ 4.96◦ 4.94◦

max dihedral andle 174.21◦ 174.47◦ 174.89◦ 175.11◦
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edge ratio bound in our implementation is less than 2 in our implementation.

Because of the potential nearly flat tetrahedra, a more useful measure is the

dihedral angle. We compared the quality of meshes that were created by our

method with the quality of meshes that were created by PODM method on the

two multi-material 3D input images (abdominal atlas and knee atlas) as shown

in Table 1. We also showed the dihedral angle distribution of the final meshes

created by our algorithm and PODM in Fig. 5a and Fig. 5b. The goal of such

comparisons is to illustrate that the hybrid MPI and Threads is able to generate

meshes with the same quality guarantees as PODM.

4.3. Scalability, Granularity and Concurrency

In this subsection, we present the weak scaling performance of the imple-

mentation on Phi cluster up to 180 cores (9 compute nodes) with different data

decomposition granularities. The number and size of subregions into which a

problem is decomposed determines the granularity of the decomposition. In

the implementation, we used a uniform octree to decompose the whole image

and the depth of the octree determines the number of leaves (subregions) of the

decomposition. The number of subregions is Nsub = 8d, where d is the depth

of the octree. In the algorithm, we pass the depth of the octree as an input

parameter to control the granularity of the coarse level data decomposition. We

performed the experiments on Phi cluster with two different data decomposition

granularities:

• d = 3 represents the octree was split to depth 3 with 512 subregions.

• d = 4 represents the octree was split to depth 4 with 4096 subregions.

The problem size, i.e., the number of tetrahedra, increases linearly with

respect to the number of cores. The number of tetrahedra created gradually

increases from 6.64 million to 1.17 billion for the input image abdominal atlas,

and from 6.33 million to 1.14 billion for knee atlas when the number of cores

increases from 1 to 180. Table 2 and Table 3 show the weak scaling perfor-
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mance of the algorithm for the two input images, abdominal atlas and knee

atlas respectively.

Table 2: Weak scaling performance of data decomposition with different granularities. The
input is abdominal atlas.

Cores
Elements Running Time (s) million elements/s Speedup Efficiency%
(million) depth3 depth4 depth3 depth4 depth3 depth4 depth3 depth4

1 6.64 64.70 64.70 0.10 0.10 1.00 1.00 100.00 100.00
20 133.93 76.47 76.47 1.75 1.75 17.07 17.07 85.35 85.35
40 261.54 102.63 177.09 2.55 1.49 24.84 14.50 62.10 36.25
60 390.61 110.35 156.09 3.54 2.51 34.50 24.50 57.50 40.83
80 520.31 115.02 141.44 4.52 3.69 44.09 35.96 55.11 44.95

100 650.16 125.96 133.79 5.16 4.87 50.31 47.45 50.31 47.45
120 780.13 137.03 129.54 5.69 6.03 55.49 58.77 46.24 48.97
140 905.07 149.64 125.00 6.05 7.25 58.95 70.64 42.11 50.46
160 1034.34 158.47 120.28 6.53 8.60 63.62 83.85 39.76 52.41
180 1167.95 177.24 119.56 6.57 9.74 64.01 94.89 35.56 52.72

Table 3: Weak scaling performance of data decomposition with different granularities. The
input is knee atlas.

Cores
Elements Running Time (s) million elements/s Speedup Efficiency%
(million) depth3 depth4 depth3 depth4 depth3 depth4 depth3 depth4

1 6.33 64.27 64.27 0.10 0.10 1.00 1.00 100.00 100.00
20 126.24 76.20 76.20 1.66 1.66 16.83 16.83 84.14 84.14
40 257.01 83.16 179.44 3.09 1.44 31.39 14.60 78.48 36.51
60 383.76 97.56 158.04 3.93 2.43 39.96 24.67 66.59 41.12
80 508.18 109.02 149.37 4.66 3.40 47.35 34.52 59.18 43.15

100 633.73 127.67 139.03 4.96 4.55 50.42 46.19 50.42 46.19
120 762.09 141.62 136.83 5.38 5.55 54.66 56.39 45.55 46.99
140 886.62 152.78 132.96 5.80 6.64 58.95 67.49 42.10 48.21
160 1014.09 174.60 127.26 5.81 7.93 59.00 80.60 36.87 50.37
180 1142.34 199.07 125.32 5.74 9.07 58.29 92.14 32.38 51.19

