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Abstract

In this paper, we present a scalable three-dimensional hybrid parallel De-
launay image-to-mesh conversion algorithm (PDR.PODM) for distributed
shared memory architectures. PDR.PODM is able to explore parallelism
early in the mesh generation process because of the aggressive speculative
approach employed by the Parallel Optimistic Delaunay Mesh generation al-
gorithm (PODM). In addition, it decreases the communication overhead and
improves data locality by making use of a data partitioning scheme offered
by the Parallel Delaunay Refinement algorithm (PDR). PDR.PODM sup-
ports fully functional volume grading by creating elements with varying size.
Small elements are created near boundary or inside the critical regions in or-
der to capture the fine features while big elements are created in the rest of
the mesh. We tested PDR.PODM on Blacklight, a distributed shared mem-
ory (DSM) machine in Pittsburgh Supercomputing Center. For the uniform
mesh generation, we observed a weak scaling speedup of 163.8 and above for
up to 256 cores as opposed to PODM whose weak scaling speedup is only 44.7
on 256 cores. The end result is that we can generate 18 million elements per
second as opposed to 14 million per second in our earlier work. PDR.PODM
scales well on uniform refinement cases running on DSM supercomputers.
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The varying size version sharply reduces the number of elements compared
to the uniform version and thus reduces the time to generate the mesh while
keeping the same fidelity.

Keywords: Parallel Mesh Generation, Varying Size Mesh Generation,
Scalability, Image-to-Mesh Conversion

1. Introduction

Parallel mesh generation methods decompose the original mesh genera-
tion problem into smaller subproblems which are solved (meshed) in parallel
using multiple cores (processors). High scalability, quality and fidelity mesh
generation is a critical module for the real world (bio-)engineering and medi-
cal applications. The quality of mesh refers to the quality of each element in
the mesh which is usually measured in terms of its circumradius-to-shortest
edge ratio (radius-edge ratio for short) and (dihedral) angle bound. Nor-
mally, an element is regarded as a good element when the radius-edge ratio
is small [1, 2, 3, 4] and the angles are in a reasonable range [5, 6]. The fi-
delity is understood as how well the boundary of the created mesh represents
the boundary (surface) of the real object. A mesh has good fidelity when
its boundary is a correct topological and geometrical representation of the
real surface of the object. The scalability can be measured in terms of the
ability of an algorithm to achieve a speedup proportional to the number of
cores. There is no doubt that the mesh generation algorithms will continue to
be critical for many (bio-)engineering applications, such as CFD simulations
[7, 8] and image discretization in bioinformatics [9]. In this paper, we present
a parallel mesh generation algorithm which is able to deliver high scalability
on distributed shared memory (DSM) non-uniform memory access (NUMA)
supercomputers that satisfies all of these three important requirements.

The implementation of parallel mesh generation algorithms on supercom-
puters brings new challenges because of their special memory architecture.
Most current mesh generation algorithms are desktop-based, either sequen-
tial or parallel, developed for a small number of cores. Such mesh generation
algorithms, when run on supercomputers, are either conservative in leverag-
ing available concurrency [10, 11] or depend on the solution of the domain
decomposition problem which is still open for three dimensional domains
[12, 13]. Implementing an efficient parallel mesh generation algorithm tar-
geting the DSM NUMA architecture will contribute to the understanding
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of the challenging characteristics of adaptive and irregular applications on
supercomputers consisting of thousands or millions of cores. This will also
help the community gain insight into the family of problems characterized
by unstructured communication patterns.

The advantage of Delaunay mesh generation over other mesh generation
methods is that it can mathematically guarantee the quality of the mesh and
the termination of the algorithm [14, 15, 3]. In the previous work [16], our
group implemented a parallel Image-to-Mesh (I2M) generation algorithm,
the Parallel Optimistic Delaunay Mesh generator (PODM), which uses as
input multi-label segmented three dimensional images and creates meshes
with quality and fidelity guarantees. PODM introduces low level locking
mechanisms, carefully designed contention managers and well-suited load
balancing schemes that make it work well for a low core count (less than
128 cores). However, it exhibits considerable performance deterioration for a
higher core count (144 cores or more) because of the intensive and multi-hop
communication.

Parallel mesh generation algorithms based on the octree structure have
exhibited scalability because of the low communication and computation
overhead that they introduce. Our group presented an octree-based par-
allel mesh generation algorithm called Parallel Delaunay Refinement (PDR)
[11, 17] that allows multiple point insertions independently, without any syn-
chronization. PDR takes advantage of an octree structure and decomposes
the iteration space by selecting independent subsets of points from the set of
the candidate points without suffering from rollbacks. The data management
and partition approach of PDR improves data locality and at the same time
decreases the communication.

