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Abstract

In this paper, we propose a three dimensional two-level Locality-Aware Parallel

Delaunay image-to-mesh conversion algorithm (LAPD). The algorithm exploits

two levels of parallelism at different granularities: coarse-grain parallelism at the

region level (which is mapped to a node with multiple cores) and medium-grain

parallelism at the cavity level (which is mapped to a single core). We employ

a data locality-aware mesh refinement process to reduce the latency caused

by the remote memory access. We evaluated LAPD on Blacklight, a cache-

coherent NUMA distributed shared memory (DSM) machine in the Pittsburgh

Supercomputing Center, and observed a weak scaling efficiency of almost 70%

for roughly 200 cores, compared to only 30% for the previous algorithm, Parallel

Optimistic Mesh Generation algorithm (PODM).

Keywords: Parallel Mesh Generation, Parallel Computing, Locality-Aware,

Image-to-Mesh Conversion, High Performance Computing

1. Introduction

Mesh generation is a critical component for many (bio-)engineering appli-

cations. Delaunay mesh refinement is one of the most popular techniques for

generating triangular and tetrahedral meshes for use in finite element analysis
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and interpolation in various numeric computing areas because it can mathe-

matically guarantee the quality of the mesh [1, 2, 3, 4]. The parallelization of

Delaunay mesh refinement codes can be achieved by inserting multiple points si-

multaneously [5, 6, 7, 8, 9, 10]. The mesh generation of the ultra-high-resolution

three dimensional images, such as BigBrain [11], brings new challenges to par-

allel mesh generation considering the required memory space and the execution

time [12]. The NASA CFD vision 2030 study [13] reports that mesh genera-

tion is the critical bottleneck in the computational fluid dynamics (CFD) field.

However, most current mesh generation algorithms are desktop-based, either

sequential or parallel, developed for a small number of cores. Such mesh gen-

eration algorithms, when run on supercomputers, are either conservative in

leveraging available concurrency [5, 7, 14] or require the solution of the domain

decomposition which is still an open problem for three dimensional domains

[6, 15]. There is no doubt that the scalability of mesh generation algorithms

will continue to be critical for many (bio-)engineering applications, such as CFD

simulations [16] and image discretization in bioinformatics [17].

In order to solve the problem and create high quality meshes of the desired

resolution, it is necessary to apply a supercomputer-based parallel mesh gen-

eration algorithm which scales well on modern non-uniform (i.e., distributed)

memory machines. In this paper, we describe a three dimensional two-level

locality-aware parallel Delaunay image-to-mesh conversion algorithm that (1)

applies a three dimensional data decomposition instead of domain decomposition

according to the circum-centers of tetrahedra (2) employs two-level parallelism

and a data locality optimization scheme to reduce the communication overhead

caused by a large number of remote memory accesses. The algorithm is more

aggressive in leveraging concurrency compared to other parallel Delaunay re-

finement algorithms. It shows good scalability for up to 200 cores on a NUMA

machine. The long term goal is to exploit the performance potential of modern

supercomputers and to deliver sufficient scalability for applications that require

exascale computing [12]. We plan to achieve this by leveraging concurrency

at different granularity levels using hierarchical hybrid mesh generation algo-
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rithms. The algorithm we present in this paper is the first step as its good

performance indicates that the blueprint of our long term goal is feasible and

within our reach.

The previous parallel unstructured mesh generation and refinement algo-

rithms are not suitable for NUMA DSM architecture supercomputers. These

algorithms rely on irregular communication patterns and lack data locality due

to a large number of remote memory accesses. Oliker and Biswas [18] concluded

that the performance of unstructured mesh refinement deteriorates for some

cases on just a 4-core cc-NUMA architecture. Chowdhury et al. [19] presented

multicore-oblivious algorithms and run-time scheduler for several fundamental

problems including matrix transposition, FFT, sorting, Gaussian elimination,

and others, however, mesh generation has not been addressed. In this paper, we

conduct an application-level exploration that will help design general locality-

aware mesh generation algorithms and supporting run-time systems. In the

previous work [8, 9], we implemented a parallel Image-to-Mesh (I2M) refine-

ment algorithm, Parallel Optimistic Delaunay Mesh generator (PODM), which

works on multi-label segmented three dimensional images. The algorithm works

well for a low core count (less than 128 cores). However, it exhibits considerable

performance deterioration for a higher core count (144 cores or more) because

of the intensive and multi-hop communication. The communication not only

causes contention in the communication links and makes the available band-

width decrease, but also causes high latency due to remote memory accesses.

