
4D Space-Time Delaunay Meshing for Medical Images

2 Panagiotis Foteinos, Nikos Chrisochoides

Noname manuscript No.
(will be inserted by the editor)

*

Panagiotis Foteinos · Nikos Chrisochoides

the date of receipt and acceptance should be inserted later

Abstract In this paper, we present a Delaunay refinement algorithm for 4-dimensional
(3D+t) segmented images. The output mesh is proved to consist of sliver-free simplices.
Assuming that the hyper-surface is a closed smooth manifold, we also guarantee faithful
geometric and topological approximation. We implement and demonstrate the effectiveness
of our method on publicly available segmented cardiac images. Finally, we devise a tightly-
coupled parallelization technique to boost the performance of our 4-dimensional mesher,
thereby taking advantage of the multi-core and many-core platforms already available in the
market.

1 Introduction

Technological advances in imaging have made the acquisition of 4D medical images fea-
sible [43, 55, 56, 58]. At the same time, pentatope capable FEM solvers [8, 45] operating
directly on 4D data have been shown to be effective for advection-diffusion and Navier-
Stokes formulations.

In this paper, we describe a 4-dimensional Delaunay mesh algorithm which operates
directly on a 4-dimensional image I . I represents the domain Ω to be meshed as the
temporal evolution of a 3D object. That is, Ω =

⋃
ti

Ωti , where Ωti is the 3D object at time ti

(i.e., the ith slice of Ω).
Volume mesh generation methods can be divided into two categories: PLC-based and

Isosurface-based. The PLC-based methods assume that the surface ∂Ω of the volume Ω

(about to be meshed) is given as a Piecewise Linear Complex (PLC) which contains linear
sub-faces embedded in 3 or 4 dimensions [15, 16, 19, 20, 37, 41, 42, 50, 53]. The limitation
of this method is that the success of meshing depends on the quality of the given PLC: if

Panagiotis Foteinos
Computer Science Department, College of William and Mary, Virginia, USA
E-mail: panagiotis.foteinos@gmail.com

Nikos Chrisochoides
Computer Science Department, Old Dominion University, Virginia, USA
E-mail: nikos@cs.odu.edu

* 3

the PLC forms very small angles, then the overall mesh quality deteriorates and termination
might be compromised [50, 52]. In Computed Aided Design (CAD) applications, the surface
is usually given as a PLC. In biomedical Computer Aided Simulations (CAS), however, there
is no reason to use this approach, since it might (depending on the geometry of the image,
its segmentation, and its decimation [19]) add the additional small input angle limitation. A
workaround for this small input angle limitation is to treat the surface voxels as the PLC of
the domain, since those input facets meet at large angles (90 or 180 degrees). This, however,
would introduce an unnecessary large number of elements and little control over the density
of the domain.

The Isosurface-based methods assume that Ω is known through a function f : Rd →
R, such that points in different regions of interest evaluate f differently. This assumption
covers a wide range of inputs used in modeling and simulation, such as parametric sur-
faces/volumes [46], level-sets and segmented multi-labeled images [12, 36, 47]. Of course,
these type of functions can also represent PLCs [36], a fact that makes the Isosurface-based
method a general approach. Isosurface-based methods ought to recover and mesh both the
(hyper-) isosurface ∂Ω and the volume. This method does not suffer from any unneces-
sary small input angle artifacts introduced by the initial conversion to PLCs, since ∂Ω is
recovered and meshed during refinement.

In this paper, we describe a space-time Delaunay Isosurface-based meshing technique
for 4 dimensions. We show that the resulting mesh is sliver free consisting of pentatopes
whose boundary is a correct approximation of the underlying hyper-isosurface ∂Ω =

⋃
ti

∂Ωti .

Note that space-time meshing is different from dynamic surface simulations (see [35] and
the references therein for example). In those simulations, the isosurface is not known; in-
stead, a tetrahedral mesh is adapted on each time step that describes accurately the free
surface dynamics.

