
Construction of Discrete Descriptions of
Biological Shapes through Curvilinear Image
Meshing

No Author Given

No Institute Given

Summary. Mesh generation is a useful tool for obtaining discrete descriptors of
biological objects represented by images. The generation of meshes with straight
sided elements has been fairly well understood. However, in order to match curved
shapes that are ubiquitous in nature, meshes with curved (high-order) elements
are required. Moreover, for the processing of large data sets, automatic meshing
procedures are needed. In this work we present a new technique that allows for the
automatic construction of high-order curvilinear meshes. This technique allows for a
transformation of straight-sided meshes to curvilinear meshes with C1 or C2 smooth
boundaries while keeping all elements valid and with good quality as measured by
their Jacobians. The technique is illustrated with examples. Experimental results
show that the mesh boundaries naturally represent the objects’ shapes, and the
accuracy of the representation is improved compared to the corresponding linear
mesh.

Key words: biomedical image processing, high-order mesh generation, Bézier poly-
nomial, Jacobian, finite element method

1 Introduction

Discretizations of complex shapes into simple elements are widely used in var-
ious computing areas that require a quantitative analysis of spatially depen-
dent attributes. One, traditional, area is the finite element analysis [14] which
is used to numerically solve partial differential equations derived using solid
mechanics and computational fluid dynamics approaches. With this approach
one starts with the knowledge of the constitutive physical laws and initial
(boundary) conditions and obtains a prediction of the observable properties
of objects of interest. Another, emerging, area is the use of discretizations for
delineating homogeneous spatial zones within objects that can be represented
as units for an overall object description. With this approach one starts with
the knowledge of observable object properties and uses statistical methods
to infer the processes that govern the formation of the object. Therefore, the

2 No Author Given

second approach can be viewed as a reversal of the first approach, that still
relies on a similar discretization technique. This second approach is a use-
ful tool for bioinformatics applications, for example gene expression pattern
analysis [5, 6, 12,13].

Said discretizations of objects are usually called meshes, and the simple ele-
ments that they consist of are either triangles and tetrahedra (in two and three
dimensions, respectively), or quadrilaterals and hexahedra. Furthermore, el-
ements can have either straight or curved sides. In previous work [12, 13]
the authors used triangular meshes with straight sides to discretize images
of fruit fly embryos. However, the embryos, like most biological objects, have
curved shapes, and their discretizations with straight-sided elements have lim-
ited accuracy. To obtain much higher accuracy one needs to use curved-sided
elements that match the curves of object boundaries.

In this paper we build the methodology for automatically generating valid
high-order meshes to represent curvilinear domains with smooth global mesh
boundaries. Cubic Bézier polynomial basis is selected for the geometric rep-
resentation of the elements because it provides a convenient framework sup-
porting the smooth operation and mesh validity verification. We highlight the
three contributions of this paper:

1. Curved mesh boundary is globally smooth. It satisfies C1 or C2 smooth-
ness requirement chosen by the user.

2. The proposed approach is robust in the sense that the invalid elements
are eliminated, and the mesh quality is enforced.

3. The method provides higher accuracy compared to the linear discretiza-
tion.

The procedure starts with the automatic construction of a linear mesh.
The edges of those linear elements which are classified on the boundary are
then curved using cubic Bézier polynomials such that these boundary edges
constitute a smooth closed curve. Once our validity verification procedure
detects invalid elements, the method next curves the interior elements by
iteratively solving for the equilibrium configuration of an elasticity problem
until all the invalid elements are eliminated.

Various procedures have also been developed and implemented by other
authors to accomplish the generation of a curvilinear mesh. Sherwin and
Peiro [11] adopted three strategies to alleviate the problem of invalidity: gen-
erating boundary conforming surface meshes that account for curvature; the
use of a hybrid mesh with prismatic and tetrahedral elements near the do-
main boundaries; refining the surface meshes according to the curvature. The
mesh spacing is decided by a user defined tolerance ε related to the curvature
and a threshold to stop excessive refinement. In the present work we develop
a method that allows for an all triangle mesh which simplifies and unifies
both meshing and analysis. Persson and Peraire [9] proposed a node reloca-
tion strategy for constructing well-shaped curved meshes. Compared to our
method which iteratively solves for the equilibrium configuration of a linear

Construction of Discrete Descriptions of Biological Shapes 3

elasticity problem, they use a nonlinear elasticity analogy, and by solving for
the equilibrium configuration, vertices located in the interior are relocated as
a result of a prescribed boundary displacement. Luo et al. [7] isolate singular
reentrant model entities, then generate linear elements around those features,
and curve them while maintaining the gradation. Local mesh modifications
such as minimizing the deformation, edge or facet deletion, splitting, collaps-
ing, swapping as well as shape manipulation are applied to eliminate invalid
elements whenever they are introduced instead of our global node relocation
strategy. George and Borouchaki [10] proposed a method for constructing
tetrahedral meshes of degree two from a polynomial surface mesh of degree
two. Jacobian is introduced for guiding the correction of the invalid curved
elements. In contrast, our method does not require a starting curved boundary
mesh, as well as produces more flexible cubic elements.