The locality-aware meshing algorithm LAPD described in this paper lever-

ages concurrency at two granularity levels, and matches these two levels to the

non-uniform memory architecture to increase the data-locality. In the coarse-

grain level parallelism, a node that contains multiple cores is mapped to a sub-

region, and multiple subregions can be refined in parallel. In the medium-grain

level, the algorithm takes advantage of the previous parallel image-to-mesh con-

version approach, PODM, to insert or delete multiple points of a subregion in

parallel. The experimental evaluation was performed on Blacklight, a cache-

coherent NUMA shared memory machine in the Pittsburgh Supercomputing
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Center. We observed a weak scaling efficiency of more than 67% on 192 cores,

compared to only about 30% of that of PODM [8, 9]. Fig. 1 shows an example

mesh created by the algorithm.

Figure 1: A mesh created by LAPD algorithm. The input image is the knee atlas obtained from
Brigham & Women’s Hospital Surgical Planning Laboratory [20]. The left figure demostrates
the fidelity of the mesh. The boundaries of all tissues are well recovered. The cut-through
figure in the right shows the quality of the mesh.

The rest of the paper is organized as follows: Section 2 presents the back-

ground of Delaunay mesh refinement and reviews the related prior work; Section

3 describes the main idea of PODM algorithm and analyzes the reasons of its

performance deterioration on distributed shared memory architecture. Section

4 describes the two-level locality-aware parallel Delaunay mesh generation al-

gorithm (LAPD); Section 5 outlines the analysis of the experimental results of

our approach; Section 6 concludes the paper.

2. Background and Related Work

Delaunay refinement algorithms work by inserting additional (often called

Steiner) points into an existing mesh to improve the quality of the elements.

There are two kinds of Delaunay refinement algorithms. In the PLC-based al-

gorithms, the surface of the objects is represented as a Piecewise Linear Complex

(PLC) [21, 22]. The limitation of the PLC-based method is that the quality of
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the input PLC affects the quality of the final volume mesh. The Isosurface-

based algorithms [23, 4] recover the isosurface of the object in the image and

mesh the volume simultaneously. These methods do not suffer from the small

input angle constraint introduced by the given PLCs or the initial conversion to

PLCs. In the case of bio-engineering applications, since we start with images,

it is better to avoid the initial generation of the PLC and immediately proceed

with volume mesh generation. The LAPD method proposed in this paper is an

isosurface-based algorithm. It directly takes segmented images as input, and

then recovers the surface and meshes the volume simultaneously.

The basic operation of Delaunay refinement is the insertion and deletion of

points, which then leads to the removal of poor quality tetrahedra and of their

adjacent tetrahedra from the mesh and the insertion of new tetrahedra. The

new tetrahedra may or may not be of poor quality, and therefore may or may

not require further point insertions. It is proven [22, 24] that the algorithm ter-

minates after having eliminated all poor quality tetrahedra, and in addition, the

termination does not depend on the order of processing of poor quality tetra-

hedra, even though the structure of the final meshes may vary. The insertion

of a point is often implemented according to the well-known Bowyer-Watson

kernel [25, 26, 27]. The parallel insertion of points by different threads needs to

be synchronized. The problem of parallel Delaunay triangulation of a specified

and fixed point set has been solved by Blelloch et al. [28]. They describe a

divide-and-conquer projection-based algorithm for constructing Delaunay tri-

angulations of pre-defined point sets in parallel.

One approach, Parallel Delaunay Refinement (PDR) [7, 14], is based on a

theoretically proven method to choose the points for the insertion. This ap-

proach is based on the analysis of the dependencies between the inserted points

and requires neither the runtime checks nor the geometry decomposition. The

work was then extended to three dimensions [5]. PDR works as a wrapper

code around the open source sequential mesh generators Triangle [29](2D) and

Tetgen [30](3D). It can guarantee the independence of inserted points and thus

avoid runtime data dependencies during the parallel refinement process.
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Linardakis [15] presented a two dimensional Parallel Delaunay Domain De-

coupling (PD3) method. The PD3 method is based on the idea of decoupling

the individual subdomains so that they can be meshed independently with zero

communication and synchronization by reusing the existing state-of-the-art se-

quential mesh generation codes. In order to eliminate the communication and

synchronization costs, a proper decomposition that can decouple the mesh is

required. However, the construction of such a decomposition is an equally chal-

lenging problem because its solution is based on Medial Axis [31, 32] which

is very expensive and difficult to construct (even to approximate) for complex

three dimensional geometries.