The PDR.PODM algorithm proposed in this paper takes advantage of
these two legacy approaches. It quickly leverages high parallelism because of
the aggressive speculative approach employed by PODM and uses data par-
titioning offered by PDR to improve data locality and decrease the commu-
nication overhead. Experiments performed on Blacklight, a cache-coherent
NUMA shared memory machine in the Pittsburgh Supercomputing Center,
show that PDR.PODM has a weak scaling speedup of 163.8 for 256 cores and
creates 18.02 million tetrahedra every second with high quality. In addition,
the surface of the object and the boundaries between materials are well rep-
resented. Figure 1 shows an example of a varying size Delaunay mesh created
by PDR.PODM. The left figure demonstrates the fidelity of the mesh. The
cut-through figure on the right shows the size gradation of the mesh.
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Figure 1: A varying size Delaunay mesh generated by PDR.PODM. The input image is
the CT abdominal atlas obtained from IRCAD Laparoscopic Center [18]. The left figure
demonstrates the fidelity of the mesh. The surface of the input object is well represented.
The cut-through figure on the right shows size variation of the mesh.

In summary, the PDR.PODM method:

• guarantees the quality of the output mesh. The radius-edge ratio of
each tetrahedron is smaller than 1.93 and the planar angles of all bound-
ary facets are larger than 30 degrees [3];

• represents the surface of the input object with topological and geomet-
rical guarantees;

• recovers the surface and meshes the volume simultaneously in parallel;

• supports parallel mesh generation with elements of varying size for
multi-material objects.

The rest of the paper is organized as follows. Section 2 gives the back-
ground for parallel mesh generation algorithms and provides a review on prior
work based on Delaunay, Advancing Front, and Octree methods. Section 3
presents the PODM and PDR parallel mesh generation algorithms in detail.
Section 4 describes the implementation of the parallel Delaunay mesh gener-
ation algorithm PDR.PODM. Section 5 present the experimental results and
analysis. Section 6 concludes the paper and outlines our future work.
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2. Parallel Mesh Generation Background

Usually, a parallel mesh generation algorithm proceeds as follows:

• Construct an initial mesh (not necessary for some domain-decomposition
algorithms);

• Decompose the domain or initial mesh into N(N >= 2) subdomains
or submeshes;

• Distribute the subdomains or submeshes to different cores of a multi-
core machine, refine the mesh in parallel, and stop when the quality
and other criteria are met.

Three of the most popular techniques for parallel mesh generation are
Delaunay, Advancing Front and Octree-based. In the following literature
review, we do not cover all the approaches of parallel mesh generation and
parallel refinement. We list only those that are related to our work.

Delaunay mesh generation algorithms work by inserting additional (often
called Steiner) points into an existing mesh to improve the quality of the
elements. It is proven [1, 19] that the algorithm terminates after having
eliminated all poor quality tetrahedra, and in addition, the termination does
not depend on the order of processing the poor quality tetrahedra, even
though the structure of the final meshes may vary. The insertion of a point
is often implemented according to the well-known Bowyer-Watson kernel
[20, 21, 22]. Parallel Delaunay mesh generation methods can be implemented
by inserting multiple points simultaneously [10, 12, 11, 16], and the parallel
insertion of points by multiple threads needs to be synchronized.

Blelloch et al. [23] solved the problem of creating a Delaunay triangu-
lation for a specified point set in parallel. A divide-and-conquer projection-
based algorithm is proposed to construct Delaunay triangulations of a pre-
defined points set. One major limitation of triangulation algorithms [23, 24,
25] is that they only triangulate the convex hull of a given set of points and
therefore they provide neither quality nor fidelity guarantees.

Alleaume et al. [26] described a parallel Delaunay mesh generation algo-
rithm that can create large meshes. The method is applied in an out-of-core
fashion due to the limited core-memory resources at that time. Okusanya
and Peraire [27] proposed a parallel three dimensional unstructured Delau-
nay mesh generation algorithm that addresses the load balancing problem by
distributing the bad elements among the processors using mesh migration.
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However, the algorithm exhibits only 30% efficiency on 8 cores. Galtier and
George [28] used smooth separators to prepartition the whole domain into
subdomains and then distribute these subdomains among different processors
for parallel refinement. The drawback of this method is that mesh generation
needs to be restarted from the very beginning if the created separators are
not Delaunay-admissible. Ivanov et al. [29] proposed a parallel mesh gen-
eration algorithm based on domain decomposition that can take advantage
of the classic 2D and 3D Delaunay mesh generators for independent volume
meshing. It achieves superlinear speedup but only on eight cores.

Chernikov and Chrisochoides [12] proposed the Parallel Constrained De-
launay Meshing (PCDM) algorithm. In PCDM, the edges on the boundaries
of submeshes are fixed (constrained). This approach requires the construction
of the separators that will not compromise the quality of the final mesh, which
is still an open problem for three dimensional domains. The Parallel Delau-
nay Domain Decoupling PD3 [13] method is based on the idea of decoupling
the individual subdomains so that they can be meshed independently with
zero communication and synchronization. A proper decomposition that can
decouple the mesh is required to eliminate communication costs. However,
the construction of such a decomposition is an equally challenging problem
because its solution is based on the Medial Axis [30, 31] which is very ex-
pensive and difficult to construct (even to approximate) for complex three
dimensional geometries.

