
Proof of Correctness of a Marching Cubes Algorithm

Carried out with Coq

Andrey N Chernikov and Jing Xu

Department of Computer Science
Old Dominion University
{achernik,jxu}@cs.odu.edu

Abstract

The Marching Cubes algorithm is a well known and widely used approach

for extracting a triangulated isosurface from a three-dimensional rectilinear

grid of uniformly sampled data values. The algorithm relies on a large man-

ually constructed table which exhaustively enumerates all possible patterns

in which the isovalue relates to the values in the nodes of a cubical cell of

the grid. For each pattern the table contains the local connectivity of the

triangles. The construction of this table is labor intensive and error prone.

Indeed, the original paper allowed for topological holes in the surface. This

problem was later fixed by several authors, however a proof of correctness to

our knowledge was never presented. Another issue, the possibility of inter-

secting triangles inside a single cube, has not been addressed. In this paper

we present our formal proof of correctness of a Marching Cubes implemen-

tation with respect to both of these conditions. Our proof is developed with

the Coq proof assistant, and the script is available online.1

Keywords: Marching Cubes, Computer-aided proofs, Coq

1http://mc-proof.sourceforge.net

Preprint submitted to Computational Geometry Theory and Applications March 22, 2015

http://mc-proof.sourceforge.net

1. Introduction1

Representation and visualization of three-dimensional isosurfaces is an2

important building block for a large number of applications in computa-3

tional biology, bioinformatics, graphics, finite element simulations, and other4

areas [1, 2]. The most widely used algorithm for the construction of isosur-5

faces is called Marching Cubes (MC) which was proposed in 1987 by Lorensen6

and Cline [3]. For example, the MC algorithm is used for the reconstruction7

of contour surfaces in the popular Chimera software [4], see Figure 1. The al-8

gorithm relies on a large lookup table which defines a separate triangulation9

rule for each of the 256 cases that can arise at run-time. More specifically,10

it samples a given real-valued field (which is often represented through a11

discrete or continuous distance function) at regularly placed nodes, and tri-12

angulates the interior of each resulting cubical cell using a predefined table13

of triangle connectivity.14

In Figure 2 we show an example of the application of a two-dimensional15

Marching Squares algorithm to a simple data grid. The table we used to16

create the segments of the isocontour was published previously [1] and is17

shown in Figure 3. Each cell has four corners, the value of the function in18

each corner can be either less or greater than the isovalue2, therefore the19

2In this analysis we treat the case of the sampled value being equal to the isovalue

together with the case when it is greater than the isovalue. In an implementation this

simplifying assumption can lead to some triangles being squeezed to an edge or a point.

Such triangles can be easily pruned out by a post-processing step.

2

Figure 1: An example of a triangulated surface (bottom) obtained with the

Chimera software [5] for the “1zik” structure (top) from the Protein Data

Bank.

total number of distinct cases is 24 = 16. In a three-dimensional grid each20

cube has eight corners, and the total number of cases is 28 = 256.21

The resemblance of the resulting isosurface to the true surface is usu-22

3

4 5 3 2 5 5

15 13 12 8 6

8 18

9

135

16 7

9 11

8 6

12 8

9 117

676 7

12 8 7

6 5

Figure 2: A two-dimensional example of the use of a Marching Squares

algorithm. The resulting isocontour (blue) corresponds to an isovalue ξ = 10.

The nodes of the rectilinear grid corresponding to values less than ξ are shown

with white circles, and the nodes corresponding to values greater than ξ are

shown with black circles.