An idea of updating partition boundaries when inserted points happen to

be close to them was presented [33] and extended [6] as a Parallel Constrained

Delaunay Meshing (PCDM) algorithm. In PCDM, the edges on the boundaries

of submeshes are fixed (constrained), and if a new point encroaches upon a

constrained edge, another point is inserted in the middle of this edge instead.

As a result, a split message is sent to the neighboring core, notifying that it

also has to insert the midpoint of the shared edge. This approach requires the

construction of the separators that will not compromise the quality of the final

mesh, which is still an open problem for three dimensional domains.

The previous parallel mesh generation method, PODM [8, 9], is a tightly-

coupled parallel optimistic Delaunay mesh generation algorithm. PODM suffers

from communication overhead caused by a large number of remote memory

accesses, and its performance deteriorates for a core count beyond 144 because of

the network congestion caused by the communication among threads. The best

weak scaling efficiency for 176 continuous cores is only about 49% on Blacklight.

Besides the Delaunay-based algorithms, a number of other parallel mesh

generation algorithms have been published. De Cougny, Shephard and Oztu-

ran [34] base the parallel mesh construction on an underlying octree. Lohner

and Cebral [35], and Ito et al. [36] developed parallel advancing front schemes.

Globisch [37, 38] presented a parallel mesh generator which uses a sequential

frontier algorithm. A detailed review of many more methods appears in [39].
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3. Remote Memory Access of PODM on NUMA Architecture

In distributed shared memory (DSM) systems, memory is physically dis-

tributed while it is accessible to and shared by all cores. However, a memory

block is physically located at various distances (hops) from the cores. As a

result, the memory access times vary and depend on the distances (hops) from

a core to a memory block. When the parallel applications are running on such

NUMA machines, a thread running on a core might access its own local memory

or its non-local (remote) memory (memory local to another node).

The experimental platform, Blacklight [40], is a cc-NUMA shared-memory

system consisting of 256 blades. Each blade holds 2 Intel Xeon X7560 (Nehalem)

eight-core CPUs, for a total of 4096 cores across the whole machine. The 16

cores on each blade share 128 Gbytes of local memory. The dashline rectangle

in Fig. 2 shows one individual rack unit (IRU) of 16 blades and 256 cores on

Blacklight. Each rectangle represents a blade. The 16-port NL5 router is used to

connect blades located internally to each IRU. Each of these routers connects to

eight compute blades within the IRU. The remaining eight ports of the internal

router are used to connect to other NL5 router blades [41]. The total 4096 cores

have 32 TB of memory.

Each thread running on a core in PODM maintains its own Poor Element

List (PEL) [9]. The PEL contains the poor elements that violate the quality

criteria [4] and are assigned to be processed by this thread. If PELi is not

empty, thread Ti will get the first element in the list, compute the cavity, delete

the tetrahedra in the cavity and create new tetrahedra according to the Bowyer-

Watson kernel [25, 26]. Additionally, a global load balancing list stores the IDs

of threads whose poor element list is empty. When a thread Ti runs out of work

(its PEL is empty), it will push back its ID to the global load balancing list

and start waiting. If another thread Tj creates new elements, it checks whether

the load balancing list is empty. If the list is empty, it means all the other

threads are busy. Thread Tj adds the newly created elements to its own PEL.

If the list is not empty, thread Tj adds the newly created elements to the PEL
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Figure 2: One possible allocation of 4 blades (64 cores) on Blacklight. The dashline rectangle
represents the individual rack unit (IRU). Each IRU includes 16 blades and each blade has
16 cores that share 128 GB local memory. The blades B1 and B2 are in the same individual
rack unit (IRU) and the blades B3 and B4 are in the same IRU. The maximum number of
hops between two blades of the same IRU is 3 (B1 and B2) and that of different IRUs is 5
(B2 and B3).

of the first thread, suppose it is thread Ti, in the load balancing list. The new

poor elements in thread T ′is poor element list created by thread Tj still reside

in thread T ′js local memory. When Ti needs to refine these poor elements, it

needs to access thread T ′js local memory to fetch them. In the case that these

two threads run on the cores that belong to the same blade, the ask-for-work

operation between them is a local memory access since all cores in the same blade

share memory without any switches. However, If thread Ti and thread Tj are

not in the same blade, one thread needs to fetch a poor element from the local

memory of another thread. This leads to a remote memory access. Moreover,

if they are not in the same IRU, the time latency is much longer because of

the increase in hops (about a 2000 cycle latency penalty on Blacklight [25] for

each hop) and the traffic contention. Fig. 2 shows one possible case when we

reserve 64 cores on Blacklight. It illustrates that the maximum number of hops

between two blades of the same IRU is three and that of different IRUs is five.