The rest of the paper is organized as follows. in Section 2, we review some
basic definitions. Section 3 gives a description of the automatic construction of
a linear mesh and the transformation of the linear mesh into a valid high-order
mesh. We present meshing results in Section 4 and conclude in Section 5.

2 Preliminaries

2.1 Bézier curves

We express Bézier curves in terms of Bernstein polynomials. A n-th order
Bernstein polynomial is defined explicitly by

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, ..., n, t ∈ [0, 1],

where the binomial coefficients are given by(
n

i

)
=

{ n!
i!(n−i)! if 0 ≤ i ≤ n
0 else.

One of the important properties of the Bernstein polynomials is that they
satisfy the following recurrence:

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t),

with
B0

0(t) ≡ 1, Bn
j (t) ≡ 0 for j ∈ 0, ..., n.

Now the Bézier curve of degree n can be defined in terms of Bernstein poly-
nomials as

bn(t) =

n∑
i=0

Bn
i (t)Pi,

4 No Author Given

P0

P1 P2

P3
(a)

P300

P030 P003

P210

P120

P201

P102

P021

P012

P111

(b)

Fig. 1: (a) An example of the cubic Bézier curve with its control polygon
formed by four control points. (b) An example of the cubic Bézier triangle
with its control net formed by ten control points.

where the set of points P0, P1, ..., Pn are called control points, and the polygon
P formed by points P0, P1, ..., Pn is called control polygon of the curve bn.

The barycentric form of Bézier curves demonstrates its symmetry property
nicely. Let u and v be the barycentric coordinates, u ∈ [0, 1] and v ∈ [0, 1],
u+ v = 1, the

bn(u, v) =
∑

i+j=n

Bn
ij(u, v)Pij ,

where Bn
ij(u, v) = n!

i!j!u
ivj , Pij ∈ R2 are the control points. Note that this

and the following equations are in fact two equations corresponding to the
two spatial coordinates.

Specifically, the cubic Bézier curve can be written in terms of the barycen-
tric coordinates:

b3(u, v) =
∑

i+j=3

B3
ij(u, v)Pij = u3P03 + 3u2vP12 + 3uv2P21 + v3P30.

Fig. 1a gives an example of the cubic Bézier curve with its control polygon.

2.2 Bézier triangles

Univariate Bernstein polynomials are the terms of the binomial expansion of
[t+(1−t)]n. In the bivariate case, a n-th order Bernstein polynomial is defined
by

Bn
i (u) =

(
n

i

)
uivjwk,

where
i = {i, j, k}, |i|= n, u = {u, v, w},

u ∈ [0, 1], v ∈ [0, 1] and w ∈ [0, 1] are the barycentric coordinates and u +
v + w = 1. It follows the standard convention for the trinomial coefficients(
n
i

)
= n!

i!j!k! .

Construction of Discrete Descriptions of Biological Shapes 5

0

1

Reference coordinates

Barycentric coordinates

Cartesian coordinates

1

ŷ

x̂

y

X(x̂, ŷ)

C(x̂, ŷ)
T 3(u, v, w)

u = 0

v = 0

w = 0

u = 0

v = 0

w = 0

x

Fig. 2: Reference unit triangle in local coordinates (x̂, ŷ) and the mappings
X(x̂, ŷ), C(x̂, ŷ) and T (u, v, w). A general principle for the transformations:
an one-to-one correspondence between coordinates systems.

This leads to a simple definition of a Bézier triangle of degree n

T n(u) =
∑

i+j+k=n

Bn
i (u)Pi,

where the set of points Pi are control points, and the net N formed by points
Pi is called control net of the Bézier triangle T n.

Specifically, the Bézier triangle of degree three can be written as

T 3(u) = P300u
3 + P030v

3 + P003w
3

+ 3P201u
2w + 3P210u

2v + 3P120uv
2

+ 3P102uw
2 + 3P021v

2w + 3P012vw
2

+ 6P111uvw.

Fig. 1b gives an example of the cubic triangular patch with its control net
formed by its ten control points.

2.3 The Jacobian

We explore the concept of a derivative of a coordinate transformation, which
is known as the Jacobian of the transformation.

Because the cubic Bézier triangle is defined in terms of the barycentric
coordinates (u, v, w) with the form:

6 No Author Given

T 3(u, v, w) =
∑

i+j+k=3

B3
ijk(u, v, w)Pijk,

the reference triangle is first mapped to a triangle in barycentric coordinates
(by the mapping C(x̂, ŷ)) and then mapped to a curved triangle in global (x, y)
coordinates (by the mapping T (u, v, w)). This two-step mapping is presented
in Fig. 2.

The mapping should be bijective, because there should not be overlapped
regions inside the element. This implies that the sign of the Jacobian of the
transformation has to be strictly positive everywhere on this element. Jacobian
is the determinant of the Jacobian matrix J which is defined by all first-order
partial derivatives of the transformation:

J =

[
∂T n

x

∂x̂
∂T n

x

∂ŷ
∂T n

y

∂x̂

∂T n
y

∂ŷ

]
.

