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We present a Parallel Adaptive Physics-Based Non-Rigid Registration framework for aligning pre-
operative to intra-operative brain Magnetic Resonance Images (MRI) of patients who have undergone
a tumor resection. This framework extends our earlier work on the Physics-Based methods by using
an adaptive, multi-material, parallel Finite Element (FE) biomechanical model to describe the physical
deformations of the brain. Our registration technology incorporates fast image-to-mesh convertors for
remeshing the brain model in real-time eliminating the poor quality elements; various linear solvers to
accurately estimate the volumetric deformations; efficient block-matching techniques to compensate for
the missing/unrealistic matches induced by the tumor resection.

Our evaluation is based on six clinical volume MRI data sets including: (i) isotropic and anisotropic
image spacings, and (ii) partial and complete tumor resections. We compare our framework with four
methods: a Rigid and BSpline deformable registration implemented on 3D Slicer v4.4.0, a Physics-Based
non-rigid registration available on ITK v4.7.0, and an Adaptive Physics-Based non-rigid registration.
We show that the proposed technology provides the finest MRI alignments among all the methods. The
Hausdorff Distance is on average up to 3.78 and 3.12 times more accurate compared to the rigid and
the other non-rigid registration methods, respectively. Additionally, it brings the end-to-end execution
within the real-time constraints imposed by the neurosurgical procedure. In a Linux Dell workstation
with 12 Intel Xeon 3.47 GHz CPU cores and 96GB of RAM, it registers the anisotropic volume data in
less than 93 seconds and the isotropic data in less than 21 seconds.
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1. Introduction

Image registration is generally concerned with spatial alignment of corresponding features between
two or more images. During registration, a spatial transformation is applied to one image, which
is called moving, such that it is brought into alignment with the other image, which is called
fixed. In the context of Image-Guided Neurosurgery (IGNS), the moving image corresponds to
a brain pre-operative MRI, which is aligned with the position of the patient before the surgery
using a rigid transformation, and the fixed image corresponds to an intra-operative MRI (iMRI)
acquired during the surgery. After the opening of the skull and dura, the brain changes its shape
because of the cerebrospinal fluid leakage, the effect of gravity, and the administration of osmotic
diuretics, introducing discrepancies in relation to the pre-operative configuration. The Non-Rigid
Registration (NRR) can usually compensate for the brain shifts caused by all these factors.
However, in the case of a tumor resection, the NRR becomes an ill-posed problem because: (i)

not all features in the moving image have a correspondence in the fixed image; (ii) the discrepancies
after a rigid alignment are large because of the tissue removal; (iii) the NRR requires significant
computing resources and time. In this paper, we focus on all these aspects and propose a framework
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to address one of the most challenging problems of NRR for IGNS: brain deformation due to tumor
resection. The other challenge is the tissue retraction (Miga, Roberts, et al. (2001); Platenik, Miga,
et al. (2002)), which is outside of the scope of this paper.
Modeling the behavior of the brain remains a key issue in providing navigation for IGNS. In

our previous work Liu, Kot, et al. (2014), we developed ITK1 filters for physics-based non-rigid
registration (PBNRR), for brain shift only, which take into account the tissue properties, improve
the accuracy compared to the rigid registration, and reduce the execution time using GPU and
multi-core accelerators. The purpose of this method is to use a known displacement vector associ-
ated with sparse feature points inside the cranial cavity, to estimate the entire brain deformation
with a brain biomechanical model (Clatz, Delingette, et al. (2005)). In this paper we augment the
PBNRR method by employing an adaptive heterogeneous biomechanical model for tissue/tumor
removal depicted in the iMRI and exploiting additional parallelism to satisfy the time constraints
of the neurosurgical procedure.
Warfield, Ferrant, et al. (2000) presented a two step method for the biomechanical simulation of

volumetric brain deformations, achieving reasonably accurate image alignments within the IGNS
time constraints. In the first step, an active surface algorithm iteratively deforms the surface of
the first brain volume to match that of the second volume (Ferrant, Cuisenaire and Macq (1999)).
In the second step, the volumetric brain deformation implied by the surface changes is computed
in parallel via a biomechanical model. The method was evaluated on two neurosurgery cases. In
our work, we match image blocks located in the entire volume of the cranial cavity instead of only
the brain surface. The selection and the matching of the blocks, as well as the volumetric brain
deformations, are all computed in parallel.
A prospective study on NRR of pre-operative data (T1,fMRI, DTI) with intra-operative data

(T1) was reported in Archip, Clatz, et al. (2007). The clinical cases obtained from eleven patients
enrolled over twelve months. The computationally intensive components of this method were par-
allelized in Chrisochoides, Fedorov, et al. (2006) with a cluster of 300 workstations, and the image
alignments were calculated in less than seven minutes. In this paper, our method is implemented
for shared memory multiprocessor architectures, and the image alignments are computed between
21 and 93 seconds in a Dell workstation with twelve cores and 96GB of RAM.
In summary, these methods and others (Mostayed, Garlapati, et al. (2013); Farnia, Ahmadian,

et al. (2015)) compensate only for small brain deformations (shifts). The complex neurosurgical
procedure of the tumor resection, which invalidates the biomechanical model defined on the pre-
operative MRI and compromises the fidelity of the IGNS, is not addressed.
Risholm, Melvr, et al. (2009) presented an adaptive FE multi-level grid registration scheme that

accommodates a superficial tumor resection. The method uses a planar FEM grid and a Delaunay
mesh split strategy. It was evaluated on 2D medical and synthetic images. In our work, rather than
splitting the elements, we generate in parallel a new global mesh from a warped segmented image.
Our parallel refinement scheme eliminates the poor quality elements with very small (< 5◦) and
very large (> 170◦) dihedral angles occuring after each model deformation and accurately captures
the complex morphological changes imposed by the tumor resection.
Gu and Qin (2009) proposed a global-to-local NRR scheme to compensate for the brain shift

and unmatchable outliers caused by the tumor resection. Initially the method aligns the images
globally using a mutual information metric enhanced by a joint saliency map (JSM). Then it uses
paired pools of scale-invariant keypoints in combination with the JSM to guide a local control-point
correspondence detection and an outlier keypoint rejection. The algorithm was evaluated on five
2D brain tumor resection MRI data sets. Given the mono-modal (MR-T1 weighted) nature of the
registration problem in this paper, it is reasonable to assume that there is an affine relationship
between the two image intensity distributions. However, for completeness, in addition to a Nor-
malized Cross Correlation (NCC) metric, which is suitable for matching images from the same
modality, we use a Normalized Mutual Information (NMI) metric, which is traditionally used in