Löhner [32] proposed a parallel advancing front grid generation algorithm.
The domain-defining grid is partitioned and the elements inside each domain
are generated in the first pass. Then, the elements located in inter-domain
regions are created through several passes. The scalability is good when
generating elements inside each domain but it degrades quickly for the sub-
sequent passes. Ito et al. [33] described a parallel unstructured mesh gen-
eration algorithm based on the Advancing Front method. A coarse volume
mesh is created and partitioned into a set of subdomains, and each subdo-
main is refined in parallel using the advancing front method. However, the
overall performance of this algorithm is about 6% efficiency on 64 cores. A
framework for parallel advancing front unstructured grid generation, target-
ing both shared memory and distributed memory architectures is proposed
by Zagaris et al. [34]. The framework exploits the Master/Worker pattern for
the parallel implementation in order to balance the workloads of each task.
Because of the low parallelism of the divide and conquer tree, it achieves at
best 55% efficiency on 60 cores. It should be mentioned that advancing front
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methods cannot guarantee the termination.
Tu et al. [35] implemented a parallel meshing tool called Octor for gen-

erating and adapting octree meshes. Octor provides a data access interface
that can interact with parallel PDE solvers efficiently. However, the fidelity
of the meshes is not addressed which is a very important factor that deter-
mines the accuracy of the subsequent finite element solver. Burstedde et
al. [36] extended the octree method and proposed a parallel adaptive mesh
refinement algorithm on forest-of-octrees geometries. Although it exhibits
excellent speedup for thousands of cores, the fidelity of the created mesh is
not guaranteed. Dawes et al. [37] describe a parallel bottom-up octree mesh
generation algorithm. It inverts the process of the top-down octree methods
and generate the mesh from the bottom-up, from the finest cells up the tree
to the coarser ones. In order to obtain a mesh with good quality, an opti-
mization process is necessary for the exported mesh which takes almost one
third of the total execution time.

3. Parallel Delaunay Refinement (PDR) and Parallel Optimistic
Delaunay Mesh Generation (PODM)

PDR [17, 11, 10] is based on a theoretically proven method for managing
and scheduling the insertion points. This approach is based on an analysis
of the dependencies of the inserted points and the resulting Delaunay In-
dependence Criterion: two points pi and pj are Delaunay independent with
respect to a mesh if and only if (i) their cavites do not have shared elements,
and (ii) in the case pi and pj have a shared facet on the boundary of their
cavites, the sphere that passes through pi (pj) and the vertices of the shared
facet does not include pj (pi). Based on the Delaunay Independence Crite-
rion, PDR breaks the meshing problem of the entire region up into smaller
independent subproblems, i.e., partitions the region into subregions in such a
way that the circumcenters of the elements belonging to different subregions
can be inserted concurrently. Using a carefully constructed octree, the list
of the candidate points is split up into smaller lists that can be processed
concurrently with the sequential Delaunay refinement code implementated
in a Delaunay refinement software, e.g., TetGen [2]. PDR requires neither
the runtime checks nor the geometry decomposition and it can guarantee
the independence of inserted points and thus avoid the evaluation of data
dependencies.
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PODM [16] is a tightly-coupled parallel Delaunay mesh generation al-
gorithm. The sequential construction of the initial mesh in PODM only
involves the triangulation of the bounding box, i.e., the sequential creation
of six tetrahedra. Immediately after the construction of these tetrahedra,
the parallel mesh refinement procedure starts. The sequential overhead of
constructing the initial mesh is negligible compared to refining millions or
even billions of elements in the subsequent parallel procedure. Each thread
in PODM maintains its own Poor Element List (PEL) [16] which contains
the elements that violate the quality or fidelity criteria [3] and have been
assigned to this thread for processing. A global load balancing list is used
to spread the work among threads. Each thread has the flexibility to com-
municate with any other thread during the refinement. This approach works
well on a medium number of cores. It scales well up to a relatively high core
count compared to other tightly-coupled parallel mesh generation algorithms
[38]. However, due to the extensive remote memory accesses, its scalability
for Distributed Shared Memory machines is limited from 128 to 256 cores
depending on the utilization of the target machine from other users.

In this paper, we combine both approaches in order to take advantage of
their best features and propose the PDR.PODM algorithm.

4. Proposed Hybrid Algorithm

In this section, we present a hybrid parallel implementation targeting
distributed shared memory architectures. Our parallel mesh generation al-
gorithm proceeds in the following three main steps: (a) parallel initial mesh
construction, (b) sequential lattice construction and initial mesh partition,
(c) independent subregions (submeshes) scheduling and two-level parallel re-
finement.

Figure 2 is a high level description of PDR.PODM. A bounding box of
the input image is created, the lattice structure is constructed and the buffer
zones of each subregion are found and stored (lines 1 to 3). The construction
and the distribution of the initial mesh is done in parallel by PODM running
on multiple cores (lines 4 to 6). Lines 7 to 29 list the subsequent parallel
refinement procedure after the construction of the initial mesh. All the sub-
regions are pushed to a refinement queue Q. Each subregion in Q includes
the bad elements that belong to the corresponding subregion. If Q is not
empty, a PODM mesh generator that is running on a multi-core computing
node gets the bad elements from one subregion to refine. Multiple PODM
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PDR.PODM(I,r̄t,r̄I ,N ,C)
Input: I is the input segmented image;

r̄t is the circumradius upper bound of the elements in the final mesh;
r̄I is the circumradius upper bound of the elements in the initial mesh;
N is the number of computing nodes;
C is the number of cores in a computing node.