3 Mesh generation for curvilinear domains

Given a bounded curved domain Ω ⊂ R2, the algorithm outputs a curvilinear
mesh of the interior of Ω with globally smooth boundary. Fig. 3 illustrates
the main steps performed by our algorithm. The details are elaborated below.

3.1 Linear mesh construction

The mesh has to provide a close approximation of the object shape, and
we measure the closeness by the fidelity tolerance, the two-sided Hausdorff
distance from the mesh to the image and the image to the mesh. For image
boundary I and mesh boundary M , the one-sided distance from I to M is
given by

h(I,M) = max
i∈I

min
m∈M

d(i,m),

where d(·, ·) is the regular Euclidean distance. The one-sided distance from
M to I is given similarly by

h(M, I) = max
m∈M

min
i∈I

d(m, i).

The two-sided distance is:

H(I,M) = max{h(I,M), h(M, I)}.

The initial linear mesh is generated by the modified quad-tree based image-
to-mesh conversion algorithm [3], which satisfies the following requirements:

1. It allows for guaranteed fidelity; i.e., the two-sided Hausdorff distance from
the mesh to the image and the image to the mesh is within a user-specified
fidelity tolerance.

Construction of Discrete Descriptions of Biological Shapes 7

(a) (b) (c)

(d) (e) (f)

Fig. 3: An illustration of the main steps performed by our algorithm. (a)
The input two-dimensional image. (b) The linear mesh for the original image.
The shaded regions are the regions within the user specified fidelity tolerance.
(c) Curved mesh boundary satisfying C1 or C2 smoothness requirement. (d)
Smooth curved boundary with linear edges in the interior. (e) The red trian-
gles are invalid elements detected by the verifying procedure. (f) Valid high
quality curvilinear mesh obtained by iteratively solving for the equilibrium
configuration of an elasticity problem.

2. It allows for topological fidelity; i.e., the mesh maintains the topology of
the original image.

3. It can either generate a mesh with almost equal-sized elements inside (ex-
cept the boundary elements) or coarsen the mesh to a much lower number
of elements with gradation in the interior, decided by the application.

3.2 Smooth boundary construction

We aim to find a smooth curve interpolating all the mesh boundary vertices
given in order. A curve can be described as having Cn continuity, n being the
measure of smoothness. Consider the segments on either side of a point on a
curve: (1) C0: The segments touch at the joint point; (2) C1: First derivatives
are continuous at the joint point; (3) C2: First and second derivatives are
continuous at the joint point.

A smooth C1 piecewise cubic curve is composed of pieces of different cubic
curves glued together, and it has a first derivative everywhere and the deriva-
tive is continuous. A Bézier path is C1 smooth provided that two Bézier curves
share a common tangent direction at the joint point. The basic idea is to cal-
culate control points around each endpoint so that they lie in a straight line

8 No Author Given

P0

Q1

C3
P2

C4

Q3
P4

C1 P1

C2

Q2

C5
P3 C6

(a)

P0 P1

P2

A

Q1S

Q2

Q3

(b)

S0

B0

S1

B1

S2

B2

S3

B3

S4 B4

S5 B5

(c)

Fig. 4: An illustration of the construction of the C1 and C2 smooth curves. (a)
An example of finding control points of a smooth C1 path. (b) If two Bézier
curves touch at a joint point, both their first and second derivatives match at
the joint point if and only if their control polygons fit an A-frame. (c) The
cubic spline curve is constructed with the help of the green B-spline points.

with the endpoint. However, curved segments would not flow smoothly to-
gether when quadratic Bézier form (three control points) is used. Instead, we
need to go one order higher to the cubic Bézier form (four control points) so
we can build ’S’ shaped segments. We find these control points by translating
the segments formed by the lines between the previous endpoint and the next
endpoint such that these segments become the tangents of the curves at the
endpoints. We scale these segments to control the curvature. An example is
illustrated in Fig. 4a. For the curve between P1 and P2, we need C2 and C3.
On segment P0P2, find a point Q1 such that|P0Q1|/|Q1P2|= |P0P1|/|P1P2|.
Translate segment P0P2 so that point Q1 lies on point P1, and scale the length
of translated segment P0P2, then the new position of point P2 is the position
of control point C2. Similarly, the position of control point C3 can be found
by translating segment P1P3 such that point Q2 lies on point P2.

The cubic Bézier form provides enough degrees of freedom to construct a
cubic spline curve that satisfies C2 smoothness requirement. Since the curva-
ture of a point on a curve is a function with respect to the first and second
derivative of this point, and if the first and the second derivative are contin-
uous, then the curvature at this point is continuous. We prefer C2 smooth
curve to C1 smooth curve because the boundary of the biomedical objects
usually have continuous curvatures. If two Bézier curves with control points
P0, P1, P2, S and S, Q1, Q2, Q3 touch at point S, both their first and second
derivatives match at S if and only if their control polygons fit an A-frame,
which is a structure in which P2 is the midpoint of AP1, Q1 is the midpoint of
AQ2 and S is the midpoint of P2Q1 as Fig. 4b shows. To fit the A-frame in the
set of cubic curves, one easy approach is to use B-spline as an intermediate
step. In Fig. 4c, the junction points S (shown in black) are mesh vertices that
are classified on the boundary of the linear mesh. If the B-spline points B
(the apexes of the A-frames, shown in green) are known, the control points
(shown in red) can be calculated by computing the one third and two thirds
positions between the connection of every two adjacent B-spline points. The

Construction of Discrete Descriptions of Biological Shapes 9

B-spline points B and the junction points S satisfy a relationship:

6Si = Bi−1 + 4Bi +Bi+1.