1http://www.itk.org/
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the case of a multi-modal registration. Besides, we use a two-step block-matching technique to
eliminate the blocks with a missing target correspondence, and a parallel outlier rejection module
that removes the blocks with the larger error between the matching displacements and the com-
puted mesh deformations. The percentage of the selected and the rejected blocks can be adjusted
by the user. In addition, we evaluate our framework on clinical 3D MRI data.
Periaswamy and Farid (2006) presented a robust Expectation-Maximization (EM) framework for

the simultaneous segmentation and registration of volume MRIs with partial or missing data. A
Matlab implementation of this method required about 30 minutes to register a pair of 64× 64× 64
volumes on a 2.8GHz Linux machine. In this paper, we evaluate the performance of our method on
larger adult brain MRI with anisotropic or isotropic spacings (Table 3). We show that on a Linux
Dell workstation with twelve Intel Xeon 3.47 GHz CPU cores, our method accurately aligns a pair
of anisotropic volume MRIs in less than 93 seconds.
Our previous work (APBNRR) Drakopoulos, Liu, et al. (2014) extended the PBNRR Liu, Kot,

et al. (2014) to compensate for the brain deformations induced by a tumor resection using a parallel
adaptive heterogeneous biomechanical FE model for tissue/tumor removal depicted in the iMRI.
The APBNRR was evaluated on twelve patients and reduced the alignment error on average 2.57
times compared to the PBNRR; however, the evaluation was conducted only on isotropic volume
MRI data and the parallelization fraction of the program was about 70%. The proposed method is
evaluated on both isotropic and anisotropic clinical MRI data and achieves a higher parallelization
fraction (≈ 98%).
In summary, this paper presents a fast and accurate Parallel Adaptive Physics-Based Non-Rigid

Registration framework to compensate for the brain deformations induced by a tumor resection.
Our registration scheme computes a sparse displacement field associated with image blocks inside
the cranial cavity, and relies on an adaptive, multi-material, parallel FE brain biomechanical model
to estimate a dense deformation field for image warping. The three major problems of the NRR of
brain tumor resection MRI data are addressed as follows:

(1) The problem of missing/unrealistic matches between blocks in the moving and the target MRI
is addressed with a two-step block-matching scheme. The first step searches for a position in
the target image that maximizes a similarity metric for a block in the moving image. The
second step matches the blocks without a target correspondence to their closest point on
the surface of the target brain object. The final matching displacements are scaled and the
outlier blocks are rejected.

(2) The problem of large image discrepancies is addressed with an adaptive FE biomechanical
model. The model is remeshed from a warped segmented image to capture not only the brain
deformations but also the complex geometric changes nearby the tumor margins, while main-
taining throughout the process meshes with good quality elements –critical for the accuracy
and convergence rate of the solver.

(3) The problem of real-time constraints imposed by IGNS is addressed with the parallelization
of all the computational-intensive components of the framework.

We evaluate our method qualitatively and quantitatively on six clinical volume isotropic and
anisotropic MRI data sets, including partial and complete tumor resections. We compare this
framework with four other methods: (i) a Rigid registration, (ii) a BSpline deformable registra-
tion implemented on 3D Slicer v4.4.0 (Johnson, Harris and Williams (2007)), (iii) a Physics-Based
non-rigid registration available on ITK v4.7.0 (Liu, Kot, et al. (2014)), and (iv) an Adaptive
Physics-Based non-rigid registration (Drakopoulos, Liu, et al. (2014)).
The evaluation results indicate that the proposed scheme is the most accurate among all the

methods and satisfies the hard time constraints of the neurosurgical procedure. In the rest of the
paper we will describe the framework and outline all its modules in more detail.
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2. Method

Figure 1 illustrates the proposed framework. The method iteratively estimates a dense deformation
field by inclemently and accurately incorporating small changes in the geometry of the domain
(brain depicted in the iMRI) resulted by a partial, complete or extensive tumor resection during
image-guided neurosurgery. The computation of the dense deformation field is facilitated by a
sparse displacement vector associated with highly discriminant blocks inside the cranial cavity, as
well as a heterogeneous FE biomechanical model (Figure 2) that describes the physical deformation
of the brain. During the deformable (or non-rigid) registration, the model is deformed to reflect the
changes in the brain morphology caused by the tumor resection, gravity, and other factors. After
each deformation, the quality of the elements deteriorates, thus the model is globally remeshed from
a warped segmented image to avoid the heavily distorted or flipped elements. PAPBNRR uses an
additive deformation field for image warping. As a result, the input images are interpolated only
once, independently of the number of iterations. The model deformation and the image warping
stop when the number of image blocks without a correspondence in the intra-operative image is
less than a threshold, or when the maximum number of iterations has been reached (Figure 1).
In the remainder of this section, we describe the segmentation of the pre-operative MR image,

and the modules in Figure 1, which altogether improve on average by 30% the accuracy and by
66% the performance of the method we initially presented in Drakopoulos, Liu, et al. (2014).
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Figure 1. The PAPBNRR framework. Green, cyan, and gray represent the input, the output, and the modules of the framework,
respectively. The modules are built on the ITK open-source system and are parallelized with the POSIX thread library for
shared memory multiprocessor architectures. The red arrows show the execution order of the different modules in the loop.
The loop breaks when the number of blocks with zero displacements (Nb0 ) is less than a minimum (Nb0,min), or when the
maximum number of iterations (Niter,max) has been reached.

2.1 MRI Segmentation

The pre-operative image is usually acquired a week before the first intra-operative image, thus,
any computational requirements of the pre-operative segmentation are easily satisfied. Before seg-
menting the brain parenchyma and tumor tissues depicted in the pre-operative image, we apply
a skull stripping algorithm that removes the skull from the image and isolates the intra-cranial
cavity. We employ the Brain Extraction Tool (BET) for this purpose (Smith (2002)). Segmenting
the intra-cranial cavity is a semi-automatic process. Automatic segmentation is typically performed
with thresholding, region growing and connectivity operators, which select regions based on sim-
ilar voxel intensities may be in continuous regions. In this study, we employed a combination of
automatic operators implemented in 3D Slicer, like region growing and level-set filters (Antiga, Pic-
cinelli, et al. (2008)), with slice-by-slice manual segmentation to correct any erroneously included
regions.
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Figure 2. A heterogeneous brain FE biomechanical model visualized with 3D Slicer. Green and red represent the surface of
the brain parenchyma and tumor sub-mesh, respectively. Top row: the generated mesh superimposed on the (cropped) volume
MRI. Bottom row: axial, sagittal and coronal slice intersections between the MRI and the mesh surfaces.

Our registration framework relies on a warped pre-operative segmentation to: (i) restrict the se-
lection of image blocks with high variance inside the intra-cranial cavity (subsection 2.2), and (ii)
generate a multi-tissue mesh (subsection 2.4) which is the basis of a patient-specific, heterogeneous
biomechanical model, that describes the physical deformation of the brain (subsection 2.5). There-
fore, the accuracy of the pre-operative segmentation is crucial for the correctness of the produced
transformation, which is used to update the pre-operative image, and deliver it to the surgeon dur-
ing the procedure. However, an evaluation of the registration based on the segmentation accuracy
is beyond the scope of this paper, and it will be considered in our future work.