As most DSM supercomputers, the experimental platform, Blacklight, is
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shared by many users. The scheduling and reservation of cores (blades) is man-

aged by the system. A user has no mechanism to decide which blades he can

get to run his job. The system determines which blades are given to the user’s

job based on the available blades. In most cases, the job will get several non-

adjacent blades among all blades in the system. For a data communication

intensive application, such as parallel mesh generation, the performance will

suffer on high core counts because of a large number of remote memory ac-

cesses. The performance of PODM was indeed poor when the allocated cores

(>128) are non-consecutive. The ideal case is to make a thread finish all of its

work on its local memory. However, this is almost impossible for unstructured

parallel mesh generation because of the irregular and unpredictable communi-

cation during run-time. In this paper, we describe a two-level locality-aware

parallel Delaunay mesh refinement algorithm LAPD. It divides the image into

subregions and each subregion is refined by a parallel mesh generator (PODM,

in our case). In each of the subregions, a thread of a PODM mesh generator has

the flexibility to communicate with any other thread in the same PODM mesh

generator in order to maximize the concurrency of this PODM mesh genera-

tor. The communication between different PODM mesh generators is confined,

and only happens when the poor element is near the partition boundary. This

two-level locality-aware parallel strategy eliminates a large number of remote

memory accesses as well as alleviates the pressure of the network routers caused

by the intensive communication among threads.

4. Two-level Locality-Aware Parallel Delaunay Mesh Generation

4.1. Two-level Parallel Mesh Refinement

The algorithm explores concurrency at two levels of granularity: coarse-grain

parallelism at the subregion level (which is mapped to a node with multiple

cores) and medium-grain parallelism at the cavity level (which is mapped to a

single core).
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Figure 3: A diagram that illustrates the design of the two-level parallel Delaunay mesh gen-
eration algorithm. The boxes that are marked PODM represent parallel tightly coupled
Delaunay mesh generator. The block Coarse-grainManagement represents the manage-
ment and distribution of PODM mesh generators on different subregions. In PODM, each
thread has the flexibility to communicate with any other thread at any time. In LAPD, the
communication between two PODM nodes is confined, and happens when one node needs to
refine an element across the partition boundary between these two subregions.

In the coarse-grain parallel implementation, the input image (domain) is

decomposed into subregions and each node is responsible for the refinement work

of one subregion. The communication between two adjacent subregions happens

only near the partition boundary. In the medium-grain parallel implementation,

the threads running in the cores of a node follow the refinement rules of PODM

to insert or delete multiple points in parallel. The work load balancing among

the threads of each node is performed by the load balancing scheme of PODM

mesh generator. Fig. 3 illustrates a diagram of the two-level parallel mesh

generation design.

In the two-level parallel locality-aware refinement algorithm, we combine

two different communication types in two granularity levels, partially coupled

communication at the node level and tightly coupled communication at the core

level. It quickly leverages high concurrency due to the aggressive speculative ap-

proach employed by tightly coupled PODM of each subregion, uses the partially

coupled communication to ensure the conformity of elements across the parti-

tion boundary, and employs data partitioning to improve data locality gradually

during the mesh refinement procedure. Fig. 4 depicts the pseudo-code of the

algorithm.
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1 Algorithm: LAPD (I,r,n,b)

Input : I is the input segmented image,

r is the circum-radius upper bounds vector of length n

/* ri in the vector r defines the circum-radius upper bounds of elements created in step i. */

2 b is the number of blades.

Output: A Delaunay Mesh M that is conforming to the size upper bound rn.

3 Generate Initial Mesh that is conforming to the size upper bound r1;

4 for i = 2 to n do

5 Mi = StepMesh(ri, i,Mi−1, b);

/* Mi−1is the mesh generated in the previous step and Miis the new mesh created in step i. */

6 end

7 Algorithm: StepMesh (r̄,i,M , b)

Input : i is the current step

r̄ is the current size upper bound,

M is the mesh created in the previous step,

b is the number of blades.

Output: A Delaunay Mesh M ′ that is conforming to the current size upper bound r̄.

8 Divide the 2i−2 subregions of the previous step into 2i−1 subregions by the bisection plane

of the previous subregion along one dimension;

9 Assign the elements of M to subregion PELs based on the circumcenter coordinates;

10 Divide the b blades into 2i−1 nodes based on their physical locations;

11 Assign each node a PEL of a subregion;

12 for each node do

13 SM = GenerateMesh(r̄, PEL);

14 end

15 Algorithm: GenerateMesh (r̄,PEL)

Input : r̄ is the size upper bound of the current step,

PEL is the poor element list that need to be refined.

Output: A submesh SM of a subregion.