By solving for a linear system of equations, the coordinates of B-spline points
can be obtained.

3.3 Element validity

The invalid elements are usually caused by curving only the boundary mesh
edges while the interior mesh edges remain straight. Some of the curvilinear
triangular patches may have tangled edges. Thus, it is necessary to verify the
validity and to eliminate all the invalid elements by curving interior mesh edges
as a post-processing step once the curved mesh has been constructed. One
approach to verify the positiveness of the Jacobian is sampling the Jacobian
at discrete locations such as at Gaussian points [8]. A more precise way is to
calculate the tight lower bound for the Jacobian.

Table 1: Fifteen control points for det(J) of a cubic triangle

Pijk Control Point

P400 9(a1 × a2 · n)
P040 9(b1 × b2 · n)
P004 9(c1 × c2 · n)
P220

3
2
(a1 × b2 · n + b1 × a2 · n + 4e1 × e2 · n)

P202
3
2
(a1 × c2 · n + c1 × a2 · n + 4d1 × d2 · n)

P022
3
2
(b1 × c2 · n + c1 × b2 · n + 4f1 × f2 · n)

P301
9
2
(a1 × d2 · n + d1 × a2 · n)

P310
9
2
(a1 × e2 · n + e1 × a2 · n)

P130
9
2
(b1 × e2 · n + e1 × b2 · n)

P031
9
2
(b1 × f2 · n + f1 × b2 · n)

P103
9
2
(c1 × d2 · n + d1 × c2 · n)

P013
9
2
(c1 × f2 · n + f1 × c2 · n)

P211
3
2
(a1 × f2 · n + f1 × a2 · n + 2d1 × e2 · n + 2e1 × d2 · n)

P121
3
2
(b1 × d2 · n + d1 × b2 · n + 2e1 × f2 · n + 2f1 × e2 · n)

P112
3
2
(c1 × e2 · n + e1 × c2 · n + 2d1 × f2 · n + 2f1 × d2 · n)

Since the Bézier basis is selected to represent the elements, the tight lower
bound can be calculated with the help of its special properties such as the
convex hull property and subdivision property [4]. We can write the Jacobian
matrix J of a cubic Bézier triangle as:

10 No Author Given

J =

[
∂T 3

x

∂u
∂T 3

x

∂v
∂T 3

x

∂w
∂T 3

y

∂u

∂T 3
y

∂v

∂T 3
y

∂w

]
∂u
∂x̂

∂u
∂ŷ

∂v
∂x̂

∂v
∂ŷ

∂w
∂x̂

∂w
∂ŷ


=

[
∂T 3

x

∂u
∂T 3

x

∂v
∂T 3

x

∂w
∂T 3

y

∂u

∂T 3
y

∂v

∂T 3
y

∂w

]−1 −1
1 0
0 1


=

[
∂T 3

x

∂v −
∂T 3

x

∂u
∂T 3

x

∂w −
∂T 3

x

∂u
∂T 3

y

∂v −
∂T 3

y

∂u

∂T 3
y

∂w −
∂T 3

y

∂u

]
,

and the determinant of J can be represented as:

det(J) = (
∂T 3

∂v
− ∂T 3

∂u
)× (

∂T 3

∂w
− ∂T 3

∂u
) · n,

where n is the vector (0, 0, 1). Because the derivative of a cubic Bézier poly-
nomial is a quadratic Bézier polynomial, and the product of two quadratic
Bézier polynomials is a fourth order Bézier polynomial, the Jacobian is a
fourth order Bézier polynomial with fifteen control points. Note that this Ja-
cobian function is a scalar-valued function, and the control points are scalar
values.

T 4(u, v, w) =
∑

i+j+k=4

B4
ijk(u, v, w)Pijk,

where Pijk is one of the fifteen control points, B4
ijk(u, v, w) = 4!

i!j!k!u
ivjwk, u ∈

[0, 1], v ∈ [0, 1] and w ∈ [0, 1] are the barycentric coordinates and u+v+w = 1.
Therefore, the fifteen control points of the Jacobian can be represented by the
control points of the cubic Bézier triangle. Because

∂T
∂v
− ∂T
∂u

= 3u2a1 + 3v2b1 + 3w2c1 + 6uwd1 + 6uve1 + 6vwf1

and

∂T
∂w
− ∂T
∂u

= 3u2a2 + 3v2b2 + 3w2c2 + 6uwd2 + 6uve2 + 6vwf2,

where a1 = P210−P300, b1 = P030−P120, c1 = P012−P102, d1 = P111−P201,
e1 = P120 − P210, f1 = P021 − P111, a2 = P201 − P300, b2 = P021 − P120,
c2 = P003 − P102, d2 = P102 − P201, e2 = P111 − P210, f2 = P012 − P111, the
fifteen control points can be calculated. They are listed in Table 1.