2.2 Parallel Feature Selection (PFS)

The input of the module is an image and a mask: as an input image we use the warped pre-op
MRI of iteration i; as an input mask we use the corrected warped segmentation of iteration i (see
PWSC). At the beginning of iteration i = 1, the input image is equal to the pre-op MRI, and the
input mask is set to be the pre-op segmentation. The output of the module is a set of features in
the input image with the highest intensity variance in the surrounding region. Each feature is a
block of voxels restricted inside the mask. Parameter Fs (Table 5) determines the percentage of
the selected blocks from the total number of image blocks. Parameter Bs (Table 5) determines the
size of the block in the axial, coronal, and sagittal image directions.
Three non-connectivity patterns are used (Liu, Kot, et al. (2014)), to control the distribution of

the selected blocks in the image. The “vertex” (26 non-connectivity), “edge” (18 non-connectivity),
and “face” (6 non-connectivity) patterns, prevent the selection of blocks which are connected with
neighboring blocks via a vertex, an edge, and a face, respectively. Figure 3 illustrates how the
non-connectivity patterns influence the selection of blocks in a brain MRI. During a brain tumor
resection procedure, we anticipate large volumetric deformations nearby the resection margins,
thus, in our experimental evaluation we use a “face” non-connectivity pattern (Table 5). This
pattern results in a higher block density nearby the tissue boundaries/interfaces and a lower block
density in the rest of the brain regions (Figure 3). The parallelization of the module has been
described in Drakopoulos, Liu, et al. (2014).
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Figure 3. The distribution of the selected blocks in a brain MRI, using different non-connectivity patterns. The results are
depicted on six consecutive MRI slices. From top to bottom row: axial pre-op MRI slice (left) and volumetric rendering (right),
selected blocks with “vertex” non-connectivity, selected blocks with “edge” non-connectivity, selected blocks with “face” non-
connectivity. The “vertex” pattern results in a more uniform distribution, while the “face” pattern results in a higher block
density nearby the tissue boundaries/interfaces (i.e., intracranial brain, ventricles and tumor surfaces).

2.3 Parallel Block Matching (PBM) - Parallel Closest Block Matching (PCBM)

Considering a block in the pre-operative image and a window Ws (Table 5), the block matching
algorithm searches for a position inside the window in the intra-operative image that maximizes a
similarity measure. By assembling the individual block displacement vectors computed from this
step, one can create a sparse displacement field, which is used by the FEM Solver (see PFEMS) to
estimate the unknown mesh displacements U associated with the mesh vertices.
Similarity measures in registration include Mean Square Difference of intensity (MSD), Mutual

Information (MI), and Cross Correlation (CC) (Brown (1992)). In this paper, we enhance the
PBM module described in Liu, Kot, et al. (2014), introducing a NMI metric (Studholme, Hill and
Hawkes (1999)). The value of the metric is normalized between zero and one. A value close to one
indicates that two blocks are very similar while a value close to zero indicates that the blocks are
very different. After partitioning the selected blocks to a specifying number of hardware threads,
we maximize the following equation (Studholme, Hill and Hawkes (1999)):

NMI(Bpre, Bintra) = 1−
H(Bpre, Bintra)

H(Bpre) +H(Bintra)
(1)

where H(Bpre) and H(Bintra) are the marginal entropies of a pre-operative and an intra-
operative image block, respectively, and H(Bpre, Bintra) is the joint entropy of the two blocks.
0 ≤ NMI(Bpre, Bintra) ≤ 1 because H(Bpre) +H(Bintra) ≥ H(Bpre, Bintra). The maximization of
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(1) seeks a transformation where joint entropy is minimised with respect to the marginal entropies.
The PBM approach works well only in the case of a brain shift. In the case of a tumor resection,

the blocks might not have a target correspondence inside the specified window. Besides, a very large
window is opposed to the assumption that a complex non-rigid transformation can be approximated
by point-wise translations of small image regions, often leading to: a) unrealistic matches that
deteriorate the quality of the produced transformation and b) performance degradation due to an
exhaustive search on a large number of image blocks.
The PCBM module uses a Euclidean distance point metric to match the blocks with a missing

correspondence to their closest point on the surface S of the target brain object. Figure 4 illustrates
such an example. Initially S is extracted from the intra-operative image. Then, for each block i

A A

Figure 4. The PCBM module on a pair of brain MRIs. Left: pre-operative MRI. The white points on the top right of the left
figure represent the blocks without a correspondence. Point A represents one of those blocks. Right: intra-operative MRI. S:
the points on the target brain surface; di,S : Euclidian distance vector from the center of the block to its closest point on S; di:
Euclidian distance vector bounded by the block matching window W .

with displacement ‖di‖ = 0, its minimum Euclidean distance to S is computed; that is, ‖di,S‖
where ‖ ∗ ‖ is the Euclidian norm. The maximum displacement due to the block matching window
is:
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where s is the image spacing (Table 3) and Ws the window size (Table 5). The block displacement
di is restricted inside the window with the equation:

di ≤
‖dmax‖

‖di,S‖
· di,S (3)

where ‖dmax‖/‖di,S‖ < 1 and ‖di,S‖ 6= 0. In practice, we always choose the upper bound from
(3). Figure 4 depicts a block displacement before (blue) and after (green) it is bounded by the
block-matching window.
Parameter Nb0,min (Figure 1, Table 5) controls the minimum allowed number of blocks with a

missing target correspondence. Our experimental evaluation showed that Nb0,min = 1% ·Nb results
to a high registration accuracy within an acceptable number of adaptive iterations. Nb is the number
of selected blocks from the PFS module. The PCBM module computes the block displacements in
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parallel by assigning ⌊Nb0/k⌋ blocks to each one of the k − 1 threads and Nb0 − (k − 1) · ⌊Nb0/k⌋
blocks to the kth thread.