Output: A Delaunay Mesh M that conforms to the upper bound r̄t.
1: Create the bounding box of I;
2: Construct a lattice with subregion size reflecting the initial upper bound r̄I ;
3: Find the buffer zones of each subregion of the lattice;
4: Generate an initial mesh that conforms to r̄I using PODM;
5: Distribute the initial mesh to subregions based on their circumcenter coordinates;
6: Push all subregions to a refinement queue Q;
7: for each computing node in parallel
8: Create a PODM mesh generator PMG with C threads;
9: while Q 6= ∅

10: Pop one subregion L and its buffer zones B1 and B2 from Q;
11: Get the bad elements in L and add them to the PEL of PMG;
12: while PEL 6= ∅ in parallel
13: Get the first bad element e from PEL;
14: Check the type of the bad element e;
15: Refine e based on the refinement rules and create new elements;
16: Check and classify new elements;
17: for each newly created element e′

18: if e′ is a bad element and its circumcenter is inside the current subregion
19: add e′ to PEL for further refinement;
20: else
21: add e′ to a neighbor subregion;
22: endif
23: endfor
24: endwhile
25: for each neighbor subregion Lnei of L that contains bad elements
26: Push Lnei back to the refinement queue Q;
27: endfor
28: endwhile
29: endfor
30: returnM

Figure 2: A high level description of the PDR.PODM algorithm.

9



mesh generators that are running on different computing nodes can do the
refinement work of different subregions simultaneously. PDR.PODM follows
the refinement rules of PODM to create the volume mesh and recover the
isosurface. As shown in lines 15 to 23, after creating a new element e′, we
check whether e′ is a bad element or not, and if it is, which refinement rule
it violates. Then based on the coordinates of its circumcenter, we add the
element either to the current PEL or to the PEL of a neighbor subregion for
further refinement. Figure 2 lists only the main steps of PDR.PODM. The
actual implementation is more elaborate to support efficient data structures
and parallel processing.

4.1. Parallel Initial Mesh Construction

The construction of an initial mesh is the starting point for the subse-
quent parallel procedure. PDR uses the sequential TetGen [2] algorithm to
create the initial mesh, which increases the sequential overhead of the whole
parallel algorithm. In order to reduce the sequential overhead, we use the
PODM mesh generator to create the initial mesh in parallel. There are two
important parameters that will affect the performance of the whole algorithm
when we create the initial mesh. The first one is the number of cores that
we use to create the initial mesh. Based on the performance of PODM as
illustrated in Table 2 and Figure 5a, this value should be neither too small
nor too large. If the number of cores is too small, it is not enough to explore
the available concurrency. If it is too large, the communication overhead
among them is high. Both of these cases make the construction of the initial
mesh time-consuming and deteriorate the performance of PDR.PODM. In
practice, we found that 64 cores is the optimal value for creating the initial
mesh when running PDR.PODM on Blacklight. The second parameter is
the circumradius upper bound r̄I that we use to control the volume upper
bound of created elements. This number determines the number of elements
of the initial mesh. The larger r̄I is, the larger the volume of the created
tetrahedra are and thus less elements created because the volume of the in-
put object is fixed. If r̄I is too small, the meshing time of the initial mesh
is too long because a large number of elements are created; if it is too large,
there is not enough concurrency for the subsequent refinement procedure be-
cause there are not enough elements in the intial mesh. In our experiments,
we use r̄I = 4r̄t , where r̄t represents the target radius upper bound for the
final mesh, since it gives the best performance for PDR.PODM among the
different values of r̄I we have tried so far.
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Figure 3: A two dimensional illustration of three dimensional buffer zones. The Venn
diagram on the right part demonstrates the logical relations between two subregions and
their first and second buffer zones. The left part shows an example with two subregions (the
two black subregions), L1 and L2, which can be refined independently and simultaneously
without synchronization during the PDR.PODM mesh refinement procedure. The dark
green and dark red regions around L1 and L2 form the first level buffer zones, B11 and
B21. The light green and light red regions represent the second level buffer zones, B12 and
B22. The conflict between two PODM mesh generators working on different subregions is
eliminated during the refinement.