Due to the convex hull property, the Bézier polynomial is completely con-
tained in its convex hull formed by the control points, thus, the minimum
of the fifteen control points is the lower bound of the Jacobian. If the lower
bound is positive, then the element is valid. However, if the lower bound is
non-positive, it does not necessarily mean that the element is invalid. Since it
is only a sufficient condition, sometimes it is overly conservative. In the cases

Construction of Discrete Descriptions of Biological Shapes 11

b0

b1

b2

b3

b4c0

c1

c2

c3

c4
d0 d1

d2

d3

d4

(a) (b)

Fig. 5: An illustration of the recursive subdivision algorithm for Bézier poly-
nomials. (a) The recursive subdivision algorithm for the fourth order Bézier
curve. The two new control polygons are shown in red and green. (b) The
recursive subdivision algorithm for the fourth order Bézier triangle. The three
new control nets are shown in red, green and blue.

that the lower bound is not tight, the minimum value of the Jacobian could be
positive whereas the calculated lower bound is non-positive. To further con-
firm the answer, we obtain the tighter bound by refining the convex hull using
the Bézier subdivision algorithm [4]. Fig. 5 shows the recursive subdivision
algorithm for the fourth order Bézier curve and the fourth order Bézier trian-
gular face. The control points that located on the ends of the new polynomials
that obtained by the Bézier subdivision algorithm are always the points on the
original polynomial, thus, if one of them is non-positive, the element contains
at least one non-positive Jacobian. Therefore, if the non-positive minimum of
the fifteen control points corresponds to one of the three vertices of the fourth
order Bézier triangle (the Jacobian), then the element can be reported invalid
immediately. If not, and if the non-positive minimum of the fifteen control
points corresponds to one of the three nodes on one of the three edges of
the fourth order Bézier triangle, then it is necessary to refine this edge. The
Bézier subdivision algorithm recursively splits the edge into two sub-edges.
Compared to the original convex hull, the two new convex hulls are closer
to the original polynomial. If the non-positive minimum of the fifteen control
points corresponds to one of the three nodes on the face, then it is necessary
to refine this face. The Bézier subdivision algorithm recursively splits the face
into three sub-faces. In this way, the three new convex hulls are closer to the
original polynomial, and the bound becomes much tighter.

3.4 Mesh untangling

It is usually not enough to curve only the mesh boundary because some control
points may be located such that invalid elements occur. In such case, edges
in the interior of the mesh should also be curved to eliminate the invalidity
or to improve the curved element quality.

12 No Author Given

(a) (b) (c) (d)

Fig. 6: (a) Invalid mesh with red invalid elements. (b) The control nets of the
linear mesh elements is the undeformed geometry. (c) The red control points
of the smooth curved boundary edges are the external loads. (d) The final
configuration is determined by solving for the equilibrium configuration of an
elasticity problem.

(a) (b) (c) (d)

Fig. 7: An illustration of the iterative finite element method. (a) The mesh
composed of one element. (b) The invalid mesh with twisted control net. (c)
The one-step FE method was applied, but the control net is still twisted. (d)
The iterative FE method successfully corrected the twisted control net.

We move the control points of the interior mesh edges using a finite element
method [14]. The geometry of the domain to be meshed is represented as an
elastic solid. For each linear mesh edge, the two points which are located in
the one third and two thirds ratio of each edge are computed. These points
together with the mesh vertices are the original positions of the control points
of the edges before deformation. These points form the control nets of the
linear mesh elements. The control nets together as a whole is the undeformed
geometry (shown in Fig. 6b). The external loads are the displacements of
the control points (red points in Fig. 6c) of the smooth curved boundary
edges. The control nets are deformed such that when the control points of the
boundary edges of the linear mesh moved to the corresponding control points
of the curved boundary edge, the new positions of the control points of the
interior mesh edges are determined by solving for the equilibrium configuration
of an elasticity problem. Fig. 6 illustrates these steps.

In some cases, the one step finite element method can handle this problem
successfully. However, in the case that the curvature of the boundary edge
is very large, the interior edges may not be able to be curved enough to
correct the invalidity. The iterative finite element method successfully solves
this problem. Fig. 7 illustrates the iterative FE method. In this example there
is only one element in the mesh, the black border line represents the mesh

Construction of Discrete Descriptions of Biological Shapes 13

(a) (b)

Fig. 8: A comparison of the result of one-step FE method and the result of
the iterative FE method. (a) After one-step FE method, the two red edges
are still tangled together. (b) After eight iterations, the edges are untangled,
all the elements are valid.

boundary, the blue point represents one control point of the linear boundary
edge. The red point represents the corresponding control point of the curved
boundary edge. The green point is one of the mesh vertices on the mesh
boundary, thus it has to maintain its position. The control net is invalid
because there exists an inverted triangle. When one step FE method was
applied, the blue point was directly moved to the red point. After solving for
the equilibrium configuration, the control net is still twisted. However, when
the yellow point was made the intermediate displacement, the blue point was
first moved to the yellow point, then moved to the red point, the two iteration
FE method successfully corrected the twisted control net.