2.4 Parallel Mesh Generation (PMG)

Our framework incorporates an ITK structured hexahedral mesh generator and different multi-
material unstructured tetrahedral image-to-mesh convertors developed by our group (Foteinos and
Chrisochoides (2013); Chernikov and Chrisochoides (2011); Liu, Foteinos, et al. (2012)). An eval-
uation of the registration based on different meshing techniques is beyond the scope of this paper
and was addressed in our previous work Foteinos, Liu, et al. (2011). In this paper, we employ a
parallel Delaunay method (Foteinos and Chrisochoides (2014)) to generate a tetrahedral mesh from
a multi-labeled segmented image in real-time, and accurately capture the morphological changes of
the brain during the resection. This meshing approach recovers the tissue boundaries defined in the
segmented image with geometric and topological guarantees, and meshes the underlying volume
with high quality tetrahedra. Each tetrahedron is associated with a single label which is assigned
to its centroid using the segmented image (see subsection 2.1).
Due to changes in the geometry of the resected tissue in and around the tumor area, we incremen-
tally approximate the changes in the resected tumor using multiple mesh generation phases. Let us
denote the mesh in the beginning of iteration i (Figure 1) with Mi. Initially, a multi-material mesh
is generated from the input segmentation. After the completion of iteration i, the displacements
are computed on the vertices of Mi, which yields the deformed mesh M ′

i . M
′
i is not used for the

next loop because it consists of distorted elements of poor quality in terms of dihedral angles and
aspect ratio. Instead, a corrected warped image segmentation is used in the next iteration as the
input of the mesher, which produces in parallel a new global mesh Mi+1. Parameter δ (Table 5)
determines the size of the mesh (δ > 0). The smaller the δ, the larger the mesh.
Table 1 illustrates how the remeshing eliminates the elements with small and large dihedral

angles for an example of 4 adaptive iterations. “Before” corresponds to the deformed mesh at i−1,
and the “After” to the new generated mesh at i. The #Tets refers to the number of tetrahedral
elements in the new generated mesh at i. Generally, the higher the quality of the elements, the
better the conditioning of the stiffness matrices and thus the convergence of the linear solver.

Table 1. The minimum and maximum dihedral angles α, be-
fore and after the Parallel Mesh Generation (δ = 5).

Iteration i #Tets
αmin αmax

Before After Before After
1 14278 - 5.00◦ - 169.68◦

2 13482 0.34◦ 5.24◦ 179.28◦ 169.92◦

3 13497 0.14◦ 4.91◦ 179.79◦ 169.71◦

4 12957 0.10◦ 5.01◦ 179.80◦ 171.32◦

2.5 Parallel FEM Solver (PFEMS)

Clatz, Delingette, et al. (2005) originally presented the FEM Solver (FEMS). It estimates the
deformations U on the mesh vertices using a hybrid approach that starts with an approximation
and produces an interpolation-based formulation. In Liu, Fedorov, et al. (2009), we parallelized this
method by employing ParMETIS2 to implement a balanced parallel partitioning of the tetrahedral
mesh among the processing cores and PETSc (Balay, Abhyankar, et al. (2015)) to assemble and
solve the linear system of equations. In Liu, Kot, et al. (2014) we integrated FEMS in ITK using
the ITPACK matrix structures (Kincaid, Respess, et al. (1982)). In the parallel implementation of
FEMS (PFEMS) (Drakopoulos and Chrisochoides (2014)), we avoid using the ParMetis or PETSc

2http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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libraries because their integration into the ITK is very cumbersome, and they present maintenance
and portability issues.
Figure 5(a) depicts PFEMS. Green represents the input (i.e. mesh, Nb selected blocks, block

matching displacements, parameters Eb, Et, νb, νt, λ, Fr, Nappr, Nint listed in Table 5); gray repre-
sents the main steps (i.e. Initializations, Assembly, Outlier Rejection, Interpolation); cyan repre-
sents the components of each step; yellow represents the output (i.e. mesh deformations U). Kb,
Km are the N × N stiffness matrices of the blocks and the mesh, respectively. Kg = Kb +Km is
the N ×N stiffness matrix of the biomechanical model. F is the block displacement vector of size
N . N = 3 ·Nn where Nn is the number of the mesh vertices.
The parallel outlier rejection loop depicted in Figure 5(a), for each iteration j, removes (Nb ·

Fr)/Nappr blocks with the largest error between the computed mesh deformations and the block
matching displacements. Nb is the number of selected image blocks from the PFS module, Nappr is
the number of outlier rejection steps, and Fr controls the fraction of the rejected blocks (Table 5).
Based on our experimental evaluation on clinical adult brain MRIs, we suggest that, in order
to provide accurate and fast alignments, one should use the following thresholds for parameters
Nb, Fr, Nappr:

• 2 · 105 ≤ Nb ≤ 4 · 105, which implies approximately 3% ≤ Fs ≤ 10%. A fraction Fs = 5%
usually selects a sufficient number of image blocks (≈ 3 · 105).

• 10% ≤ Fr ≤ 40%. A fraction Fr = 25% is sufficient to reject every significant outlier. Values
of Fr > 40% reject some relevant matches, and when Fr < 10% a considerable amount of
outliers might survive.

• 5 ≤ Nappr ≤ 20, for gradually smoothing the estimated displacement field under the time
constraints of the neurosurgical procedure.

In the future we will investigate how other types of image modalities (e.g. Computed Tomography,
Ultrasound) influence the values of the above thresholds. Figure 5(b) illustrates the selected blocks
before and after the parallel outlier rejection loop in an example with Nb = 318026, Nappr = 10
and Fr = 10%, 25%, 40%. The details of the parallel FEM Solver implementation can be found
in Drakopoulos and Chrisochoides (2014). In this paper we integrate into PFEMS the:

(1) VNL storage matrix structures.
(2) LSQR Paige and Saunders (1982) and BICGSTAB Barrett, Berry, et al. (1994) iterative

linear solvers.
(3) LU decomposition Kenneth (1986) direct linear solver.
(4) Elements with quadratic interpolation functions and/or Extra Shape Functions (ESF) Bathe

(1996).

The ITPACK and VNL storage structures are described in Kincaid, Respess, et al. (1982) and the
VNL library3, respectively. The isoparametric linear/quadratic, tetrahedron/hexahedron elements,
as well as the hexahedron ESF element, are described in commercial FEM software packages like
Ansys4 and Abaqus5.
Table 2 compares the accuracy and the speed of the available linear solvers for a mildly and a

highly non-symmetric sparse linear system of equations F = Kg · U of size 8391 × 8391. In the
case of a mildly non-symmetric system, the iterative solvers JCG, LSQR, BICGSTAB converge to
the same solution ‖U‖ with the direct solver LU; however, in the case of a highly non-symmetric
system, the JCG doesn’t provide an accurate solution because its residual norm r is significantly
larger than the other norms (Table 2). Generally, the JCG method is not guaranteed to converge
in the case of general non-symmetric systems (Kincaid, Respess, et al. (1982)).
Figure 6 illustrates the matrices Km,Kb,Kg for the two types of systems described in Table 2. Km

3https://public.kitware.com/vxl/doc/release/core/vnl/html/
4http://www.ansys.com/
5http://www.3ds.com/products-services/simulia/products/abaqus/
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Figure 5. (a): The Parallel FEM Solver (PFEMS). Green represents the input, gray the PFEMS steps, cyan the components
of each step, and yellow the output. (b): The selected blocks before and after the Parallel Outlier Rejection step. The image
blocks are depicted on six consecutive coronal MRI slices. From top to bottom row: coronal pre-op MRI slice (left) and its
position in the volume MRI (right); blocks before rejection (Nb = 318026); blocks after rejection with Fr = 10% (286226);
blocks after rejection with Fr = 25% (238521); blocks after rejection with Fr = 40% (190816).