One way to solve the space-time 4D problem is to mesh separately each 3D object
Ωti and then connect the elements between two consecutive objects to obtain space-time
elements. However, finding such correspondence—which also has to satisfy the quality cri-
teria— is not intuitive, especially when the topology and the geometry of the two objects
varies drastically. Alternatively, one could mesh a single object Ωti and then deform the
mesh to match the shape of the other temporal instances. The limitation of this approach
is twofold. First, the quality of the deformed mesh might be much worse than the original;
second, there is no control over the mesh density across both the spatial and the temporal
direction [8], since the mesh size of the original instance determines the size of the rest of
the instances.

Space-time meshing methods have already been proposed in the literature [29, 54]. They
assume, however, that the evolving object Ωti has the same spatial space across time. Fur-
thermore, the implementation of these techniques is confined to only the 2D+t case (i.e.,
the space-time elements are tetrahedra). The more general 3D+t meshing has been the fo-
cus in [8, 45], but they consider only convex hyper-surfaces such as hyper-cubes or hyper-
cylinders. To our knowledge, the method presented in this paper is the first to address the
3D+t problem where the topology and the geometry of the evolving object may differ sub-
stantially through time, and hence, it is allowed to form complex hyper-surfaces.

In the literature [3, 7, 10, 14, 16, 17], it is shown that given a sufficiently dense sample
on a surface ∂Ω , the restriction of its Delaunay triangulation to ∂Ω is a topologically good
approximation, or, alternatively, it satisfies the closed-topological-ball property [28]. Their
focus, however, was not on volume meshing, but rather, on surface reconstruction. In this

4 Panagiotis Foteinos, Nikos Chrisochoides

paper, we fill the space-time volume Ω with sliver-free pentatopes, such that ∂Ω is approx-
imated correctly.

Computing the appropriate sample of the surface is a challenging task. In the literature,
however, it is assumed that either such a sample is known [3–5] or that an initial sparse
sample is given [11, 46, 49]. In this paper, we propose a method that starts directly from
labelled images (of one or many more connected components) and computes the appropriate
sample on the fly, respecting at the same time the quality and fidelity guarantees.

Our algorithm guarantees that the resulted pentatopes are of bounded aspect ratio. We
achieve that by generating elements of low radius-edge ratio and by proving the absence
of slivers. We clean the mesh from slivers by integrating into our framework the theory
presented in [37]. In [37], the surface is given as an already meshed polyhedral domain
(i.e., the method in [37] is a PLC-based method), a different problem than ours, since it is
our algorithm’s responsibility to mesh both the underlying zero-surfaces and the bounded
volume with topological and geometric guarantees.

Lastly, we parallelize our sequential 4D mesher by employing a speculative execution
tightly-coupled [31, 32, 44] parallelization technique which improves the performance of
our code by a factor of 6.35 on 12 cores.

The rest of the paper is organized as follows: Section 2 introduces some basic termi-
nology, and in Section 3 we present our algorithm. In Section 4 and Section 5, we prove
the guarantees. Section 6 evaluates our method on segmented 4D cardiac data. Section 7
elaborates on the techniques we developed to improve the performance of our algorithm and
Section 8 concludes the paper.

2 Preliminaries

The input of our algorithm is a segmented n dimensional image I ⊂Rn. The object Ω ⊆I
is assumed to be represented as a cut function f : Rn 7→ R such that its surface ∂Ω is
defined by the set { f (p) = 0} [36, 46]. Clearly, from a segmented image, the zero-surface
{ f (p) = 0} can be easily computed by interpolating the voxel values.

We assume that given a point p ∈ R4, we can ask for p’s closest point on ∂Ω . This
can be accomplished by an Euclidean Distance Transform (EDT) [25, 40]. Specifically, the
EDT returns the voxel p′ ∈ ∂Ω which is closest to p. Then, we traverse the ray pp′, and we
compute the intersection between the ray and ∂Ω by interpolating the positions of different
signs [39]. Points on ∂Ω are referred to as feature points.

Definition 1 (local feature size) The local feature size lfs∂Ω (x) of a point x∈ ∂Ω is defined
as the (closest) distance between x and the medial axis of ∂Ω .