4.2. Initial Mesh Decomposition and Distribution

We used a simple but efficient way to divide the whole input image into
subregions, which consists in partitioning the bounding box into cubes. Then,
we assign tetrahedra to different subregions based on the coordinates of their
circumcenters. Consider a subregion L1, the twenty six neighbor subregions
form its first level buffer zone B11(the dark red region shown in Figure 3).
When subregion L1 is under refinement, all subregions in the first level buffer
zone B11 can not be refined by another PODM mesh generator simultane-
ously. During the refinement procedure, the point insertion operation might
propagate to one subregion of its first level buffer zone. Consider a case
where L1 and L2 are refined simultaneously. If B11 and B21 are not disjoint,
this may result into a nonconforming mesh across B11 and B21. Therefore,
we use a second level of buffer zones, B12 and B22 (light red and light green
in Figure 3) in order to ensure that B11 and B21 are disjoint. In our imple-
mentation, if one subregion is popped up from the refinement queue during
the refinement, all its first and second level buffer neighbors are also popped
up. This guarantees that two subregions that are refined simultaneously are
at least two layers (subregions) away from each other and thus the aforemen-
tioned problems are eliminated.
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4.3. Two-level Parallel Mesh Refinement

In distributed shared memory (DSM) systems, memory is physically dis-
tributed while it is accessible to and shared by all cores. However, a memory
block is physically located at various distances from the cores. As a result,
the memory access time varies and depends on the distance of a core from a
memory block. Based on a benchmark of the system group of the Pittsburgh
Supercomputing Center [39], as shown in Table 1, the memory latency inside
one blade (Computing Node) is O(200) cycles and it increases when the num-
ber of network switches increases. Each extra switch adds about O(1, 500)
cycles latency penalty.

Table 1: Memory hierarchy and the approximate memory access time (clock cycles) of
Blacklight

Level Memory Module Size Access Clock Cycles
1 L1 Cache 32KB per core 4
2 L2 Cache 256-512KB per core 11
3 L3 Cache 1-3 MB per core 40
4 DRAM to a blade 128GB O(200)
5 DRAM to other blades 128GB and more O(1500)

PDR.PODM explores two levels of parallelism: coarse-grain parallelism
at the subregion level (which is mapped to a virtual Computing Node) and
medium-grain parallelism at the cavity level (which is mapped to a single
core). A Computing Node is a virtual computing unit consisting of a group
of cores. A multi-threaded PODM mesh generator is mapped to a computing
node. Each PODM thread runs on one core of that computing node. In the
implementation, we consider the sixteen cores that are in the same blade as
a computing node since they share 128GB local memory on the experimental
platform. In the coarse-grain parallel level, the whole region (the bounding
box of the input image) is decomposed into subregions and the bad elements
of the initial mesh are distributed into different subregions based on the
coordinates of their circumcenters. Then, a subset of independent subregions
is selected and scheduled to be refined simultaneously. The selection and
scheduling of subregions is based on the two level buffer zones presented in
subection 4.2, i.e., if one subregion is selected to be refined, all subregions that
are in its first and second level buffer zones can not be selected simultaneously
to avoid resorting to rollbacks. In the medium-grain parallel level, the threads
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Figure 4: (a) A diagram that illustrates the design of PDR.PODM parallel Delaunay mesh
generation algorithm. (b) Two-level parallelism illustration. The selected subregions are
refined simultaneously and multiple cavities are expanded concurrently within a single
subregion.

running on the cores of a computing node follow the refinement rules of
PODM in order to refine the bad elements of each subregion in parallel.
The load balance among the cores of each computing node is performed by
the load balancing scheme of the PODM mesh generator. The experimental
results have shown that over-decomposition [40] of the whole region is a
good approach to solve the load-balancing issue among the coarse-grain level
computing nodes.

Figure 4a shows a diagram of the PDR.PODM parallel mesh generation
implementation design. The boxes that are marked PODM represent parallel
Delaunay mesh generators. The block Data Partition represents the partition
of the whole region (the bounding box of the input image). The block Sched-
uler represents the management and distribution of PODM mesh generators
on different subregions. Refinement Queue is a refinement queue that stores
all the subregions. Each Queue Item stores a pointer to one subregion of the
lattice structure. Figure 4b shows an instance of the two-level parallel mesh
refinement. The two subregions are selected to be refined simultaneously,
and inside each region multiple points are inserted concurrently.

4.4. Parallel Varying Size Mesh Generation

PDR.PODM is able to create meshes of varying size in parallel based on
the application requirements. It divides the elements (tetrahedra) into two
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types base on their location: near-boundary tetrahedra and interior tetrahe-
dra. A tetrahedron is regarded as a near-boundary tetrahedron if its circum-
sphere intersects one (or multiple) of the material boundaries. An interior
tetrahedron is the one whose circumcenter lies inside one material. Small ele-
ments are generated near the boundaries in order to capture the fine features
of the boundaries while in the rest of the region big elements are created
to reduce the number of elements generated in the final mesh as shown in
Figure 6b. In addition, the users can customize the size function for different
regions and pass it as an input parameter. The size function sets an upper
bound to the circumradius of the tetrahedra created in different regions and
provides the flexibility to generate a dense mesh. PDR.PODM can create a
dense uniform mesh inside critical regions while keeping a varying size mesh
outside the regions as illustrated in Figure 6c.