is symmetric and independent of the registration blocks. It depends on the geometry-quality of the
mesh, the type of the finite elements, and the mechanical properties of the brain materials. Kb,Kg

are non-symmetric matrices. Also, they depend on the number and the positions of the selected
registration blocks and on the similarity of a block with its corresponding target block. Generally,
different values of Fs (Table 2) result in different entries at matrices Kb and Kg (Figures 6(b)-6(c)
and 6(d)-6(e), respectively).
In practice, when an adequate number of image blocks is selected (Fs > 1%), the matrix Kg is

most likely mildly non-symmetric. The LSQR, BICGSTAB, LU solvers are designed for the general
case of non-symmetric linear systems. For the purposes of our registration scheme, the BICGSTAB
method seems to be the most suitable choice because: (i) it provides a similar solution with a direct
LU solver, and (ii) it converges rapidly (Table 2).

2.6 Parallel Deformation Field Update (PDFU)

The PDFU module takes as an input the mesh deformations U from PFEMS and produces an
additive image deformation field. The additive field holds the sum of the previous image fields
(iterations 1, 2, . . . , i− 1) and the current image field (iteration i), according to the equation:

DF ′
i = DF ′

i−1 +DF i (4)

where i ≥ 1 (Figure 1) and DF ′
i,DF ′

i−1 are the additive image deformation fields at iterations
i and i − 1, respectively. DF i is the produced image deformation field at iteration i. The DF i

computation and the addition at (4) are implemented in parallel in two steps. For the first step,
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Table 2. Comparison of the available linear solvers in PFEMS for a sparse N×N linear

system of equations F = Kg · U with N : 8391; Kg: biomechanical stiffness matrix;
r: residual norm; ‖U‖: ℓ2 norm of the solution vector; Fs: % selected blocks from
the total number of blocks; JCG: Jacobi Conjugate Gradient; LSQR: Least Squares;
BICGSTAB: Biconjugate Gradient Stabilized; LU: Lower-Upper decomposition with
forward elimination and back substitution.

Kg Fs Linear solver r ‖U‖ Time (sec)

Mildly non-symm. 5%a

JCG 4.90 · 10−6 45.530 0.12
LSQR 1.02 · 10−12 45.530 24.03

BICGSTAB 8.49 · 10−6 45.530 0.12
LU n/a 45.530 213.50

Highly non-symm. 0.1%b

JCG 6.95 · 10−2 101.871 0.18
LSQR 4.86 · 10−5 43.134 46.12

BICGSTAB 9.89 · 10−6 43.108 0.12
LU n/a 43.136 207.52

a282123 image blocks

b5222 image blocks

(a) Km (b) Kb (Fs = 0.1%) (c) Kb (Fs = 5%)

(d) Kg (Fs = 0.1%) (e) Kg (Fs = 5%)

Figure 6. The stiffness matix values of the system described in Table 2. Km: mesh stiffness matrix; Kb: blocks stiffness matrix;
Kg = Km +Kb: biomechanical stiffness matrix; Fs: % selected blocks from the total number of blocks.

the deformed mesh is partitioned into k sub-meshes, where k is the number of threads. Each thread
then transforms the sub-mesh deformations into image deformations. For the second step, the
image fields DF ′

i−1 and DFi are partitioned into k subfields, and the addition at (4) is performed
in parallel.

2.7 Parallel Image Warping (PIW) - Parallel Warped pre-op Segmentation
Correction (PWSC) - Parallel Deformation Field Correction (PDFC)

We employ ITK’s multi-threaded filter to warp the input image using an additive deformation field
and an interpolator to estimate the image values at the non-integer pixel positions. For warping a
pre-operative MR image, we use a linear interpolator; for warping a pre-operative segmentation,
we use a nearest neighbor interpolator.
The PWSC module takes into account the resected tumor by overlapping two images: a warped

segmentation of iteration i (Figure 1) and a mask of the intra-operative image. Figure 7 illustrates
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an example of this process where the same representative slice is shown in each subfigure. After
overlapping the two images (Figure 7(c)), the portion of the tumor that falls into the mask back-
ground is removed (Figure 7(d)). For the parallelization of the module, the segmented image is
partitioned into k pieces, and the overlapping/relabeling is performed concurrently by k threads.

(a) (b) (c) (d)

Figure 7. The correction of a warped segmentation at iteration i. White and gray represents the tumor and the rest of the
brain, respectively. Blue represents the mask. (a): warped segmentation, (b): intra-op mask, (c): (a) and (b) overlapped, (d):
corrected warped segmentation.

After PWSC, the additive deformation field at (4) is not consistent with the corrected warped
segmentation. For this reason, the values ofDF addi

that correspond to the corrected region depicted
in Figure 7(c), are set equal to zero. The deformation field correction is performed in parallel after
the partition of the field into k pieces, where k is the number of threads.

3. Results

We evaluate the proposed framework qualitatively and quantitatively on six patients (two males,
four females). All patients underwent surgery at the Department of Neurosurgery at Shanghai
Huashan Hospital Chen, Ying, et al. (2008) for parietal, frontal, and temporal brain tumors. Two
cases are Partial Tumor Resections (PTR), and four are Complete Tumor Resections (CTR).
Cases 1-3 are anisotropic, while cases 4-6 are isotropic (after resampling). Table 3 lists the MRI
data. The original image sizes and spacings (mm) before the resampling are: 448× 512 × 176 and
0.488 × 0.488 × 1.00 (case4); 512 × 448 × 176 and 0.488 × 0.488 × 1.00 (case 5); 448 × 448 × 58
and 0.496 × 0.496 × 1.622 (case 6). The study was carried out with Institutional Review Board
approval.

Table 3. The clinical MRI data of this study. PTR: Partial Tumor Resection; CTR:
Complete Tumor Resection; x: axial; y: coronal; z: sagittal.

Spacing
Case Genre Type

Tumor Image Size Image Spacing
Type Location (voxels) sx × sy × sz (mm)

Anisotropic
1 M PTR parietal 512 × 448 × 176 0.488 × 0.488 × 1.000
2 F PTR frontal 384 × 512 × 176 0.488 × 0.488 × 1.000
3 F CTR frontal 448 × 512 × 176 0.488 × 0.488 × 1.000

Isotropic
4 F CTR parietal 219 × 250 × 176 1.000 × 1.000 × 1.000
5 M CTR temporal 250 × 219 × 176 1.000 × 1.000 × 1.000
6 F CTR temporal 240 × 240 × 134 1.000 × 1.000 × 1.000

In this paper we compare the proposed framework (PAPBNRR) with the following methods:

(1) A Rigid registration implemented on 3D Slicer v4.4.0 BRAINSFit module (Johnson, Harris
and Williams (2007)).