Remark 1 Since ∂Ω is smooth, the local feature size is bounded from below by a positive
constant lfs∂Ω , that is,

lfs∂Ω (x)> lfs∂Ω > 0. (1)

Another useful property is that the local feature size is 1-Lipschitz, that is,

lfs∂Ω (p)≤ |p−q|+ lfs∂Ω (q) . (2)

Definition 2 (ε-sample [4]) A point set V ⊂ ∂Ω is called an ε-sample if for every point
p ∈ ∂Ω there is a point v ∈V at a distance at most ε · lfs∂Ω (p) from p.

* 5

mv w

z

∂Ω

Bz,σ
ζRz,σ

ζRσ

Fig. 1: A 2D illustration. The simplex σ = {v,w} and its surface ball Bz,σ . m is the midpoint
of σ . Observe that since the radius Rz,σ of Bz,σ is larger than the radius Rσ = |m− v| of
Bσ , the picking region of σ as defined here is larger than the picking region of [37].

Let V be a finite set of vertices V = {v1, . . . ,vN} ⊂ Rn. The Delaunay triangulation of
V is denoted by D (V). A k-simplex σk = {v1, . . . ,vk+1} ∈ D (V) is a simplex defined by
k+ 1 vertices. We denote the length of the shortest edge of a simplex σ with lmin (σ). The
circumball Bσ of a simplex σ is the smallest closed ball circumscribing σ ’s vertices. Rσ is
the circumradius length of the simplex and c(σ) is its circumcenter. The radius-edge ratio
of a simplex σ is defined as ρ (σ) = Rσ

lmin(σ) .
Following the definition of [37], the metric we use to characterize the quality of a sim-

plex σk is τσk =
Volσk

lmin(σk)
k ∈
[

0,

√
k+1
2k

k!

]
[48]. Low values of τ imply a poor-quality element.

Definition 3 (sliver [37]) Simplex σ is a sliver if it contains a k-simplex σk (k ≤ 4) such
that ρ (σk)< ρ̄ , τσk < τ̄ , and for any m-simplex σm of σ (m < k), ρ (σm)< ρ̄ , τσm ≥ τ̄ .

The Voronoi cell Vor(v) of a vertex v ∈V is the set Vor(v) = {p ∈ Rn |
|v− p| ≤ |q− p|,∀q ∈ V}. The Voronoi dual of a simplex σ ∈ D (V) is defined as the set
Vor(σ) =

{⋂k+1
i Vor(vi)

}
.

Definition 4 (restriction) The restriction of D (V) to space ∂Ω is denoted by D|∂Ω (V) and
is a simplicial complex (as is D (V)) that contains simplices of D (V) whose Voronoi dual
intersects ∂Ω in a non-empty set.

Definition 5 (surface ball [11]) Let σ be a k simplex and let Vor(σ) intersect ∂Ω at a
point z. Any ball centered at z circumscribing σ is called a surface ball. The corresponding
surface ball is denoted by Bz,σ and its radius by Rz,σ in the sequel.

By the definition of Voronoi diagrams, Bz,σ does not contain any vertex of V in its
interior.

Definition 6 [picking region] The picking region PR (σ4) of a 4-simplex σ4 is defined
as the 4-dimensional solid ball centered at c(σ4) with radius ζRσ4 , ζ < 1. The picking
region of a lower dimensional restricted simplex σk (k < 4) with surface ball Bz,σk is the
intersection between ∂Ω and the 4-dimensional solid ball centered at z with radius ζRz,σk ,
ζ < 1.

6 Panagiotis Foteinos, Nikos Chrisochoides

The exact value range of ζ will be determined in Theorem 1 of Section 4.
We note that PR (σ4) and PR (σk) (k < 4) are contained in Bσ and Bz,σ , respec-

tively. Observe that the picking region of σk (k < 4) is a topological k-ball and does not
belong (necessarily) in the affine k dimensional space defined by σk. This is different than
the definition in [37], where the picking regions are defined inside the intersection of Bσ

with the affine space of σ . The reason for this change is the fact that the input of our algo-
rithm is not a Piecewise Linear Complex (PLC) but a cut function.