The iterative FE method executes the validity check before each round.
When it is reported that an invalid element exists, the procedure divides
the segments formed by the control points of the linear boundary edges and
the corresponding control points of the curved edges. The procedure takes the
endpoints of the subsegments one by one as the intermediate external loadings,
and takes the solution of the current external loadings as the undeformed
geometry of the next external loadings. The algorithm terminates when all
the invalid elements are corrected. Fig. 8 shows an example of the comparison
of the result of one-step FE method and the result of the iterative FE method.

4 Mesh examples

The input data to our algorithm is a two-dimensional image. The procedure
for mesh untangling and quality improvement was implemented in MATLAB.
All the other steps were implemented in C++ for efficiency.

In the following mesh examples, we meshed two slices of the mouse brain
image [2], two slices of the human brain image [2], and the fly embryo image [1].
The first slice of the mouse brain image (Mouse Brain I) has the size 198∗169
pixels; the second slice of the mouse brain image (Mouse Brain II) has the size
460 ∗ 247 pixels; the first slice of the human brain image (Human Brain I) has

14 No Author Given

the size 239 ∗ 233 pixels; the second slice of the human brain image (Human
Brain II) has the size 235 ∗ 283 pixels; the fly embryo image (Fly Embryo)
has the size 182 ∗ 130 pixels. Each pixel has side lengths of 1 unit in both x,
y directions. The original images are listed in Fig. 9.

(a) (b) (c)

(d) (e)

Fig. 9: The original images. (a) The first slice of the mouse brain image. (b)
The first slice of the human brain image. (c) The second slice of the human
brain image. (d) The second slice of the mouse brain image. (e) The fly embryo
image.

We show the linear mesh results for the original images with different
requirements (in Fig. 10). For the first slice of the mouse brain image, the
fidelity tolerance was specified by 3 pixels; for the second slice of the mouse
brain image, the fidelity tolerance was specified by 6 pixels; for the first slice
of the human brain image, the fidelity tolerance was specified by 4 pixels; for
the second slice of the mouse brain image, the fidelity tolerance was specified
by 3 pixels; for the fly embryo image, the fidelity tolerance was specified by 2
pixels. For all the linear mesh results, the mesh vertices that are classified on
the mesh boundary were required to be located on the boundary between the
background and the tissue of the image. This requirement results in different
angle bounds for the linear mesh results: the minimum angle bound of the
first slice of the mouse brain image is 3.6◦, of the second slice is 2.8◦; the
minimum angle bound of the first slice of the human brain image is 3.2◦, of

Construction of Discrete Descriptions of Biological Shapes 15

the second slice is 5.4◦; the minimum angle bound of the fly embryo image
is 2.8◦. The minimum angle bound is an important measure to the quality
of the linear mesh (the higher the better), and it also directly contributes to
the quality of the curvilinear mesh. For the curved meshes, the quality can
not be measured just simply by calculating the planar angles, however, it can
be measured by scaled Jacobian [14]. The lower minimum angle bound for
the linear mesh could lead to worse scaled Jacobian after curving the linear
mesh boundary to a smooth closed path, however, the scaled Jacobian can
be improved by the iterative FE method. For all the linear mesh results, the
elements were not coarsened.

(a) (b) (c)

(d) (e)

Fig. 10: The linear meshes. (a) The linear mesh result for the first slice of
the mouse brain image. (b) The linear mesh result for the first slice of the
human brain image. (c) The linear mesh result for the second slice of the
human brain image. (d) The linear mesh result for the second slice of the
mouse brain image. (e) The linear mesh result for the fly embryo image.

For each of the above linear meshes, we show the linear mesh boundaries
and the curved boundaries with both C1 and C2 smoothness requirements. In
Fig. 11, from left to right for each image, the boundaries are linear boundaries,
C1 boundaries and C2 boundaries.

16 No Author Given

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 11: The linear mesh boundaries and curved mesh boundaries with C1 and
C2 smoothness requirements for the original images.

Construction of Discrete Descriptions of Biological Shapes 17

The accuracy was specified by the number of misclassified pixels that com-
posed of background pixels that are inside the mesh and tissue pixels that are
outside the mesh. The accuracy of the linear mesh results and the correspond-
ing curvilinear meshes with C1 and C2 smoothness requirements are listed in
Table 2.