(2) A BSpline deformable registration implemented on 3D Slicer v4.4.0 BRAINSFit module
(Johnson, Harris and Williams (2007)).

(3) A Physics-Based Non-Rigid Registration (PBNRR) implemented on ITK v4.7.0 (Liu, Kot,
et al. (2014)).

(4) An Adaptive Physics-Based Non-Rigid Registration (APBNRR) (Drakopoulos, Liu, et al.
(2014)).
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On the one hand, the Rigid and BSpline methods use histogram bins and spatial samples in
estimating a MMI (Mattes Mutual Information) cost metric for the registration. The larger the
number of sampled voxels, the slower and more precise the fit. The default number of histogram
levels is 50. For a fast registration, the default number of samples is approximately 0.2% of the total
number of samples. For a higher accuracy, we set 100 histogram levels and sampling percentages
0.5% and 1% (Table 4). On the other hand, the physics-based methods (PBNRR, APBNRR,
PAPBNRR) rely on the selection of image blocks with the highest intensity variance. A prohibited
connectivity pattern is used to avoid the selection of blocks that are too close to each other (Figure 3,
Table 5). The larger the number of the selected blocks, the slower and more precise the fit. The
PBNRR, APBNRR use a NCC metric to measure the similarity of a pair of blocks in the pre-
operative and the intra-operative image. The PAPBNRR employs a NCC or a NMI metric. For
the evaluation results in subsections 3.1-3.3 we rely on the NCC for all the physics-based methods
(Table 5). In subsection 3.4 we compare the results of our framework using different metrics (NCC,
NMI).
The BSpline method requires the tesselation of the image with a 3D lattice, and uses piecewise

cubic polynomials to optimize the registration. The physics-based methods require the tesselation
of the image with an unstructured mesh, which uses either hexahedral or tetrahedral elements.
In this paper, we employ meshes consisting of tetrahedral elements because they can adapt to
highly curved, complex anatomical structures (e.g. tumor) with less distortion on their shape,
compared to the hexahedral elements. Generally, the less distorted the elements, the better the
conditioning of the mesh stiffness matrix. Additionally, our framework incorporates finite elements
with either linear or quadratic interpolation basis-functions. In this study, we employ a linear (4-
node) tetrahedron because it is less computationally intensive and thus, more suitable for time
critical applications. PBNRR (Liu, Kot, et al. (2014)) uses a static, homogeneous biomechanical
model to estimate the volumetric brain deformations. However, the adaptive physics-based methods
(APBNRR, PAPBNRR), incorporate a heterogeneous (brain parenchyma, tumor) model, which is
remeshed to eliminate the distorted or poor quality elements after each deformation. In all physics-
based methods, we simulate the tissues as linear isotropic materials with mechanical properties
(i.e., Young’s modulus, Poisson ratio) obtained from Miga, Roberts, et al. (2001). Table 5 lists the
material properties of the tissues.
In the conducted experiments, the rigid registration was initiated using a manual linear transfor-

mation. The non-rigid registration was initiated using the produced rigid transformation. Tables 4,
5 list the input parameters for the BRAINSFit module and the physics-based methods, respec-
tively. The 3D Slicer documentation6 and our previous work (Liu, Kot, et al. (2014); Drakopoulos,
Liu, et al. (2014)) provide additional details for the parameters.

Table 4. The BRAINSFit input parameters for the Rigid and BSpline deformable reg-
istration methods. MMI: Mattes Mutual Information, VR3DT: Versor Rigid 3D Trans-
form, LBFGSB: Limited memory Broyden Fletcher Goldfarb Shannon minimization
with simple bounds.

Parameter
Value

Description
Rigid BSpline

Initialization transform Manual Rigid -
Sampling Percentage 0.5% 1% % of voxels sampled for MMI

Histogram bins 100 100 Number of bins for MMI
Grid size - 15× 15 × 15 Number of grid points

Optimizer type VR3DT LBFGSB -
Max iterations 1500 1500 Max iterations for optimizer
Min step length 10−3 10−3 Threshold for optimizer

6http://www.slicer.org/slicerWiki/index.php/Documentation/4.3/Modules/BRAINSFit
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Table 5. The input parameters for the non-adaptive (PBNRR) and the adaptive (APBNRR, PAPBNRR) physics-based non-
rigid registration methods. x: axial; y: coronal; z: sagittal; Nb: total number of selected blocks.

Parameter Units Value Description Physics-Based method
Initialization transform - Rigid - All

Linear solver -
JCG

-
PBNRR-APBNRR

BICGSTAB PAPBNRR

Matrix scheme -
ITPACK

-
PBNRR-APBNRR

VNL PAPBNRR
Element type - Linear tetrahedron - All

Similarity metric - NCC - All
Fs - 5% % selected blocks (results to Nb blocks) All

Non-connectivity - “face” Block non-connect. pattern All
Bs,x ×Bs,y ×Bs,z voxels 3× 3× 3 Block size All

Ws,x ×Ws,y ×Ws,z voxels
13× 13× 5 (Case 1-3)

Window size All
7× 7× 5 (Case 4-6)

δ - 5 Mesh size All
Eb Pa 2.1 · 103 Brain Young’s modulus All
Et Pa 2.1 · 104 Tumor Young’s modulus APBNRR-PAPBNRR
νb - 0.45 Brain Poisson’s ratio All
νt - 0.45 Tumor Poisson’s ratio APBNRR-PAPBNRR
λ - 1 Trade off parameter All
Fr - 25% % of rejected outlier blocks All

Nappr - 10 Num of outlier rejection steps All
Nint - 5 Num of interpolation steps All
Niter - 4 Num of iterations APBNRR

Niter,max - 4 Max num of iterations PAPBNRR
Nb0,min - 1%Nb Min num. of blocks with zero displacement PAPBNRR

3.1 Qualitative Results

Figure 8 presents the qualitative results of this study. For comparative purposes, we depict the
same representative MRI slice for all the images belonging to the same patient. A qualitative
evaluation of the five registration methods can be performed with a visual comparison/inspection
of: (i) the registered pre-operative MRI (columns 8(b)-8(f)) and the corresponding intra-operative
MRI (column 8(a)), (ii) the subtracted MRI (8(g)-8(j)). The more similar the registered pre-
operative and the intra-operative MRI, the more precise the alignment. The black and white
regions in the subtracted images indicate larger discrepancies, while the gray regions indicate
smaller discrepancies.
On the one hand, columns 8(e)-8(f) and 8(i)-8(j) illustrate the higher accuracy of the adaptive

physics-based methods. The APBNRR and PAPBNRR preserve the morphology of the brain after
the neurosurgical resection, especially near the tumor margins. On the other hand, the BSpline
(columns 8(c), 8(g)) and the PBNRR (columns 8(d), 8(h)) fail to capture the geometry of the
tumor cavities, but they exhibit higher accuracy on brain regions with small deformation (shift).