A good point p ∈PR (σ) is a point that does not introduce smaller slivers. A sliver
is small when its radius is less than bRσ . In [37], it is proved that (a) the number of small
slivers S(σ) possibly created after the insertion of p is constant, and (b) the volume |Fσ |
(the forbidden region) inside which p forms a small sliver is bounded from above. The same
findings hold in our case, too, where the picking region of a restricted facet σ3 is not inside
the intersection of Bσ3 and σ3’s affine space, but inside the intersection of Bz,σ3 and ∂Ω .

Lemma 1 Given a mesh whose simplices have radius-edge ratios bounded from above by
ρ̄ , a point p inside the picking region of a σk can be found in a constant number of random
rounds, such that any new sliver created after the insertion of p has circumradius no smaller
than bRσk if k = 4, or no smaller than bRz,σk if k = 3.

Remark 2 The proof is similar to [37], since |Fσ | and S(σ) do not change and the volume
of the intersection of Bσ3 and σ3’s affine space is smaller than the intersection of Bz,σ3 and
∂Ω . See Figure 1 for an illustration.

As is the case of ζ (Definition 6), the exact value ranges of ρ̄ and b will be determined
in Theorem 1 of Section 4.

3 Algorithm

The user specifies a parameter δ . It will be clear in Section 5 that the lower δ is, the better
the mesh boundary will approximate ∂Ω . For brevity, the quantity δ · lfs∂Ω (z) is denoted
by ∆∂Ω (z) where z is a feature point.

Our algorithm initially inserts the 16 corners of a hyper-box that contains the 4 dimen-
sional object Ω such that the distance between a box corner x and its closest feature point
z = cfp∂Ω (x) is at least 2∆∂Ω (z). After the computation of this initial triangulation, the
refinement starts dictating which extra points are inserted. At any time, the Delaunay tri-
angulation D (V) of the current vertices V is maintained. Note that by construction, D (V)
always covers the entire hyper-volume and that any point on the box is separated from ∂Ω

by a distance at least 2∆∂Ω (z) where z is a feature point.
During the refinement, some vertices are inserted exactly on the box; these vertices are

called box vertices. The box vertices might lie on 1, 2, or 3-dimensional box faces. We shall
refer to the vertices that are neither box vertices nor feature vertices as free vertices.

The algorithm inserts new vertices for three reasons: to guarantee that (a) ∂Ω is correctly
recovered, (b) all the elements have small radius-edge ratio, and (c) there are no slivers.
Specifically, for a 4-simplex σ4 in the mesh, the following rules are checked in this order:

– R1: Let Bσ4 intersect ∂Ω and z be equal to cfp∂Ω (c(σ4)). If z is at a distance no closer
than ∆∂Ω (z) to any other feature vertex, then z is inserted.

– R2: Let Bσ4 intersect ∂Ω and z be equal to cfp∂Ω (c(σ4)). If Rσ ≥ 2∆∂Ω (z), c(σ4) is
inserted.

* 7

– R3: Let c(σ4) lie inside Ω . If ρ (σ4)≥ ρ̄ , c(σ4) is inserted.
– R4: Let c(σ4) lie inside Ω . If σ4 contains a sliver, a good point inside PR (σ4) is

inserted.
– R5: Let σ3 (σ3 ⊂ σ4) be a restricted facet. If the vertices of σ3 are not feature vertices,

then a good point z inside PR (σ3) is inserted. All the free vertices closer than ∆∂Ω (z)
to z are deleted.

For i < j, priority is given to Ri over R j. Immediately preceding the insertion of a point
because of R j, there is no element that violates a rule Ri. Also, in R4, priority is given to the
lower dimensional slivers that σ4 might contain.

Whenever there is no simplex for which R1, R2, R3, R4 or R5 apply, the refinement
process terminates. The final mesh reported is the set of pentatopes whose circumcenters lie
inside Ω .

In summary, R1 and R5 are responsible for generating a sufficiently dense sample on
∂Ω . R5 also makes sure that the vertices of the simplices restricted to ∂Ω lie on ∂Ω simi-
larly to [46]. Lastly, R2, R3 and R4 deal with the quality guarantees. In Section 4, we will
show that there are values for b, ζ , and ρ̄ that do not compromise termination.