5. Experimental Results and Analysis

In this section, we evaluate the performance of PDR.PODM on dis-
tributed shared memory architecture. We performed a set of experiments
creating uniform meshes to access the weak scaling and strong scaling per-
formance of PDR.PODM. When measuring the weak scaling performance
of an algorithm, the problem size (the number of elements created in the
case of PDR.PODM) increases proportionally with respect to the number
of cores. When measuring the strong scaling performance, the problem size
remains the same for all number of cores. We tested both the weak scaling
performance of our implementation and PODM on Blacklight using up to 256
cores. Then, another set of experiments were performed to test the strong
scaling performance of PDR.PODM when creating uniform mesh. Finally,
a set of experiments was conducted to test the performance of PDR.PODM
when creating varying size meshes. In all these experiments, the execution
time reported includes pre-processing time for loading the image, lattice data
structure creation time and the actual mesh refinement time.

5.1. Experiment Setup

The input images we used in our experiment are the CT abdominal atlas
from IRCAD Laparoscopic Center [18] and BigBrain [41]. We also show sev-
eral uniform and varying size meshes using a 3D MRI with brain tumor. Our
experimental platform is Blacklight [39], the cache-coherent NUMA shared
memory machine in the Pittsburgh Supercomputing Center. Blacklight is a

14



cc-NUMA shared-memory system consisting of 256 blades. Each blade holds
2 Intel Xeon X7560 (Nehalem) eight-core CPUs, for a total of 4096 cores
across the whole machine. The 16 cores on each blade share 128 Gbytes of
local memory. One individual rack unit (IRU) consists of 16 blades and 256
cores. A 16-port NL5 router is used to connect blades located internally to
each IRU. Each of these routers connects to eight blades within the IRU.
The remaining eight ports of the internal router are used to connect to other
NL5 router blades [42]. The total 4096 cores have 32 TB memory.

5.2. Weak Scaling Performance of Uniform Meshing

In this subsection, we present the weak scaling performance of PDR.PODM.
We also show the weak scaling performance of PODM for comparison. We
increase the problem size, i.e., the number of tetrahedra, linearly with respect
to the number of cores. The number of tetrahedra created is controlled by
the parameter r̄t. This parameter sets a circumradius upper bound on the
tetrahedra created. A decrease (increase) of the parameter r̄t by a factor of
m, results in an approximate m3 times increase (decrease) of the number of
tetrahedra created. The number of tetrahedra created increases gradually
from 3 million to 745 million when the number of cores increases from 1 to
256. Table 2 shows the weak scaling performance of PODM and PDR.PODM.

5.2.1. Evaluation Metrics

The quality of an element e (tetrahedron or triangle) is measured by
its radius-edge ratio. Let r(e) and l(e) denote the circumradius and the
shortest edge of e respectively. The radius-edge ratio of e is defined as ρe =
|r(e)|
|l(e)| . The radius-edge ratio of each element in the output mesh generated
by PDR.PODM is smaller than 1.93 because it utilizes the same refinement
rules as PODM [3, 16].

We use the following metrics to evaluate the scalability of parallel mesh
generation algorithms [43, 44].

Speedup S : The ratio of the sequential execution time of the fastest
known sequential algorithm (Ts) to the execution time of the parallel algo-
rithm (Tp).

Efficiency E : The ratio of speedup (S) to the number of cores (p):
E = S/p = Ts/(pTp).

In the weak scaling case, the number of elements per core (we use one
thread per core) remains approximately constant. In other words, the prob-
lem size (i.e., the number of elements created) is increased proportionally to
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the number of cores. The number of elements generated is approximately
equal to 3 million on a single Blacklight core. The problem size increases
proportionally from 3 million to 745 million tetrahedra for 1 to 256 cores on
Blacklight. In practice, it is difficult to control the problem size exactly while
the number of cores is increased to p because of the irregular nature of the
unstructured mesh. So we use an alternative definition of speedup which is
more precise for a parallel mesh generation algorithm.

We measure the number of elements generated every second during the
experiment. Let us denote by elements(p) and time(p) the number of gen-
erated tetrahedra and the meshing time respectively, where p is the number
of cores. Then we can use the following formula to compute the speedup:

S(p) =
elements per sec(p)

elements per sec(1)
=
elements(p) · time(1)

time(p) · elements(1)
(1)

In equation (1), elements per sec(p) represents the number of elements
created per second using p cores while elements per sec(1) represents the
number of elements (tetrahedra) created per second by the best sequential
mesh generation algorithm.

5.2.2. Scalability Analysis

Table 2 demonstrates that PODM shows outstanding performance when
the number of cores is less than or equal to 64. The speedup using 32 cores
and 64 cores is 34.1 and 63.8 respectively, which means that the speedup
increases linearly with respect to the number of cores. On 128 cores, PODM
achieves a speedup of 94.5 and efficiency of 73.86%. However, the perfor-
mance of PODM deteriorates when the number of cores is more than 128
on Blacklight. We ran a set of bootstrapping experiments from 128 cores to
256 cores with an increase of two blades (32 cores) each time, to test the
performance deterioration of PODM. Each time we increase the number of

Table 2: Performance of PODM & PDR.PODM. The input is the abdominal atlas.