3.2 Quantitative Results

We employ a publicly available implementation of the Hausdorff Distance (HD) metric (Com-
mandeur, Velut and Acosta (2011)) to compute the alignment error after a rigid and a non-rigid
registration. The smaller the HD value, the better the alignment. The HD ratio demonstrates how
many times more accurate (ratio > 1) the PAPBNRR alignment compared to the other methods.
For each case study, the HD value is computed between two point sets: A′ and B. Initially, A
is extracted from the rigid registered pre-operative image and B from the intra-operative image.
Then A′ is computed by warping A according to the produced deformation field of each method.
For the point extraction, we employ ITK’s Canny edge detection method (Canny (1986)).
Table 6 depicts the quantitative results. The proposed framework provides the finest alignments

among all the methods; is on average 1.51, 2.93, 3.12, and 3.78 times more accurate than APBNRR,
BSpline, PBNRR, and Rigid registration, respectively. Compared to our previous adaptive scheme
(APBNRR), the new method reduces the alignment error on average by (7.39− 5.14)/7.39 ≈ 30%.
Figure 9 illustrates the HD alignment error for all the experiments. Clearly, the accuracy of the
physics-based non-rigid registration methods has been continuously improving since the release of
our first framework (PBNRR). Furthermore, our latest scheme requires fewer adaptive iterations
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to register the MRI volumes compared to the APBNRR (Table 6). This is an important fact
considering the hard time constraints imposed by the IGNS.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 8. Qualitative results for the Rigid, BSpline, PBNRR, APBNRR, and PAPBNRR registration methods. Each row

represents a single case. From top to bottom row: case 1-6. From left to right column: (a) intra-op MRI; (b) rigid pre-op
MRI; (c) non-rigid BSpline pre-op MRI; (d) non-rigid PBNRR pre-op MRI; (e): non-rigid APBNRR pre-op MRI; (f): non-rigid
PAPBNRR pre-op MRI; (g): (c) subtracted from (a); (h): (d) subtracted from (a); (i): (e) subtracted from (a); (j): (f) subtracted
from (a).

Table 6. Quantitative evaluation results for the 6 clinical cases. HDRIGID, HDBSPLINE, HDPBNRR, HDAPBNRR, and
HDPAPBNRR is the alignment error after a Rigid, BSpline, PBNRR, APBNRR, and PAPBNRR registration, respectively.
All HD are in mm. The number in the parenthesis denotes the number of adaptive iterations for the adaptive physics-based
methods. PTR: Partial Tumor Resection, CTR: Complete Tumor Resection.

Case Type HDRIGID HDBSPLINE HDPBNRR HDAPBNRR HDPAPBNRR
HDRIGID

HDPAPBNRR

HDBSPLINE

HDPAPBNRR

HDPBNRR

HDPAPBNRR

HDAPBNRR

HDPAPBNRR

1 PTR 16.90 14.97 12.99 9.91 (4) 5.73 (3) 2.95 2.61 2.27 1.73
2 PTR 15.81 15.10 13.71 8.96 (4) 7.89 (2) 2.00 1.91 1.74 1.14
3 CTR 18.69 11.56 15.90 3.57 (4) 3.56 (2) 5.25 3.25 4.47 1.00
4 CTR 14.45 11.57 12.20 5.83 (4) 3.74 (2) 3.86 3.09 3.26 1.56
5 CTR 17.72 17.72 13.49 6.00 (4) 6.16 (2) 2.88 2.88 2.19 0.97
6 CTR 21.42 14.45 17.91 10.04 (4) 3.74 (3) 5.73 3.86 4.79 2.68

Average 17.50 14.23 14.37 7.39 5.14 3.78 2.93 3.12 1.51

3.3 Performance Results

We run all the experiments in a Dell Linux workstation with two sockets of six Intel Xeon
X5690@3.47 GHz CPU cores each, totaling twelve cores and 96GB of RAM. For the Rigid and
BSpline, we run the BRAINSFit module from the terminal otherwise Slicer’s GUI degrades the
performance significantly. Table 7 illustrates the end-to-end execution time (including I/O) and
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Figure 9. The Hausdorff Distance (HD) alignment error for the 6 clinical cases.

the speed-up. Slicer’s BRAINSFit module exhibits a real-time performance with twelve threads.
The BSpline is the fastest among all the methods requiring on the average 12.25 seconds to com-
plete. Also, it is highly parallelizable with an average speed-up of 6.54. The corresponding values
for the Rigid registration are 27.96 seconds and a speed-up of 5.32. Regarding the performance

Table 7. Performance results for the 6 clinical cases with 1 and 12 threads. The experiments conducted in a workstation with
2 sockets of 6 Intel Xeon X5690@3.47 GHz CPU cores each, totaling 12 cores and 96GB of RAM. The I/O time is included.

Time (sec) Speed-up

Case
RIGID BSPLINE PBNRR APBNRR PAPBNRR

RIGID BSPLINE PBNRR APBNRR PAPBNRR
1T 12T 1T 12T 1T 12T 1T 12T 1T 12T

1 60.18 16.20 156.28 20.08 138.71 81.18 579.62 213.97 483.63 93.14 3.71 7.78 1.71 2.71 5.19
2 280.55 45.31 128.68 17.80 123.76 73.99 509.89 192.70 275.26 54.12 6.19 7.23 1.67 2.65 5.09
3 555.65 77.33 135.91 18.71 112.79 68.72 486.95 185.86 265.61 52.46 7.19 7.26 1.64 2.62 5.06
4 45.51 9.76 33.75 6.31 23.80 20.90 107.43 63.17 53.97 18.51 4.66 5.35 1.14 1.70 2.92
5 52.25 10.76 31.26 5.97 23.91 20.62 109.17 64.08 53.94 18.85 4.86 5.24 1.16 1.70 2.86
6 44.53 8.40 29.36 4.61 19.46 16.80 81.90 48.85 61.32 21.10 5.30 6.37 1.16 1.68 2.91

Average 173.11 27.96 85.87 12.25 73.74 47.04 312.49 128.11 198.96 43.03 5.32 6.54 1.41 2.18 4.00
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Figure 10. The end-to-end execution time for the 6 clinical cases using 1 thread (left) and 12 threads (right).