Table 2: Accuracy of the mesh boundaries

Mouse Brain I
Example NBPIM NTPOM NMP PNMP (%) PIA (%)

Linear boundary 73 308 381 1.139 N/A
C2 boundary 128 166 294 0.879 22.835
C1 boundary 95 205 300 0.897 21.260

Mouse Brain II
Example NBPIM NTPOM NMP PNMP (%) PIA (%)

Linear boundary 293 1073 1366 1.202 N/A
C2 boundary 243 691 934 0.822 31.625
C1 boundary 260 687 947 0.834 30.673

Human Brain I
Example NBPIM NTPOM NMP PNMP (%) PIA (%)

Linear boundary 70 376 446 0.800 N/A
C2 boundary 138 229 307 0.659 31.166
C1 boundary 111 268 319 0.681 28.475

Human Brain II
Example NBPIM NTPOM NMP PNMP (%) PIA (%)

Linear boundary 147 314 461 0.693 N/A
C2 boundary 215 216 431 0.648 6.508
C1 boundary 206 201 407 0.648 11.714

Fly Embryo
Example NBPIM NTPOM NMP PNMP (%) PIA (%)

Linear boundary 39 101 140 0.592 N/A
C2 boundary 59 83 120 0.507 14.286
C1 boundary 52 89 123 0.520 12.143

For each of the original image with linear meshing result and the corre-
sponding C1 and C2 smooth boundaries, we list the number of background
pixels inside the mesh (NBPIM), the number of tissue pixels outside the mesh
(NTPOM), the total number of misclassified pixels (NMP), the percentage
for misclassified pixels out of all pixels (PNMP) and the improved accuracy
in percentage for both C1 and C2 smooth boundaries compared to the linear
mesh boundary (PIA). Compare the improved accuracy in percentage (PIA)
in Table 2, both C1 and C2 smooth boundaries improved the accuracy of the
representation. The improved accuracy also relates to the size of the dataset,
usually the larger the image, the more improvement its curvilinear mesh ob-
tained. However, if the linear mesh is a very close representation of the image

18 No Author Given

object, after smoothing the mesh boundary, the accuracy can not improve
much. Compare the improved accuracy of the meshes that have C1 smooth
boundaries with those of the meshes that have C2 smooth boundaries, the C2

smooth boundaries usually have higher accuracy than the C1 smooth bound-
aries, but the differences are not large. We chose the results that have better
accuracy to construct the final valid high quality meshes.

When the linear mesh boundaries were curved to closed smooth paths, and
the interior mesh edges remained straight, the invalid elements were created.
The number of invalid elements for the first slice of the mouse brain image is
6, for the second is 10. The number of invalid elements for the first slice of the
human brain image is 3, for the second is 1. The invalid elements are shown
in red in Fig. 13a, Fig. 13c, Fig. 15a and Fig. 15c. The iterative FE method
was applied to the invalid meshes. After 6, 25, 5, 5 iterations, all the invalid
elements were eliminated for these invalid meshes. For the fly embryo image,
there is no invalid element (Fig. 14a). We executed 10 iterations to improve
the quality of the elements. The final meshes are shown in Fig. 13b, Fig. 13d,
Fig. 15b, Fig. 15d, and Fig. 14b.

The quality of the curvilinear meshes was also improved by the iterative
FE method. The measure scaled Jacobian is defined by:

I =
min|J |
max|J |

,

where |J | is the Jacobian of the mapping from the reference coordinates to
the physical coordinates. For a straight-sided element, since its Jacobian is
a constant, I = 1; for a curved element, I ≤ 1. When the curved element
is invalid, I is negative; when it gets degenerated, I approaches to 0. From
Fig. 12, the iterative FE method produced more elements with larger scaled
Jacobian, thus the bad shaped elements were improved largely.

Scaled Jacobians
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

N
u
m

b
e
r

o
f
b
o
u
n
d
a
ry

 e
le

m
e
n
ts

0

5

10

15

20

25

30

Scaled Jacobians before FE method

Mouse Brain I
Mouse Brain II
Human Brain I
Human Brain II
Fly Embryo

(a)

Scaled Jacobians
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

N
u
m

b
e
r

o
f
b
o
u
n
d
a
ry

 e
le

m
e
n
ts

0

5

10

15

20

25

30

Scaled Jacobians after FE method

Mouse Brain I
Mouse Brain II
Human Brain I
Human Brain II
Fly Embryo

(b)

Fig. 12: The comparison of the scaled Jacobian. (a) The scaled Jacobian before
iterative FE method (the negative scaled Jacobian were set to be 0 for repre-
sentation convenience). (b) The scaled Jacobian after iterative FE method.

Construction of Discrete Descriptions of Biological Shapes 19

(a) (b)

(c) (d)

Fig. 13: Invalid meshes and corresponding corrected meshes for the two slices
of the mouse brain image. (a) Invalid curvilinear mesh for the first slice of the
mouse brain image. (b) Valid final curvilinear mesh with quality improvement
for the first slice of the mouse brain image. (c) Invalid curvilinear mesh for
the second slice of the mouse brain image. (d) Valid final curvilinear mesh
with quality improvement for the second slice of the mouse brain image.

(a) (b)

Fig. 14: Bad quality curvilinear mesh for the fly embryo image and corre-
sponding mesh with quality improvement. (a) Bad quality curvilinear mesh
for the fly embryo image. (b) Improved quality curvilinear mesh for the fly
embryo image.

20 No Author Given

(a) (b)

(c) (d)

Fig. 15: Invalid meshes and corresponding corrected meshes for the two slices
of the human brain image. (a) Invalid curvilinear mesh for the first slice of the
human brain image. (b) Valid final curvilinear mesh with quality improvement
for the first slice of the human brain image. (c) Invalid curvilinear mesh for
the second slice of the human brain image. (d) Valid final curvilinear mesh
with quality improvement for the second slice of the human brain image.