16 while PEL! = NULL do

17 Get the first poor element e in PEL;

18 Refine e and create new elements;

19 for each newly created element e′ do

20 if e′ is a poor element according to the size upper bound r̄ and fidelity bounds

then

21 add e′ to PEL;

22 else

23 add e′ to output SM of this subregion;

24 end

25 end

26 end

Figure 4: Pseudocode of the locality-aware parallel Delaunay mesh algorithm. It consists
of three sub-algorithms. Sub-algorithm StepMesh() is to divide the mesh of the previ-
ous step into to different subregions and divide blades into different nodes. Sub-algorithm
GenerateMesh() is to generate mesh for each subregion.
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4.2. Data Locality-Aware Implementation

For illustration purposes, in this subsection we exhibit a simplified two di-

mensional example showing the locality-aware property of LAPD algorithm.

The parameter ri is the circumradius upper bound that we use to control the

size and the number of elements that are created in step i. The smaller ri is,

the more elements are created. Empirically we found that setting ri = ri−1/2

leades to the best balance between available concurrency and overheads.

In the beginning of mesh process, an appropriate isosurface is recovered

and an initial tetrahedral mesh is constructed and refined in parallel using the

PODM mesh generator until all elements satisfy the user-defined size upper

bound r1 determined by the theory we developed in the previous work [7, 14, 5].

The elements in this initial mesh are distributed among all memory blocks since

PODM uses all available threads to jump-start the computation with maximum

concurrency. Fig. 5a exhibits a two dimensional illustration of an initial mesh

and its distribution in memory after the first step. We use four different colors

to distinguish the elements in different memory of four blades. The left subfigure

shows the mesh, and the right subfigure illustrates the element distribution on

four different memory blocks. The different colors represent different memory

blocks in which elements are stored.

In the second step the whole region (image) is divided into two subregions

and the initial mesh is divided into two sub-meshes based on the coordinates

of centers of element circum-spheres. A PODM mesh generator refines the sub-

mesh of each subregion. The threads of the PODM mesh generator will work

in the subregion and refine the sub-mesh in parallel to get the mesh that is

conforming to size upper bound r2 using similar criteria as before. As illustrated

in Fig. 5b, the whole region, i.e., the bounding box and the underling image, is

divided by its bisection line (bisection plane in three dimensional space) along

one dimension, and the initial mesh is divided into two sub-meshes, M1 and M2,

according to the coordinates of circum-centers of elements in the mesh. In this

example, there are two nodes in this step. We assume that node G1 contains

blades B1 and B2 while node G2 contains blades B3 and B4. Node G1 is only
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Figure 5: (a) A simplified two dimensional illustration of an initial mesh and its allocation
in memory. (b) During the mesh refinement of the second step. (c) A new mesh was created
after the second step and the mesh is divided into four sub-meshes in the third step. (d) After
the refinement of the third step. In the next step, each node will only need to access its own
local memory to finish the refinement work except the elements on the boundary.

responsible for refining the elements belonging to the top half subregion and

node G2 is responsible for the elements in the bottom half subregion.

During the refinement, B1 gets the poor element e1 that was stored in B′3s

local memory and adds it to its own poor element list. Element e1 is triangulated

and deleted. To keep the Delaunay property, element e2 is part of the cavity

and is also triangulated. The new elements e3, e4, e5 and e6 will be stored in the

local memory of B1 because the new elements will be stored in the local memory

of the blade that created the elements, i.e., B1, as shown in Fig. 5b. The same

process is used to refine the other elements in the mesh. The elements of the

first subregion, i.e. sub-mesh M1, will be refined by node G1 and the newly

created elements will be in the local memory of G1, i.e., in the local memory of

blades of this node. Those elements of M2 will be refined by G2 and the newly

created elements will be in the local memory of G2.

13



Therefore, after the second step, a new mesh that is conforming to size upper

bound r2 is generated. Fig. 5c shows the mesh and its storage configuration in

memory. The elements that are on the top half subregion were created by blades

B1 and B2 of node G1 and stored in the local memory of B1 and B2 while those

that are on the bottom half subregion were created by blades B3 and B4 of node

G2 and stored in the local memory of B3 and B4.

In the third step, the whole region is divided into four subregions as shown

in Fig. 5c. Each of the four sub-meshes will be assigned to one node to refine.