To prove termination, no vertices should be inserted outside the bounding box. Notice,
however, that vertices inserted due to R2 may lie outside the bounding box. To deal with such
cases, c(σ4) is rejected for insertion. Instead, its projection c′ (σ4) on the box is inserted in
the triangulation. That is, c′ (σ4) is the closest to c(σ4) box point. In Section 4 and Section 5,
we prove that the insertion of projected points do not compromise quality or fidelity. Note
that these projections are different than the traditional encroachment rules described in [50,
51].

Recall that pentatopes with circumcenters on ∂Ω or outside Ω are not part of the final
mesh, which is why rule R3 and R4 do not check them.

4 Termination and Quality

In this section, we specify the appropriate values for ζ , ρ̄ , and b so that the algorithm termi-
nates. Specifically, we will show that, during refinement, the shortest edge introduced into
the mesh cannot be arbitrarily small.

Suppose that σ violates a rule Ri. σ is called an Ri element. Ri dictates the insertion of
a point p (and possibly the removal of free points). Point p is called an Ri point.

Definition 7 (insertion radius and parent [50, 51]) Let p be an Ri point inserted because
a simplex σ violates Ri. The insertion radius Rp of p is defined as the length of the shortest
edge incident to p created right after the end of Ri and the parent Par(p) of p as the most
recently inserted vertex incident to the shortest edge of σ .

Lemma 2 Let p and q define the shortest edge of a simplex σ and q be inserted after p.
Then Rq ≤ lmin (σ).

Proof Assume that right after the insertion of q, p is the closest point to q. In this case,
Rq = |p−q|= lmin (σ). Otherwise, there has to be another closest vertex to q, which implies
that Rq < |p−q|= lmin (σ).

The following Lemmas bounds from below the shortest edge introduced into the mesh
after the insertion of a vertex.

8 Panagiotis Foteinos, Nikos Chrisochoides

Bσ

Cσ

C′
σ = v F

2D disk
w

z ∈ ∂Ω

q′

w′

ω

Fig. 2: Proof of Lemma 3, a 3D illustration.

Lemma 3 Let v be a box vertex inserted into the mesh. Then, Rv ≥ 2∆∂Ω (z), where z is a
feature point.

Proof A box point v is inserted only because of R2. The circumcenter c(σ) of a pentatope
σ lies on or outside the box, and its projection c′ (σ) = v falls on the box. Without loss of
generality, assume that the projection lies on the interior of a 3-face (i.e. a box tetrahedron)
F . See Figure 2 for a 3D illustration. (If c(σ) lies precisely on the box, c′ (σ) is equal to v.)
Consider the (2D) disk (drawn) of Bσ which is coplanar with F . That disk contains v and
separates Bσ in two sides: the side that contains c(σ) and the side that contains a part of
the box.

We claim that the closest vertex —say w— to v lies on the intersection of Bσ ’s bound-
ary and the ray

−−−→
c(σ)v. This can be explained by noting that Bσ is empty of vertices, and

therefore, the closest to v that an arbitrary vertex w′ already in the triangulation can be oc-
curs when it lies on the boundary of Bσ and on the side of Bσ that contains a part of the
box, as shown. Consider the triangle w′vc(σ). From the law of cosines, we have that:

|v−w′|2 = |c(σ)−w′|2 + |c(σ)− v|2−2 |c(σ)−w′| |c(σ)− v|cosω

≥ |c(σ)−w′|2 + |c(σ)− v|2−2 |c(σ)−w′| |c(σ)− v| , since cosω ≤ 1
= (|c(σ)−w′|− |c(σ)− v|)2

= (Rσ −|c(σ)− v|)2 , since w′ lies on the sphere
= |v−w|2 ,

and our claim is proved.
Consequently, any possible new edge connected to v has length at least |v−w|. Since σ

triggers R2, Bσ has to intersect ∂Ω , so there has to be a feature point q ∈ ∂Ω (illustrated)
inside Bσ and on the same side of F as w. Let us denote with q′ the projection of q to the
box face F . By construction, |q−q′| is at least 2∆∂Ω (z) where z is a feature point; however,
|v−w| is always larger than |q−q′|, because vw ‖ qq′, and the statement holds. Similar
reasoning applies in the case where c′ (σ) lies on a box triangle or a box edge.