(1) (2) (3) (4) (5) (6) (7) (8)

(a)

(b)

Figure 3: Two-dimensional rules for creating intersection vertices and inter-

section edges. Blue circles and segments show the intersection vertices and

intersection edges created by the algorithm.

ally measured in terms of their geometric and/or topological proximity. The23

stronger properties of the true surface are known, the tighter proximity con-24

ditions can be proven. In the absence of any information of the true surface, a25

4

minimal correctness requirement we can expect of a Marching Squares/Cubes26

algorithm is the following: all the nodes of the rectilinear grid with values27

less than ξ be separated by the resulting isocontours/isosurfaces from all the28

nodes with values greater than ξ. For the three-dimensional algorithm, we29

refine this requirement down to two components:30

(i) Two- and three-dimensional cohesion, i.e., every axis-aligned plane31

of the three-dimensional rectilinear grid (passing through the nodes)32

contains zero or more isocontours from the three-dimensional March-33

ing Cubes isosurfaces that are a correct output of a two-dimensional34

Marching Squares algorithm.35

(ii) Water-tightness, i.e., the absence of holes. The output of the March-36

ing Cubes algorithm consists of zero or more water-tight triangulated37

isosurfaces. We further decompose the requirement of water-tightness38

into two conditions:39

(ii-a) the resulting triangles are conforming along their edges, i.e., ev-40

ery edge of every triangle is incident upon exactly one other41

triangle, and42

(ii-b) the triangles never intersect in their interiors, independently of43

the positions of their vertices which are computed at run time.44

Requirement (i) ensures the separation in all planes of the grid, while require-45

ment (ii) guarantees a hole-free three-dimensional surface which connects all46

of the two-dimensional contours.47

The authors of the original paper [3] reduce the complexity of the algo-48

rithm through exploring two types of symmetry: grouping two cases with49

the opposite relations to the isovalue in all corners into one case, and also50

5

grouping rotationally symmetric cases. Unfortunately, as it was later pointed51

out [6, 7, 8, 9, 10, 11], some symmetric cases cannot be treated as one case,52

as we show in Figure 4. The authors [6, 7, 8, 9, 11] state that they solved53

this problem, each by their own extension of the lookup table, however they54

do not provide any proofs. Another potential problem is the possibility that55

the triangles inside a single cube intersect each other as shown in Figure 5.56

(a) The sets of triangles created by the

application of the same triangulation pat-

tern to both cubes form a hole in the sur-

face at the shared face.

(b) The triangulations are consistent in

the shared face.

Figure 4: Two cubes of a sampled grid sharing a common face. The corre-

sponding corners of the cubes have pairwise opposite relations to the isovalue.

Both cubes correspond to a single case (13) in the original paper [3] which

combines these two cubes into one case due to symmetry.

Below we describe our Coq [13] proof written in a functional programming57

language Gallina based on a formal language Calculus of Inductive Construc-58

tions [14]. We examine two publicly available implementations of the MC59

algorithm [5, 12] that use equivalent lookup tables. Computer-assisted proofs60

in Coq have been used previously to support solutions of mesh generation61

6

v5v11

v3
v1

v0

v2

v4

(a) A patch of a triangulated surface in

which triangles intersect each other’s in-

teriors. The list of all triangles is v0v5v4,

v3v5v0, v11v5v3, v1v5v11, and v2v1v11.

Edge v3v5 intersects the interior of tri-

angle v2v1v11, and edge v11v1 intersects

the interior of triangle v3v5v0. Therefore,

the following pairs of triangles intersect:

v3v5v0 and v1v5v11, v3v5v0 and v2v1v11,

v11v5v3 and v2v1v11.

v5v11

v3
v1

v0

v2

v4

(b) A patch of a triangulated surface

used in the implementation we study [12]

in which triangles cannot intersect each

other’s interiors. The list of all triangles

is v0v4v11, v0v11v3, v4v5v11, v2v11v1, and

v5v1v11.