Each blade in node G1 of the second step, i.e., B1 or B2, can only be assigned a

subregion that is in the top half part because the elements, the green and pink

ones, of this part were stored in the local memory of B1 and B2. Similarly, B3 or

B4 can only be assigned a subregion that is in the bottom half part because the

elements, the green and pink ones, of this part were stored in the local memory

of B3 and B4. Under this assignment, during the refinement of the third step,

blades B1 and B2 can only refine the elements stored in either B′1s or B′2s local

memory while blades B3 and B4 can only refine the elements stored in either

B′3s or B′4s local memory. The communication happens between subegions if

and only if a thread in one subregion wants to refine the elements that are

adjacent to the elements of the other subregion along the partition boundary.

After the third step, a mesh is created and its storage configuration in mem-

ory is shown in Fig. 5d. The newly created elements of each subregion will be

only stored in the local memory of the blade that is responsible for refining the

subregion.

Finally, we go on to the next step. In this step, each blade will only need to

access its own local memory to finish the refinement work except the elements

on the boundary shown in Fig. 5d. The refinement continues until all elements

in the mesh are Delaunay and conforming to the target size upper bound rt.

In this data locality-aware mesh refinement algorithm, we reduce the number

of remote memory accesses by controlling the inter-node communication in each

step. A blade can only ask for work or give work to the blades that are in the

same node, as B1 can only communicate with B2 in the second step shown in
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Fig. 5b because they are in the same node and physically close to each other.

In the last step, there will be only a few remote memory accesses (when the

elements are near the partition boundary between subregions) because most of

the poor elements that one blade needs to refine are in the local memory of this

blade.

4.3. Over-decomposition and Block-based Partition for Load Balance

In this subsection, we describe an over-decomposed block-based partition

approach to alleviate the load balancing problem.

The over-decomposed block-based partition proceeds in three main stages:

(1) over-decompose the bounding box that overlaps the input image and the

coarse mesh (i.e., the number of blocks is much greater than the number of

cores), (2) mark the blocks that contains elements as active blocks, (3) parti-

tion the active blocks into N subregions to make each of subregions contain

a roughly equal number of blocks, where N is the number of basic computing

nodes that share the local memory (For example, a blade of 16 cores that shared

128GB memory is a basic computing node on Blacklight). In this case, each

subregion ends up with a roughly equal number of elements and the refinement

is well balanced among the mutlticore PODM mesh generators working on each

subregion.

Fig. 6 gives a demonstration of how this static work load partition strat-

egy makes LAPD ensure both data locality and load balance. We use the static

block-based partition approach to roughly balance the load among different sub-

regions at each step. For each subregion, we utilize the load balancing approach

of PODM. Taking advantage of this two level load balancing scheme, LAPD

ensures the data locality during the parallel refinement procedure and does not

suffer from severe load imbalance for the complex input images. The case of

dynamic load balancing problem in the context of adaptive mesh refinement is

out of scope of this paper. We developed a run time system [42] to address this

problem.
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Figure 6: Block partition and computing node mapping illustration of LAPD

5. Experimental Evaluation

In this section, we present the weak scaling performance of the two-level

locality-aware parallel mesh generation algorithm LAPD as well as that of

PODM for comparison. The input images we used in the experiments are the

3D CT abdominal atlas obtained from IRCAD Laparoscopic Center [43] and

the 3D Brain atlas [44]. We tested both LAPD and PODM on Blacklight using

up to 192 cores. See Table 1 and Table 2 for detailed results of both approaches.

5.1. Performance Evaluation Metrics

We use the following metrics to evaluate and study the performance of par-

allel mesh generation algorithms [45, 46].

Speedup S : The ratio of the serial execution time of the fastest known

serial algorithm (Ts) to the parallel execution time of the parallel algorithm

(Tp).

Efficiency E : The ratio of speedup (S) to the number of cores (p): E =

S/p = Ts/(pTp).

In the weak scaling case, the number of elements per thread (we use one

thread per core) remains approximately constant. In other words, the problem

size (i.e., the number of elements created) is increased proportionally to the

number of threads. The number of elements generated equals approximately 3
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million on a single Blacklight core. The problem size gradually increases from

3 million to 559 million tetrahedra for 1 to 192 cores on Blacklight. In practice,

because of the irregular nature of the unstructured mesh, it is impossible to

control the problem size (number of elements) exactly while the number of

cores is increased by p times. So we use an alternative definition of speedup

which is more precise for a parallel mesh generation algorithm.