of the adaptive physics-based methods, we characterize them as nearly real-time. Nevertheless,
our latest non-rigid registration technology provides the image alignments extremely fast (between
18.51s and 93.14s) for two reasons: (i) it requires fewer adaptive iterations to register the MRI
volumes compared to the APBNRR method (Table 6), and (ii) it exploits additional parallelism
(Figure 11). Indeed, the PAPBNRR completes the registration on average 47.04/43.03 ≈ 1.1 and
128.11/42.60 ≈ 3 times faster than the PBNRR and APBNRR, respectively.
Figures 10 and 11 illustrate the end-to-end execution time (one and twelve threads) and the

end-to-end speed-up, respectively. The APBNRR is the most computationally intensive method.
Its performance is limited when twelve cores are used because only 70% of the program was
parallelized (Drakopoulos, Liu, et al. (2014)). On the contrary, in this paper, we further reduce the
overheads due to adaptivity mainly on account of a new parallel FEM Solver (Figure 5(a)) and
a parallel Closest Block Matching technique (Figure 4). Currently the only sequential component
in the PAPBNRR is the BICGSTAB solver, which is part of the PFEMS module (see component
Solve System in Figure 5(a)).
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Table 8 illustrates the performance of all the PAPBNRR modules for the clinical case 1. The time
that corresponds to the sequential portion of the program is 9.04 seconds. The time that corre-
sponds to the parallel portion is 483.63−9.04 = 474.59 seconds. As a result, the sequential and the
parallel fraction of the PAPBNRR is 9.04/483.63 ≈ 1.86% and 474.59/483.63 ≈ 98.13%, respec-
tively; much higher than APBNRR’s parallelization fraction (70%). Besides, our multi-threaded
implementation significantly reduces the execution time of the computationally intensive modules
PFS, PBM, PCBM, and PFEMS. Specifically, the two block-matching schemes (PBM, PCBM)
exhibit nearly linear speed-up (Table 8). In the future, we will parallelize the BICGSTAB solver
to further reduce the overheads due to adaptivity. Generally, the proposed method is on average
(128.11 − 43.03)/128.11 ≈ 66% faster compared to the APBNRR (Table 7).
Finally, we should point out that the anisotropic data are at least 2-3 times more computationally

intensive than the isotropic data because of their higher resolution.
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Figure 11. The end-to-end speedup for the 6 clinical cases using 12 threads.

Table 8. Performance of the PAPBNRR modules
with 1 and 12 threads (clinical case 1).

Module
Time (sec)

Speed-up
1T 12T

PFS 50.54 9.97 5.06
PBM 198.49 17.10 11.60
PCBM 57.08 5.50 10.37
PMG 18.12 12.43 1.45

PFEMS 133.09∗ 38.93∗ 3.41
PDFU 3.31 0.81 4.08
PIW 10.84 3.03 3.57

PDFC+PWSC 12.16 5.37 2.26
Total 483.63 93.14 5.19

∗ includes 9.04 sec for the sequential BICGSTAB.

3.4 Quantitative PAPBNRR results using different similarity metrics

Additionally, we evaluate our registration framework using a NMI metric, and we compare the
alignment accuracy and the block matching execution time of the NCC and NMI metrics. Table 9
illustrates the results. The average alignment error is 13.6% smaller, when the NCC is used instead
of NMI. In the future, we will explore the influence of a different block size and number of histogram
levels on the NMI metric, which in turn, will address the accuracy of the registration. We also ob-
serve significant overheads in the parallel block matching performance when the NMI is employed
(Table 9). Most likely, the computation of the marginal and joint entropies from (1) is more expen-
sive, compared to the covariance and the standard deviation needed for the NCC. Nevertheless, in
a multi-modal registration, where the affine hypothesis between the intensity distributions of the
two images is hardly valid, the NMI metric is more suitable.
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Table 9. Comparison of the HD alignment error

and the block matching execution time for the
NCC-NMI metrics, in PAPBNRR. PBM: Paral-
lel Block Matching; NCC: Normalized Cross Cor-
relation; NMI: Normalized Mutual Information;
Number of histogram bins for NMI: 64; 12T: 12
Threads.

Case
HDPAPBNRR PBM Time (12T)

(mm) (sec)
NCC NMI NCC NMI

1 5.73 7.52 17.10 960.45
2 7.89 8.35 15.73 886.44
3 3.56 3.59 14.51 823.04
4 3.74 3.31 1.24 68.90
5 6.16 9.38 1.22 71.45
6 3.74 3.60 1.40 73.68

Average 5.14 5.95 10.14 480.66

4. Summary and Conclusion

We presented a fast and accurate biomechanical non-rigid registration method to compensate for
the deformation induced by a brain tumor resection. The presented framework builds upon the
ITK open-source system. It incorporates a variety of mesh generators and linear solvers, and relies
on a parallel, adaptive, multi-material FE biomechanical model to accurately capture not only
the small volumetric deformations, but also the complex geometric changes associated with the
neurosurgical tumor resection.
Our method addresses the problem of missing/unrealistic matches occuring during the resection,

with a two step block-matching scheme and an outlier rejection procedure, all implemeted in par-
allel. The first block-matching step maximizes a similarity metric (i.e. NCC, NMI) over a specified
window in the target image. The second step handles the blocks that do not have a correspondence
in the target image. It matches them to their closest point on the surface of the target brain object.
The final computed block displacements are scaled and an adjustable fraction of blocks with the
largest error between the matching displacements and the estimated mesh deformations is rejected.
We compared the proposed scheme with various methods available on the visualization and im-

age analysis packages 3D Slicer v4.4.0 and ITK v4.7.0, including: a Rigid registration, a BSpline
deformable registration, a Physics-Based non-rigid registration, and an Adaptive Physics-Based
non-rigid registration. The qualitative and quantitative results obtained with the six patients indi-
cate that our registration technology can be used to overcome the intra-operative acquisition prob-
lem and enhance the surgeon’s view during a neurosurgical procedure for several reasons. First, it
achieves the most precise alignments so far, especially nearby the tumor resection margins. The
quality of the alignments is not affected by the portion (partial or complete) of the resected tumor
depicted in the iMRI or the type of the image data (isotropic or anisotropic). Second, it reduces
the overheads due to the finite element adaptivity, satisfying the hard time constraints imposed by
IGNS. As a result, it can register a pair of isotropic or anisotropic adult brain MRI in less than 21
or 93 seconds, respectively.
In our future work, we will investigate how the segmentation accuracy and the use of addi-

tional tissues (e.g. falx cerebri, ventricles) in the heterogeneous model, affect the accuracy and the
performance of the deformable registration. Also, we are planning to integrate a hybrid meshing al-
gorithm, for generating a mixed heterogeneous mesh model, consisting of tetrahedral, pentahedral,
and hexahedral elements. In that way, we will improve the mesh gradation and focus our compu-
tational resources in regions of interest. Our preliminary results indicate that we could reduce the
vertices (i.e. degrees of freedom) by 20%, and thus, the computational cost of the Parallel FEM
solver.
Finally, we will evaluate our framework on other applications (i.e. Deep Brain Stimulation (DBS)).
Modern DBS surgery makes use of stereotactic systems and image guidance from different modal-
ities (e.g. MRI, CT) to facilitate the accurate placement of electrode leads into precise locations in
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the deep brain structures, and guide the surgery.
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