Figure 5: An example of an intersection pattern and possible surface patches.

and other geometric problems. Dufourd and Bertot [15] presented a proof of62

correctness of a planar Delaunay triangulation algorithm. Gonthier proved63

the Four-Color Theorem [16]. Dufourd [17] developed a hypermap framework64

for computer-aided proofs in surface subdivisions. He uses this framework65

to prove the genus theorem and the Euler’s formula as its corollary. Brun66

et al. [18] designed a two-dimensional convex hull algorithm based on hyper-67

maps and proved its correctness. Magaud et al. [19] formalized a proof of the68

7

Desargues theorem in Coq. Dehlinger and Dufourd [20] used Coq to prove69

a combinatorial part of the Surface Classification Theorem. A computer-70

assisted proof of dihedral angle bounds for a three-dimensional tetrahedral71

meshing algorithm was performed by Labelle and Shewchuk [21], although72

the programming language was not specified.73

Our proof consists of two major parts. The first is combinatorial in its74

approach, and it establishes the truth of requirements (i) and (ii-a) above.75

This first part appeared in our preliminary results [22]. The second part76

is more geometric, and it establishes the truth of requirement (ii-b) above.77

After we briefly review the classical MC algorithm in Section 2, we describe78

both parts of our proof in Sections 3 and 4, respectively. Section 5 concludes79

the paper.80

2. Classical Algorithm81

The main steps of the classical Marching Cubes algorithm are shown82

in pseudocode in Figure 6. The function CaseTable Get(index) queries a83

manually constructed table with a key composed of eight bits, each bit cor-84

responding to the result of the test, F (x) ≥ ξ or F (x) < ξ, in one of the85

eight corners of cube b.86

3. Proof of Combinatorial Correctness87

In our entire development we work with a single unit cube which rep-88

resents an arbitrary cube of the sampled grid. We call it the generic cube89

because our proofs are valid for any combination of the sampled values in the90

8

Algorithm MarchingCubes(G, F , ξ)

Input: A rectilinear grid of nodes G ⊂ R3 along with a mapping

F : G→ R, and an isovalue ξ ∈ R

Output: A triangular surface M embedded in R3 that interpolates

the set {x ∈ R3 | F (x) = ξ}

1: M ←− ∅

2: For each node x in G, determine whether F (x) ≥ ξ or F (x) < ξ

3: Compute the set B of cubes by connecting adjacent nodes in G

4: for each b ∈ B

5: index ←− Index(b)

6: M ←−M ∪ CaseTable Get(index)

7: endfor

8: Compute vertex coordinates in M by interpolation

9: return M

Figure 6: A high level description of the Marching Cubes algorithm.

corners of this cube and any isovalue. Our basic data types are Dimension91

and Coord that allow us to define most of the other types:92

Inductive Dimension := Dimension X | Dimension Y | Dimension Z .93

Inductive Coord := Coord Zero | Coord One.94

Then each of the six faces of the cube is defined by a pair of Dimension and95

Coord values:96

Inductive CubeFace :=97

9

| CubeFace Cons : Dimension → Coord → CubeFace.98

In this definition the constructor is written with functional arrow symbols,99

however it can be thought of as analogous to a record or a class with two fields100

in conventional programming languages. An edge of the cube is similarly101

defined by a pair of CubeFaces, and a corner of the cube is defined by a102

triple of CubeFaces.103

We call the nodes in the corners of the generic cube CubeCorners, and104

the points in the intersection of the resulting isosurface with the edges of the105

generic cube CutVertexes. There is a one-to-one correspondence between cube106

edges and CutVertexes, and we opted for the use of the latter. Figure 7 shows107

the conventions we use for the ordering of CubeCorners and CutVertexes.108

A CutTriangle is a triangle in the resulting surface that is defined by109

three CutVertexes. A CutEdge is an edge of a CutTriangle, defined by two110

CutVertexes. A Sign is the possible result of the evaluation F (c) − ξ for a111

CubeCorner c:112

Inductive Sign := Sign Neg | Sign Pos.113

Below we describe our proof of requirements (i) and (ii-a) in terms of our114

Coq data types. More specifically, we prove that the following conditions are115

satisfied.116

(i) The set of CutEdges of CutTriangles, as returned by the function117

CaseTable Get, that lie in CubeFaces is equal to the set of CutEdges118

defined by the two-dimensional rules shown in Figure 3 and encoded119

by function Cube GetCutEdgesInFaces.120

(ii-a) For each CutEdge e of each CutTriangle from the three-dimensional121

10

c0(0, 0, 0)