We measure the number of elements (tetrahedra) generated every second in

the experiment. Let us denote by Elements(p) and Time(p) the number of

tetrahedra generated and the meshing time respectively, where p is the number

of threads. Then we can use the following equation to compute the speedup:

S(p) =
elements per sec(p)

elements per sec(1)
=

elements(p) · time(1)

time(p) · elements(1)
(1)

In equation (1), elements per sec(p) represents the number of elements

(tetrahedra) created per second using p threads (cores); elements per sec(1)

represents the number of elements (tetrahedra) created per second by the best

sequential mesh generation algorithm. Since the PODM maintains the best

single-threaded performance compared to other sequential three dimensioanl

mesh generation software, such as Tetgen [30] and CGAL [47], we use the

sequential rate of PODM, i.e., the number of elements generated per second

by single-threaded PODM, as a reference when we compute the speedup and

present the performance of multi-threaded LAPD.

5.2. Experimental Results and Analysis

Table 1 show the weak scaling performance of PODM and the two-level

locality-aware parallel mesh generation algorithm LAPD respectively. The input

image is the 3D abdominal atlas. We observe that both PODM and LAPD

performed well on Blacklight for up to 64 cores. However, the speed-up of

PODM deteriorates significantly for 128 or more cores. In fact, the speed-up on

144 cores is about 80.8, which is smaller than that on 128 cores (about 94.5),

and it is down to only 62.9 and 54.8 for 176 and 192 cores, respectively. The
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Table 1: Weak scaling performance comparison of PODM and LAPD. The input image is a
3D abdominal atlas. The number of elements remains approximately linear with respect to
the number of threads in both PODM and LAPD.

(a) Weak scaling performance of PODM

Threads 1 32 64 128 144 160 176 192
Elements
(millions)

3.09 96.96 186.80 374.09 419.65 467.01 513.81 559.20

Time(s) 27.78 26.07 27.02 35.97 47.24 57.24 74.20 92.77
Elements

per second
(millions)

0.11 3.75 6.91 10.41 8.89 8.14 6.92 6.03

Speedup 1.0 34.1 62.8 94.5 80.8 74.0 62.9 54.8
Efficiency 1.00 1.06 0.98 0.74 0.56 0.46 0.36 0.29

(b) Weak scaling performance of LAPD

Threads 1 32 64 128 144 160 176 192
Elements
(millions)

3.09 96.96 186.80 374.09 419.65 467.01 513.81 559.20

Time(s) 27.81 26.18 26.90 31.26 34.04 36.27 37.82 39.63
Elements

per second
(millions)

0.11 3.73 6.95 12.01 12.30 12.70 13.61 14.12

Speedup 1.0 33.9 63.2 109.1 111.8 115.5 123.6 128.2
Efficiency 1.00 1.06 0.99 0.85 0.78 0.72 0.70 0.67

blue line in Fig. 7a shows clearly this speed-up degradation of PODM when core

count is above 128.

The main reason of this performance deterioration of PODM is the increase

of communication time due to the large number of remote memory accesses and

the congested network. In PODM, each thread has the flexibility to communi-

cate with any other thread during the refinement. This approach works well on a

medium number of cores (threads) and exhibits impressive scalability. However,

when core count is beyond a certain number, 128 on Blacklight for example, the

communication overhead becomes the bottleneck that hinders the performance

of PODM because it exerts too much pressure on the network routers.

In LAPD algorithm, we confine the tightly coupled communication among

cores in each node, i.e., the threads running on the cores of this node have the

flexibility to communicate with each other to maximize the concurrency of this

node. As we explain bellow, the communication between two nodes happens

when one node needs to refine an element across the partition boundary be-

tween these two subregions and at least one of element is in the local memory

of the other node during the cavity expansion. In order to guarantee the con-
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formity of the created mesh, this inter-node communication is necessary and

unavoidable. In other words, the inter-node communication is forbidden unless

it is unavoidable.

Table 1b shows that the speed-up and efficiency of LAPD on 128 Blacklight

cores is 109.1 and 85% respectively, which is better than those of PODM, 94.5

and 74% respectively. The red line in Fig. 7a illustrates that each time we

increase the number of cores by 16 (a blade), the approach gains some speedup

increase for up to 192 cores. The efficiencies of LAPD on 176 and 192 cores

are 1.9 and 2.3 times better than those of PODM. The previous image-to-mesh

conversion algorithm, PODM, scales well up to only 128 cores on Blacklight.

The locality-aware approach LAPD scales well up to 192 cores on Blacklight.

The overhead time of both PODM and LAPD mainly consists of three parts:

• Rollback overhead time: this is the time that threads spend on completing

partial cavity expansions before they detect a conflict with some other

thread and discard the expansion.

• Idling time overhead: this is the total time that threads had no poor

elements to refine, and they were idling and waiting for more work from

other threads.

• Communication (Contention) overhead time: this is the total time that

threads spent on fetching elements that were not in the local memory.

See Fig. 7b for the details of overhead time percentage of PODM and LAPD.