Cores
Elements Meshing Time (seconds) Elements/s (million) Speedup Efficiency %
(millions) podm pdr.podm podm pdr.podm podm pdr.podm podm pdr.podm

1 3.0 27.18 27.78 0.11 0.11 1.0 1.0 100.00 100.00
32 95.1 26.07 29.74 3.75 3.19 34.1 29.0 106.56 90.71
64 187.3 27.02 30.14 6.91 6.23 63.8 56.6 98.12 88.53

128 375.1 35.93 38.54 10.42 9.76 94.5 88.7 73.86 69.32
160 466.4 50.76 38.86 9.18 12.13 83.5 110.3 52.15 68.92
192 560.3 76.04 40.31 7.35 13.91 66.8 126.5 34.80 66.05
224 657.2 123.57 40.57 5.29 16.19 48.1 147.2 21.47 65.71
256 745.7 151.44 41.53 4.92 18.02 44.7 163.8 17.47 63.99
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Figure 5: (a) Weak scaling speedup of PODM and PDR.PODM on 32 to 256 cores on
Blacklight. Three million tetrahedra are created by each thread running on a core. The
black line depicts the ideal linear speedup. The red dash line with green markers shows the
speedup of PDR.PODM and the blue one with yellow markers is the speedup of PODM.
(b) Running time of PDR.PODM and running time of PODM.

cores, the speedup decreases. For example, the speedup on 160 cores is 83.5
which is lower than that of 128 cores and it decreases to only 44.7 for 256
cores. The reason for this performance deterioration of PODM is the increase
of communication time due to the large number of remote memory accesses
and the congested network. The blue dashed line with yellow markers in
Figure 5a shows clearly this performance deterioration of PODM when core
count is above 128.

PDR.PODM exhibits better scalability potential when the number of
cores is higher than 128 as shown in Table 2. We ran the same set of boot-
strapping experiments from 128 cores to 256 cores with a step of two blades
(32 cores) each time in order to compare the performance with PODM. We
observed that each time we increase the number of cores, the speedup of
PDR.PODM increases while the speedup of PODM decreases. For exam-
ple, the speedup on 128 cores is only 88.7 and it increases to 163.8 for 256
cores. The reason of this performance enhancement is the data partition
that PDR offers. As we described before, we partition the whole region into
subregions and also we divide all the available cores into groups (computing
nodes). Therefore, the communication among different computing nodes is
eliminated during the refinement procedure and the runtime checks during
the cavity expansion in each subregion involves only a small number of cores.

When the number of cores is less than 128, the performance of PDR.PODM
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is lower than that of PODM. As illustrated in Table 2, PODM using 32 and
64 cores creates 3.75 million and 6.91 million elements per second and the
speedup is linear with respect to the number of cores while PDR.PODM cre-
ates 3.19 million and 6.23 million elements per second respectively and the
speedup is only 29.0 and 56.6 respectively. The lower speedup of PDR.PODM
is caused by the overhead we introduce to check and distribute newly created
elements to the corresponding subregions for further refinement. When the
number of cores is small (< 128), the overhead we introduce is more than
the overhead that we want to reduce because of remote memory accesses and
rollbacks.

Figure 5b depicts the execution time of PODM and PDR.PODM. The
execution time of PODM consists of the allocation time for the initialization
of the threads and the meshing time. The execution time of PDR.PODM
includes the allocation time, the lattice construction time, the initial mesh
creation time and the subsequent mesh refinement time. We can see clearly
in Figure 5b that the total meshing time of PDR.PODM, i.e., the meshing
time to create the initial mesh (the yellow block of the left bar) plus the
meshing time in the subsequent refinement procedure (the red block of the
left bar), is greater, although by a small amount, than the meshing time
of PODM (the light purple bar on the right) when the number of cores is
lower than or equal to 128. However, this drawback of PDR.PODM can be
overcome easily. What we need to do is to set a threshold on the number of
cores. When the number of cores is lower than this threshold, we deactivate
the lattice structure and all the related data decomposition and scheduling
procedures. Only when the number of cores is higher than this threshold and
PODM does not perform well, the PDR.PODM mode is activated to take
advantage of its scalability potential.

Table 3: Weak Scaling Performance of PDR.PODM. The input is the BigBrain.

Cores
Elements Meshing Time Elements/s

Speedup
Efficiency

(million) (second) (million) (%)
1 4.1 41.27 0.10 1.0 100.00

16 66.0 45.88 14.39 14.4 89.95
32 131.9 48.56 27.17 27.2 84.91
64 264.2 50.15 52.68 52.7 82.31

128 526.1 58.83 89.43 89.4 69.86
160 656.7 60.88 107.87 107.9 67.42
192 787.3 62.79 125.39 125.4 65.31
224 917.0 64.09 143.09 143.1 63.88
256 1046.4 66.47 157.43 157.4 61.50
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Table 4: Strong Scaling Performance of PDR.PODM. The input is the abdominal atlas.