c6(1, 1, 1)

c1(1, 0, 0)

c3(0, 1, 0) c2(1, 1, 0)

c7(0, 1, 1)

c4(0, 0, 1) c5(1, 0, 1)

v8(0, 0,)

v10(1, 1,)

v6(, 1, 1)

v7(0, , 1) v5(1, , 1)
v4(, 0, 1)

v3(0, , 0) v1(1, , 0)

v0(, 0, 0)

v2(, 1, 0)

v11(0, 1,)

v9(1, 0,)

Figure 7: Ordering conventions for CubeCorners and CutVertexes. The coor-

dinates of CubeCorners ci are shown in black, and those of CutVertexes vi are

shown in blue. The triples of numbers correspond to the (X, Y, Z) coordinate

values in the respective positions. The underscores represent coordinates that

are not used in the construction of the corresponding CutVertexes.

look-up table, e can appear either exactly once or exactly twice cumu-122

latively in all CutTriangles of the current-case cube:123

• if e appears exactly once, then it lies in one of the CubeFaces;124

• if e appears exactly twice, then it does not lie in any of the CubeFaces125

(i.e., it lies in the interior of the cube).126

A two-dimensional Marching Squares algorithm based on the rules of127

Figure 3 is correct because these rules have the following two properties.128

• A CutVertex is created in an edge of the grid if and only if this edge has129

opposite Sign values at its ends. Therefore, assuming that the interpolat-130

ing algorithm for computing the positions of CutVertexes is deterministic,131

11

any two squares sharing a side must also share the same CutVertex or its132

absence.133

• In every case all the corners marked Sign Pos are completely separated by134

CutVertexes and CutEdges from all the corners marked Sign Neg .135

Furthermore, if the rules of Figure 3 are respected by a three-dimensional136

Marching Cubes algorithm in the shared cube faces, the triangulations con-137

structed in adjacent cubes will always include the same CutEdges in the138

shared faces, and holes similar to the one shown in Figure 4a will not be139

created.140

Our theorem shown below proves that conditions (i) and (ii-a) are satisfied141

by the MC implementations we study for all possible assignments of Signs142

to CubeCorners.143

Theorem Combinatorial Correctness:144

∀ s0 s1 s2 s3 s4 s5 s6 s7 : Sign,145

let FaceEdges := Cube GetCutEdgesInFaces s0 s1 s2 s3 s4 s5 s6 s7 in146

let i := Index [s0 ; s1 ; s2 ; s3 ; s4 ; s5 ; s6 ; s7] in147

let CutTriangles := CaseTable Get i in148

(SetEqual FaceEdges (CollectFaceEdges CutTriangles) CutEdge eq) = true ∧149

(EdgeList IsConsistent CutTriangles) = true.150

Proof.151

intros;152

destruct s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 ;153

vm compute;154

auto.155

Qed.156

12

In this theorem, the function Cube GetCutEdgesInFaces returns the list of157

CutEdges from a direct application of the rules of Figure 3 to the six faces158

of the generic cube under a given assignment of Signs to the corners of the159

cube. The function CollectFaceEdges, on the other hand, returns the list of160

CutEdges by iterating through the CutTriangles from the three-dimensional161

look-up table under the same assignment of Signs and collecting only those162

CutEdges that lie in the faces of the cube. The function SetEqual checks the163

two lists for equality. The function EdgeList IsConsistent verifies condition164

(ii-a).165

The proof is based on a direct enumeration of all possible assignments of166

eight Sign values. The commands used for the proof of the theorem are called167

tactics. The tactics are chosen manually from the predefined set. They allow168

for the transformation of the premises of a theorem to its conclusion. The169

proof is an interactive process in which the system presents current goals, and170

the user transforms or discharges them by using appropriate tactics. When171

all the goals are discharged and the Qed command accepted, the theorem is172

guaranteed to have been proven correctly. As in our case, the tactics can be173

stacked together with the “;” delimiter, such that they are applied automat-174

ically without interaction with the user. More specifically, the tactic intros175

introduces the universally quantified values into the proof context, such that176

they are treated as concrete parameters. The destruct tactic enumerates177

all combinations of values that its parameters can assume. The vm compute178

tactic applies conventional computation to evaluate the current goal, and the179

auto tactic finishes off the remaining basic logical and arithmetic operations.180