The figure shows that the total overhead time of LAPD is less than that of

PODM for all numbers of cores from 64 to 192. We observe that for core

counts beyond 128 the communication overhead time (the blue bar in Fig. 7b)

contributes the main part of the total overhead time. The communication over-

head time takes a higher percentage of the total overhead time with the increase

in the number of cores. The percentage of communication overhead on 144 cores

is about 32% while this number is already increasing to 50% for 176 cores and

53% for 192 cores. Since the problem size increases linearly with respect to
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Figure 7: Speedup and overhead comparison of PODM and LAPD for 3D abdominal image.
(a) Weak scaling speedup of PODM and LAPD upto to 192 cores on Blacklight. Three million
tetrahedra are created by each thread running on a core. The black line depicts the ideal linear
speedup. The red dash line with green markers shows the speedup of LAPD and the blue one
with yellow markers is the speedup of PODM. (b) Overhead percentage of PODM and LAPD.
The left stacked bar shows the overhead percentage of PODM and the right one shows the
overhead of LAPD.

the number of threads (cores), the communication traffic per network router

increases during the refinement process. Besides, the risk of contention with

other users’ jobs running on Blacklight also increases with the core count in-

creasing. Because of these overhead, the performance of PODM deteriorates on

Blacklight for high core count.

The green bar in Fig. 7b illustrates that the communication overhead time

of LAPD is less than half that of PODM. The idling time and rollback overhead

time of each thread in LAPD stays approximately the same percentage as those

in PODM. Since the communication overhead time is the main part of the total

overhead time in PODM, the total overhead time in LAPD is reduced by a large

percentage after the communication overhead time is reduced by the locality-

aware optimization.

Table 2 shows the performance comparison of PODM and LAPD algorithms

for the 3D Brain atlas. Again, we can see clearly the significant performance

improvement of LAPD compared to that of PODM.
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Table 2: Weak scaling performance comparison of PODM and LAPD. The input image is a
3D Brain atlas. The number of elements remains approximately linear with respect to the
number of threads in both PODM and LAPD.

(a) Weak scaling performance of PODM

Threads 1 32 64 128 144 160 176 192
Elements
(millions)

2.01 64.32 128.61 257.30 289.46 321.72 353.78 385.94

Time(s) 18.29 17.73 18.72 22.88 29.91 39.73 49.69 57.78
Elements

per second
(millions)

0.11 3.62 6.87 11.24 9.68 8.10 7.12 6.68

Speedup 1.0 33.0 62.5 102.2 87.97 73.60 64.72 60.72
Efficiency 1.00 1.03 0.98 0.80 0.61 0.46 0.37 0.32

(b) Weak scaling performance of LAPD

Threads 1 32 64 128 144 160 176 192
Elements
(millions)

2.01 64.32 128.61 257.30 289.46 321.72 353.78 385.94

Time(s) 18.29 18.48 18.83 21.66 24.01 25.18 27.08 28.48
Elements

per second
(millions)

0.11 3.48 6.83 11.88 12.06 12.77 13.06 13.55

Speedup 1.0 31.6 62.1 109.6 111.8 116.1 118.8 123.2
Efficiency 1.00 0.99 0.97 0.84 0.76 0.73 0.68 0.65

6. Conclusion and Future Work

In this paper, we presented a three dimensional two-level locality-aware par-

allel Delaunay image-to-mesh conversion algorithm, LAPD. LAPD employs a

combination of two-level parallelism and data locality-aware scheme to reduce

the communication overhead caused by a large number of remote memory ac-

cesses in a NUMA architecture. It quickly leverages high concurrency due to

the aggressive speculative approach employed by PODM, and uses data parti-

tioning to improve data locality. We tested LAPD algorithm on Blacklight, a

cc-NUMA shared memory machine in the Pittsburgh Supercomputing Center.

By reducing the communication overhead caused by remote memory accesses,

LAPD is scalable with the increase of core count on Blacklight. After the data

locality optimization, LAPD reaches a more than 67% weak scaling efficiency

for up to 192 cores in contrast with PODM which is only about 30%.

Our feature work includes extending the LAPD implementation to non-

shared distributed memory architecture and comparing the performance with

the implementation presented in this paper. We think that similar optimizations

will apply to cache memory, however they will require a number of specialized
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techniques that can be studied in a separate comprehensive exploration. The

long term plan is to exploit the performance potential of modern muticore sys-

tems (both shared and distributed memory architecture) and deliver sufficient

scalability for applications that require exascale computing. We will achieve

this by leveraging concurrency at different granularity levels using hierarchical

hybrid mesh generation algorithms.
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