The algorithm can also construct curved meshes with coarsened elements
inside that have fewer elements. Fig. 16 shows the coarsened curvilinear
meshes for the five original images.

Construction of Discrete Descriptions of Biological Shapes 21

(a) (b) (c)

(d) (e)

Fig. 16: curvilinear meshes with coarsened elements for the five original im-
ages.

In Table 3, we list the total number of elements inside the mesh (TNE), the
number of invalid elements (NIE), the iterations needed to improve the quality
of the mesh (ITRS), the run time of the linear mesh (RTL), the time spent
on FE method (TFE) and the total run time (TRT). The high-order mesh
generator is slower, and most of the time was spent on the FEM iterations.
The run time is not only decided by the number of elements inside the mesh,
but also determined by how many iterations it needs, because when there are
highly distorted invalid elements, more iterations are needed to correct them.

5 Conclusion

We presented a new approach for automatically constructing a quality curvi-
linear mesh to represent geometry with smooth boundaries. The algorithm we
presented is sequential. Our future work includes the multitissue triangular
curvilinear mesh construction, the development of the corresponding parallel
algorithm and the extension to the three-dimensional high-order mesh gener-
ation.

22 No Author Given

Table 3: Run time (s) for the ten examples

Example TNE NIE ITRS RTL (s) TFE (s) TRT (s)

Mouse Brain I (fine) 528 6 6 0.169 88.457 89.703
Mouse Brain II (fine) 373 10 25 0.467 221.336 224.917
Human Brain I (fine) 251 3 5 0.239 23.890 24.785
Human Brain II (fine) 235 1 5 0.262 23.212 25.691
Fly Embryo (fine) 213 0 10 0.111 42.373 44.357
Mouse Brain I (coarse) 39 4 10 0.164 10.199 13.122
Mouse Brain II (coarse) 37 5 16 0.518 12.298 15.445
Human Brain I (coarse) 27 3 12 0.238 16.860 19.079
Human Brain II (coarse) 39 1 80 0.266 40.500 42.391
Fly Embryo (coarse) 21 3 8 0.119 10.685 14.366

References

1. Berkeley drosophila genome project, 2014. http://www.fruitfly.org/.
2. P. Allen. Allen brain atlas, 2014. http://www.brain-map.org.
3. Andrey Chernikov and Nikos Chrisochoides. Multitissue tetrahedral image-

to-mesh conversion with guaranteed quality and fidelity. SIAM Journal on
Scientific Computing, 33:3491–3508, 2011.

4. Gerald Farin. Curves and Surfaces for Computer-Aided Geometric Design. Aca-
demic Press, 1997.

5. Erwin Frise, Ann S Hammonds, and Susan E Celniker. Systematic image-driven
analysis of the spatial drosophila embryonic expression landscape. Molecular
systems biology, 6(1), 2010.

6. Manjunatha Jagalur, Chris Pal, Erik Learned-Miller, R Thomas Zoeller, and
David Kulp. Analyzing in situ gene expression in the mouse brain with im-
age registration, feature extraction and block clustering. BMC bioinformatics,
8(Suppl 10):S5, 2007.

7. Xiao juan Luo, Mark S. Shephard, Robert M. O’Bara, Rocco Nastasia, and
Mark W. Beall. Automatic p-version mesh generation for curved domains. En-
gineering with Computers, 20:273–285, 2004.

8. L. Liu, Y. J. Zhang, T. J. R. Hughes, M. A. Scott, and T. W. Sederberg.
Volumetric T-spline construction using Boolean operations. Engineering with
Computers, 2014.

9. Per-Olof Persson and Jaime Peraire. Curved Mesh Generation and Mesh Re-
finement using Lagrangian Solid Mechanics. In Proceedings of the 47th AIAA
Aerospace Sciences Meeting and Exhibit, Orlando, FL, January 2009.

10. P.L.George and H.Borouchaki. Construction of tetrahedral meshes of degree
two. Int. J. Numer. Mesh. Engng, 90:1156–1182, 2012.

11. S.J. Sherwin and J. Peiro. Mesh generation in curvilinear domains using high-
order elements. Int. J. Numer, 00:1–6, 2000.

12. Wenlu Zhang, Daming Feng, Rongjian Li, Andrey Chernikov, Nikos Chriso-
choides, Christopher Osgood, Charlotte Konikoff, Stuart Newfeld, Sudhir Ku-
mar, and Shuiwang Ji. A mesh generation and machine learning framework
for Drosophila gene expression pattern image analysis. BMC Bioinformatics,
14:372, 2013.

Construction of Discrete Descriptions of Biological Shapes 23

13. Wenlu Zhang, Rongjian Li, Daming Feng, Andrey Chernikov, Nikos Chriso-
choides, Christopher Osgood, and Shuiwang Ji. Evolutionary soft co-clustering:
formulations, algorithms, and applications. Data Mining and Knowledge Dis-
covery, pages 1–27, 2014.

14. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method: Its
Basis and Fundamentals, 6th edition. Oxford: Butterworth-Heinemann, 2005.