13

4. Proof of Geometric Correctness181

In this section we describe our proof of proposition (ii-b) which is stated182

in terms of our Coq types as follows.183

(ii-b) For any assignment of Signs to the corners of the generic cube, the184

interiors of the CutTriangles defined by the three-dimensional look-up185

table do not intersect each other, independently of the positions of186

CutVertexes computed by interpolation at run time.187

The fact that the positions of CutVertexes are not known a priori implies188

that we need to consider all possible positions for each vertex, i.e., the whole189

cube edge on which the vertex lies. As a result, we can think of each Cut-190

Triangle spanning (or sweeping) a region of space as each of its CutVertexes191

independently spans (or sweeps) its corresponding edge of the cube. This192

is illustrated by examples in Figure 8 where we first show the tetrahedron193

whose interior is the union of all points in space that can possibly lie in Cut-194

Edge v1v11, and then the 8-sided polytope whose interior is the union of all195

points in space that can possibly lie in CutTriangle v1v4v11.196

Let the spanned polytope of α, abbreviated as SP(α), where α is a CutEdge197

or a CutTriangle, be the union of all points in space that can possibly lie in the198

closure of α. Then the spanned polytope is the three-dimensional convex hull199

of the CubeCorners incident to the cube edges that contain the CutVertexes200

of α. If a spanned polytope is flat, then we define its interior as the two-201

dimensional open region (embedded in the three-dimensional space) enclosed202

by the polytope’s piecewise-linear boundaries. If a spanned polytope has non-203

zero volume, then its interior is the three-dimensional open region enclosed204

by its piecewise-planar boundaries.205

14

c1

c3 c2

c7

v1

v11

(a) Spanned polytope (tetrahedron) for

CutEdge v1v11.

v11

v4

v1
c1

c3 c2

c7

c4 c5

(b) Spanned polytope for CutTriangle

v1v4v11.

Figure 8: Examples of spanned polytopes.

The cases shown in Figure 8 are the most general, in the sense that the206

cube edges containing the CutVertexes are not adjacent: c1c2, c3c7, and c4c5207

do not share any end points. In the cases when such edges share end points,208

some of the triangular faces of the spanned polytope degenerate to segments209

or single points.210

Two CutTriangles, ABC and PQR, may share zero, one, or two vertices.211

We analyze each case separately below.212

• If ABC and PQR do not share any vertices (Figure 9a), then their interiors213

may intersect only if the interiors of SP(ABC) and SP(PQR) intersect.214

• If ABC and PQR share one vertex (Figure 9b), say C = R, then their215

interiors may intersect only if the interiors of SP(ABC) and SP(PQ)216

intersect, or the interiors of SP(PQR) and SP(AB) intersect.217

• Finally, when ABC and PQR share two vertices (Figure 9c), their interiors218

may intersect only if the triangles are coplanar. This last case does not219

create material inconsistencies in the MC output, and we do not consider220

15

A

C

B

P
R

Q

A

C

B

P R

Q

(a) No vertices are shared.

A

C = R

B

P

Q

(b) One vertex is

shared.

A = P

C = R

B

Q

(c) Two vertices

are shared.