Cores
Elements Meshing Time Elements/s

Speedup
Efficiency

(million) (second) (million) (%)
1 376.2 3412.27 0.11 1.0 100.00

16 376.2 236.83 15.88 14.4 90.23
32 376.2 122.26 30.77 27.9 87.41
64 376.2 63.28 59.44 54.0 84.44

128 376.2 38.65 97.32 88.5 69.12
160 376.2 34.64 108.59 98.7 61.70
192 376.2 29.86 125.98 114.5 59.65
224 376.2 26.86 140.06 127.3 56.84
256 376.2 24.92 150.97 137.3 53.61

Table 3 shows the weak scaling performance of PDR.PODM for the input
BigBrain [41]. Again, we can see similar performance trends for this input.

Table 4 shows the strong scaling performance of PDR.PODM for input
image abdominal atlas. In the strong scaling case, the number of elements
remains the same. In the experiments, the number of elements is about 376.2
million for all runs from 1 to 256 cores. As demonstrated in Table 4, when the
number of cores is large (> 128), the strong scaling speedup is a little lower
than the weak scaling speedup shown in Table 2. The underlying reason is
that the ratio of useful computation to overhead decreases as the number of
cores is increased.

5.3. Comparision: Uniform Meshing and Varying Size Meshing

Figure 6 shows examples of a uniform mesh and two varying size meshes
created by PDR.PODM for the brain tumor image. Figure 6a demonstrates a
uniform volume mesh. The size upper bound of element is the same (uniform)
for both materials. Figure 6b shows a varying size mesh. Small elements
are created near the boundaries in order to capture the fine features of the
boundaries while in the regions far away from the boundaries the elements
are larger. Figure 6c gives an illustration of another varying size mesh that
contains a critical region around the tumor specified by the user. A dense
uniform mesh is created inside the critical region around the tumor while a
varying size mesh is maintained outside.

We also ran a set of experiments from 16 to 256 cores that generated vary-
ing size meshes for the multi-material abdominal image. Table 5 shows the
experimental results of PDR.PODM creating uniform meshes and varying
size meshes. Compared to the uniform meshes, the corresponding varying
size meshes have much fewer elements. As a result, the meshing time re-
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(a) (b) (c)

Figure 6: Uniform and varying size meshes created by PDR.PODM for the input brain
tumor image (two materials). (a) A uniform volume mesh for both materials. (b) A
varying size mesh with the same geometric fidelity is created that small elements created
near the boundaries. (c) Another varying size mesh with a dense mesh created inside the
user-specified region around the tumor.

quired to create the varying size meshes is less than the meshing time for
the uniform mesh with the same fidelity. The largest uniform mesh in the
experiment contains 745.7 million elements and the meshing time is 41.53
seconds for 256 cores. PDR.PODM created a corresponding varying mesh
with the same fidelity in only 5.91 seconds which is almost seven time faster
than the uniform meshing. Furthermore, since the number of elements is
lower than the uniform mesh, the finite element solver will perform faster
using the varying size mesh compared to using the uniform mesh.

Table 5: Comparison of Uniform Meshing and Varying Size Meshing. The input is the
abdominal atlas.

Cores
Elements (million) Meshing Time (second) Elements/s (million) Speedup

uniform varying uniform varying uniform varying uniform varying

16 47.2 2.5 27.78 3.60 1.69 0.69 15.4 6.3
32 95.1 5.0 29.74 4.92 3.19 1.02 29.0 9.2
64 187.3 6.5 30.14 5.97 6.23 1.09 56.6 9.9

128 375.1 9.7 38.54 5.62 9.76 1.73 88.7 15.7
160 466.4 12.5 38.86 5.85 12.13 2.14 110.3 19.4
192 560.3 16.1 40.31 5.85 13.91 2.75 126.5 25.0
224 657.2 19.4 40.57 5.99 16.19 3.24 147.2 29.4
256 745.7 23.5 41.53 5.91 18.02 3.98 163.8 36.2

Note: The fidelity of the uniform and the corresponding varying size mesh is the same for the same
number of cores.
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6. Conclusions and Future Work

In this paper, we present a three dimensional parallel mesh generation
algorithm, PDR.PODM, which delivers high scalability on DSM NUMA su-
percomputers. Taking advantage of the best features of two algorithms we
proposed before, PDR.PODM quickly leverages parallelism because of the
aggressive speculative approach employed by PODM, and uses data parti-
tioning offered by PDR to improve data locality and decrease the commu-
nication overhead. PDR.PODM can create varying size meshes in parallel,
i.e., small elements are created near the boundaries or in the critical regions
to capture the fine features while larger elements are generated for the rest
regions to keep the total number of elements low.

In our current implementation we use the thread model (BoostC++
thread). In our future work, we plan to explore the scalability of PDR.PODM
further by running more experiments to evaluate the cache hit ratio for dif-
ferent levels of cache. It should be mentioned that the idea of this paper
is also suitable for distributed memory architectures since the communica-
tion among computing nodes is low during the parallel refinement procedure.
Therefore, one of our future work directions is to extend the idea of this paper
to distributed memory architectures. We plan to employ the MPI program-
ming model for the coarse grain parallelism and utilize the MPI+threads
mixed programming to explore the idea of PDR.PODM on distributed mem-
ory machines.
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