As demonstrated in Table 2 and Table 3, the algorithm gets near-linear weak

scaling performance for both of the two inputs when the number of cores is less

than or equal to 20. The efficiency with 20 cores is about 85%. The reason is

that the refinement work was done inside one compute node with shared mem-

ory and no core was dedicated to MPI communication in this case. Therefore,

no inter-node communication overhead was introduced. The algorithm shows

better weak scaling performance with d = 3, i.e., the coarse mesh and under-

lying image is partitioned into 512 subregions than that with d = 4, i.e., the

coarse mesh is partitioned into 4096 subregions when the number of cores is

less than or equal to 100 (5 nodes). There are two reasons. First, the decrease

of granularity with more subregions does not necessarily lead to the increase of

degree of concurrency because the maximum number of tasks (subregions) that

can be executed (refined) simultaneously is limited by the number of available

cores. Second, the decrease of granularity, which increases the number of subre-
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Figure 6: (a) Weak scaling speedup comparison of two different granularities for the input
image abdominal atlas. (b) Weak scaling speedup comparison of two different granularities
for the input image knee atlas.

gions, introduces more overheads. As demonstrated in Fig. 7a and Fig. 7b, the

communication overhead (the red part) with 4096 subregions (the right bar)

is always higher than the communication overhead with 512 subregions (the

left bar). The large overhead leads to the speedup of 40 cores (2 nodes) even

lower than that of 20 cores with 512 subregions as demonstrated in Fig. 6a and

Fig. 6b. The algorithm exhibits better scalability when the octree depth is 4

(4096 subregions) and the number of cores is more than 120 (6 nodes) as shown

in Table 2 and Table 3 . We observed that each time we increase the number

of cores, the efficiency of experiment with 4096 subregions increases while the

efficiency with 512 subregions decreases. Take the experimental result of in-

put abdominal as an example, the efficiency with 512 subregions on 40 cores

is 62.10% and it decreases to 35.56% for 180 cores. In contrast, the efficiency

with 4096 subregions on 40 cores is 36.25% and it increases to 52.72% for 180

cores. Fig. 6a and Fig. 6b illustrate the speedup comparison with two different

granularities for two input images respectively. For 512 subregions, the gradi-

ent of speedup becomes smaller and smaller with the number of cores (nodes)

increasing and the speedup with 180 cores is almost the same as that with 160

cores. In contrast, for 4096 subregions, the speedup increases almost linearly

compared to the speedup with 40 cores.
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(a) (b)

Figure 7: The breakdown of the running time of two different granularities. The left bar
in each bar graph is the time breakdown with 512 subregions and the right one is the time
breakdown with 4096 subregions. (a) The breakdown of the running time of experiments for
abdominal atlas. (b) The breakdown of the running time of experiments for knee atlas.

Fig. 7a and Fig. 7b show the breakdown of the total running time for the

experiments with the two images respectively. The running time consists of four

parts: (i) the pre-processing time is the time that the master process spends on

loading an image from disk, constructing an octree, creating the coarse mesh,

assigning the elements of the coarse mesh to subregions and creating subthreads;

(ii) the meshing time is the time that a process (more precisely, the multiple

worker threads of a process) spends on mesh refinement; (iii) the communication

time is the time that a process spends on task requests and data movement; (iv)

the idle time is the time that a process waits in the waiting list and does not

perform any mesh refinement work. Each bar is the sum of the time that a

process spends on each part for each iteration (In each iteration, the process

requests a subregion and refines the submesh inside the subregion). We calculate

the average time of each part for all processes. As demonstrated in Fig. 7a

and Fig. 7b, the idle time with large granularity (512 subregions) keeps on

increasing from 40 cores (2 nodes) to 180 cores (9 nodes). It becomes the major

overhead that deteriorates the performance of the algorithm when more than 5

nodes are used because of the low degree of concurrency. In this case, a finer

decomposition is required although it introduces more overhead. In addition,

the communication overhead (the red part) with small granularity (the right

24



bar) is always higher than the communication overhead with large granularity

(the left bar). In fact, we can see clearly the basic tradeoffs in parallel computing

between granularity and concurrency: we have to decrease the granularity in

order to increase the concurrency, which introduces more overhead. If there are

not enough processing units to exploit the maximum degree of concurrency, a

finer data decomposition with smaller granularity deteriorates the performance

of the algorithm because of the higher overhead it introduces.

The strong scaling performance of the algorithm is determined by the prob-

lem size. If the problem size is very large, i.e., creating a very large mesh, in

the experiments, the algorithm will demonstrates good strong scaling perfor-

mance; On the contrary, if the problem size is very small, the strong scaling

performance will deteriorate. This issue has been pointed out and analyzed by

J. L. Gustanfson [48]. As he stated: on ensemble (distributed) computers, fixing

the problem size creates a severe constraint, since for a large ensemble (with the

small fixed problem size) it means that a problem must run efficiently even when

the problem occupies only a small fraction of available memory. Therefore, we

only demonstrated the weak scaling performance of our algotithm to show its

ability to solve large problem utlizing large number of cores.