Figure 9: All configurations (modulo vertex ordering) of the interior of

triangle PQR intersecting the interior of triangle ABC (PQR 6= ABC). The

same configurations can be obtained by interchanging the roles of triangles

PQR and ABC.

it further.221

A necessary and sufficient condition for the separability (i.e., the absence222

of intersection) of two polytopes is the existence of a separating plane, which223

divides the space into two parts, each fully containing one of the polytopes.224

All of the potential separating planes are defined by the faces of both poly-225

topes and by the planes computed from all pairs of edges, one from each226

polytope [23]. For the purposes of our proof, it is sufficient to determine if227

two polytopes are separated through the existence of one separating plane.228

We found that in all cases separability can be proven by testing only the229

planes that pass through the faces of the polytopes. We identify all faces230

of each polytope by considering all non-collinear triples of vertices of this231

polytope. We do not need to pre-process the faces by separating them into232

internal and external, since the internal faces will always fail the test for233

separability.234

16

To test if a plane is separating for two polytopes, we check if no vertex235

of one polytope lies strictly to the same side of the plane as any vertex of236

the other polytope. Given a plane passing through points A, B, and C, the237

orientation of the fourth point D with respect to the plane is determined by238

evaluating the sign of the vector expression a · (b × c), where a = A − D,239

b = B −D, and c = C −D. This test involves only addition, subtraction,240

and multiplication of the coordinates of cube corners (0 and 1) and therefore241

can be evaluated exactly in integer arithmetic readily available through Coq242

data type Z .243

Our theorem which proves the absence of triangle intersections is shown244

below.245

Theorem Geometric Correctness:246

∀ s0 s1 s2 s3 s4 s5 s6 s7 : Sign,247

let i := Index [s0 ; s1 ; s2 ; s3 ; s4 ; s5 ; s6 ; s7] in248

let CutTriangles := CaseTable Get i in249

(CutTrianglesSeparated CutTriangles) = true.250

Proof.251

intros;252

destruct s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 ;253

vm compute;254

trivial.255

Qed.256

In this theorem, the function CutTrianglesSeparated examines all pairs257

of CutTriangles in a single cube, for each pair determines the faces of the258

17

corresponding spanning polytopes, and tests the faces for the property of259

defining a separating plane for these two polytopes. If at least one separating260

plane is found, the pair of CutTriangles is deemed non-intersecting.261

5. Conclusions262

We presented a Coq proof of correctness of an implementation of a March-263

ing Cubes algorithm. Our effort was driven by two trends in computer-aided264

design and analysis. The first trend is the increased reliance on computa-265

tional techniques in areas that cannot afford erroneous results, such as health266

care and transportation. The second trend is the requirement that computa-267

tion is performed in real time, usually involving parallel computing hardware,268

which effectively excludes a human operator who could evaluate and correct269

the computational pipeline on an as-needed basis.270

Our proof can be used as-is or extended to verify other implementations271

of the Marching Cubes algorithm. For example, one might use a more com-272

plex lookup table if certain assumptions are made about the true surface,273

such as that its topology can be reconstructed correctly by trilinear interpo-274

lation [7]. One extension to our proof that might be needed for other tables275

is the testing of potential separating planes defined by pairs of edges of two276

spanning polyhedra.277

6. Acknowledgment278

Molecular graphics and analyses were performed with the UCSF Chimera279

package. Chimera is developed by the Resource for Biocomputing, Visual-280

18

ization, and Informatics at the University of California, San Francisco (sup-281

ported by NIGMS P41-GM103311).282

References283

[1] W. J. Schroeder, K. M. Martin, Overview of visualization, in: C. John-284

son, C. Hansen (Eds.), Visualization Handbook, Academic Press, Inc.,285

2004.286

[2] T. S. Newman, H. Yi, A survey of the marching cubes algorithm, Com-287

puters & Graphics 30 (5) (2006) 854–879.288

[3] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D sur-289

face construction algorithm, SIGGRAPH Comput. Graph. 21 (4) (1987)290

163–169.291

[4] T. D. Goddard, C. C. Huang, T. E. Ferrin, Visualizing density maps292

with UCSF Chimera, Journal of Structural Biology 157 (1) (2007) 281–293

287.294

[5] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M.295

Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera—A visualization296

system for exploratory research and analysis, Journal of Computational297

Chemistry 25 (13) (2004) 1605–1612.298

[6] B. Natarajan, On generating topologically consistent isosurfaces from299

uniform samples, The Visual Computer 11 (1994) 52–62.300

[7] E. V. Chernyaev, Marching cubes 33: Construction of topologically cor-301

rect isosurfaces, Tech. Rep. CERN CN/95-17 (1995).302

19

[8] C. Montani, R. Scateni, R. Scopigno, A modified look-up table for im-303

plicit disambiguation of marching cubes, The Visual Computer 10 (1994)304

353–355.305

[9] A. M. Lopes, Accuracy in scientific visualization, Ph.D. thesis, The Uni-306

versity of Leeds (1999).307

[10] M. J. Dürst, Letters: Additional reference to “marching cubes”, Com-308

puter Graphics 22 (1988) 72–73.309

[11] W. Heiden, T. Goetze, J. Brickmann, Fast generation of molecular sur-310

faces from 3D data fields with an enhanced “marching cube” algorithm,311

Journal of Computational Chemistry 14 (1993) 246–250.312

[12] P. Hammer, Matlab implementation of marching cubes,313

http://www.mathworks.us/matlabcentral/fileexchange/314

32506-marching-cubes (2011).315

[13] The Coq proof assistant, version 8.4pl5, http://coq.inria.fr.316

[14] Y. Bertot, P. Castéran, Coq’Art: The Calculus of Inductive Construc-317

tions, Springer, 2004.318

[15] J.-F. Dufourd, Y. Bertot, Formal study of plane Delaunay triangulation,319

in: M. Kaufmann, L. C. Paulson (Eds.), Interactive Theorem Proving,320

Lecture Notes in Computer Science, Vol. 6172, Springer, 2010, pp. 211–321

226.322

[16] G. Gonthier, Formal proof – the Four-Color Theorem, Notices of the323

AMS 55 (2008) 1382–1393.324

20

http://www.mathworks.us/matlabcentral/fileexchange/32506-marching-cubes
http://www.mathworks.us/matlabcentral/fileexchange/32506-marching-cubes
http://www.mathworks.us/matlabcentral/fileexchange/32506-marching-cubes
http://coq.inria.fr

[17] J.-F. Dufourd, A hypermap framework for computer-aided proofs in sur-325

face subdivisions: genus theorem and Euler’s formula, in: Proceedings326

of the 2007 ACM symposium on Applied computing, ACM, New York,327

NY, 2007, pp. 757–761.328

[18] C. Brun, J.-F. Dufourd, N. Magaud, Designing and proving correct a329

convex hull algorithm with hypermaps in Coq, Computational Geometry330

Theory and Applications 45 (8) (2012) 436–457.331

[19] N. Magaud, J. Narboux, P. Schreck, A case study in formalizing pro-332

jective geometry in Coq: Desargues theorem, Computational Geometry333

Theory and Applications 45 (8) (2012) 406–424.334

[20] C. Dehlinger, J.-F. Dufourd, Formal specification and proofs for the335

topology and classification of combinatorial surfaces, Computational Ge-336

ometry Theory and Applications 47 (9) (2014) 869–890.337

[21] F. Labelle, J. R. Shewchuk, Isosurface stuffing: Fast tetrahedral meshes338

with good dihedral angles, ACM Transactions on Graphics 26 (3) (2007)339

57.1 – 57.10.340

[22] A. Chernikov, J. Xu, A computer-assisted proof of correctness of341

a marching cubes algorithm, in: International Meshing Roundtable,342

Springer, Orlando, FL, 2013, pp. 505–523.343

[23] C. Ericson, Real-time collision detection, Elsevier Amsterdam/Boston,344

2005.345

21

	Introduction
	Classical Algorithm
	Proof of Combinatorial Correctness
	Proof of Geometric Correctness
	Conclusions
	Acknowledgment