4.4. Performance Evaluation and Comparison

We ran a set of experiments on Ed-Main cluster of Turing cluster system

up to 900 cores (45 nodes) to test the scalability of the algorithm. We use the

same two input images, abdominal atlas and knee atlas, as the test expreiments

we ran on the Phi cluster. Based on the analysis of the subsection above, we

ran the experiments with the optimal value of octree depth, i.e. d = 3 when

the number of nodes is less than or equal to 5 (100 cores) and d = 4 when the

number of nodes is between 6 to 30 (120 to 900 cores). Fig. 8a demonstrates

the weak scaling speedup of the two input images up to 900 cores (45 nodes) on

Ed-Main cluster of Turing.

We compared the performance of hybrid MPI and Threads algorithm with

other three shared memory algorithms, PODM [13], LAPD [35] and PDR.PODM
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Figure 8: (a) The overall weak scaling speedup of the two input images up to 900 cores
(45 nodes) on Ed-Main cluster of Turing. (b), (c), (d) The weak scaling speedup compari-
son of hybrid MPI and Threads implementation with other three shared memory algorithm
implementations and ideal speedup for upto 160, 300 and 900 cores.

[37]. The main characteristics of these algorithms are listed in Table 4. The

input image we use in all experiments is the abdominal atlas. Fig. 8b shows

the speedups of the four implementations upto 160 cores. As we can see, The

locality-aware parallel mesh generation algorithm LAPD has the best perfor-

mance because it increases the data locality during the parallel mesh refinement.

Table 4: Comparison of parallel Delaunay image-to-mesh conversion algorithms.

Methods Max Cores Elements Per Second Platform Main Characteristics
PODM 128 10.42 million Shared Memory First parallel image-to-

mesh conversion algorithm.
LAPD 192 14.12 million Shared Memory Improving the locality dur-

ing refinement.
PDR.PODM 256 18.02 million Shared Memory Taking advantages of two

previous algorithms [13, 36]
to improve the scalability.

MPI+Threads 900 45.25 million Distributed Memory Hybrid MPI and Threads
algorithm involves two level
parallelization.
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Figure 9: (a) A mesh example created by the algorithm with input abdominal atlas. (b) A
mesh example created by the algorithm with input knee atlas.

In fact, all the other three methods have better performance than that of hy-

brid MPI and Threads algorithm when the number of cores is small (less than

300). The reason is that the hybrid methods introduces the process level data

migration and movement, which introduces additional communication overhead

through MPI routines compared to the pure shared memory parallel mesh re-

finement. However, when the number of cores increases, the scalability potential

of the hybrid method becomes more and more obvious. When the expreiments

are performed with more than 300 cores, the MPI and Thread methods has the

best performance compared with the other three methods because of the two

level of parallelization it utilizes. Fig. 9a and Fig. 9b show two Delaunay meshes

created by the algorithm with input images abdominal atlas and knee atlas.

5. Conclusion and Future Work

We presented a scalable hybrid MPI and Threads image-to-mesh conversion

algorithm on distributed memory clusters with multiple cores. The algorithm

is able to create meshes with quality guarantees. First, a coarse mesh is con-

structed and decomposed. Then, the fine mesh refinement procedure starts and

runs until all the elements in the mesh satisfy the quality criteria. The algo-

rithm explores two levels of parallelization: process level parallelization (which

is mapped to a node with multiple cores) and thread level parallelization (each
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thread is mapped to a single core in a node). We proposed a nested master-

worker model in order to take advantage of the two-level parallelization on

multicore distributed memory clusters. In order to overlap the communication

(task request and data movement) and computation (parallel mesh refinement),

the inter-node MPI communication and intra-node local mesh refinement are

separated. The master thread initializes the MPI environment and communi-

cates with the master threads of other processes that run on other nodes for

data movement and task requests. The worker threads of each process do not

make MPI calls and are only responsible for the local mesh refinement work in

the shared memory of each node.

We compared the performance of the algorithm with our previous algorithms

as detailed in Section 4.4. The experimental results demonstrated that the

hybrid MPI and Threads algorithm proposed in this paper is quite suitable to

the hierarchy of distributed memory clusters with multiple cores and shows so

far the best scalability. We conducted the experiments on up to 900 cores (45

nodes, the maximum number of nodes available for us so far) and the speedup

is increasing almost linearly with the number of nodes as illustrated in Fig. 8a.

This trend is likely to continue to higher number of cores (nodes) based on

the speedup shown in Fig. 8a. Therefore, our future work includes assessing

the performance of the hybrid algorithm with a larger number of cores. The

communication overhead takes a certain portion in the total running time. One

of our future tasks is to reduce the communication overhead and improve the

data locality to further improve the performance of the algorithm.
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