The following Lemma proves a lower bound on the lengths created into the mesh be-
cause of R1 and R2:

Lemma 4 Let p be a vertex inserted into the mesh because of R1 or R2. Then, Rp ≥
∆∂Ω (z), where z is the closest feature point to p.

* 9

ρ̄

ρ̄

ρ̄

ρ̄

1−ζ
2

1−ζ
2

1−ζ
2

1−ζ
2

1−ζ
2

b

b

∆∂Ω (z) ∆∂Ω (z) ∆∂Ω (z)

1−ζ
2 ∆∂Ω (z)

R3 R4 R5

R1/R2/projection

Fig. 3: Flow diagram depicting the relationship among the rules. No solid cycle should have
a product less than 1. The dashed arrows break the cycle.

Proof If R1 is triggered, then p is equal to z. Since there is no other feature point already
inserted in the mesh closer than ∆∂Ω (p) to p, the statement holds. Otherwise, R2 applies
for a simplex σ4, and p is equal to c(σ4). Due to the empty ball property, Rp is at least
Rσ4 ≥ 2∆∂Ω (cfp∂Ω (p)), and the statement holds.

Lemma 5 Let p be a vertex inserted into the mesh because R3 applies for an element σ .
Then, Rp ≥ ρ̄RPar(p).

Proof Since p is equal to c(σ), Rp ≥Rσ = ρ (σ) lmin (σ)≥ ρ̄lmin (σ). Lemma 2 suggests
that lmin (σ)≥RPar(p), and the results follows.

Lemma 6 Let p be inserted into the mesh because of R4. Then,

– Rp ≥ 1−ζ

2 RPar(p), if Par(p) is neither R4 nor R5,
– Rp ≥ bRPar(p), otherwise.

Proof Let σ be the simplex that violates R4.
Suppose that Par(p) is neither R4 nor R5. Since p belongs to the picking region of σ ,

Rp ≥ (1−ζ)Rσ ≥ 1−ζ

2 lmin (σ). From Lemma 2, we have that Rp ≥ 1−ζ

2 RPar(p).
Otherwise, consider the case Par(p) is an R4 point. From Lemma 1, we know that the

circumradius of σ is more than b times the circumradius of the R4 simplex σ ′ that inserted
Par(p). Therefore, Rp ≥ (1− ζ)Rσ ≥ (1− ζ)bRσ ′ . The quantity (1− ζ)Rσ ′ is equal to
RPar(p), and the statement holds.

The exact same logic holds when Par(p) is an R5 point, by just substituting Rz,σ ′ for
Rσ ′ where σ ′ is an R5 simplex.

10 Panagiotis Foteinos, Nikos Chrisochoides

Lemma 7 Let p be inserted into the mesh because of R5. Then,

– Rp ≥ 1−ζ

2 RPar(p), if Par(p) is not an R5 point,

– Rp ≥ 1−ζ

2 ∆∂Ω (Par(p)), otherwise.

Proof Let σ3 be the simplex that violates R5.
Suppose that Par(p) is not an R5 point. Because of Lemma 2, the shortest edge of σ3

is at least RPar(p). Therefore, any surface ball of σ3 has radius at least 1
2RPar(p). Since the

surface ball does not contain any vertex in its interior, Rp ≥ 1−ζ

2 RPar(p).
Suppose that Par(p) is an R5 point. Note that when Par(p) is inserted, all the free ver-

tices closer than ∆∂Ω (Par(p)) to Par(p) are deleted. Due to R5, σ3 contains at least one free
vertex. Since Par(p) is the most recently inserted vertex incident to the closest edge of σ3,
the edge that contains Par(p) and the free vertex has to be at least ∆∂Ω (Par(p)). Therefore,
any surface ball of σ3 has radius at least 1

2 ∆∂Ω (Par(p)). Hence, Rp ≥ 1−ζ

2 ∆∂Ω (Par(p)).

Putting all the Lemmas together, the solid arrows of Figure 3 show the insertion radius
of the inserted point as a fraction of the insertion radius of its parent. An arrow from Ri to R j
with label x implies that the insertion radius of an R j point p is at least x times larger than
the insertion radius of its Ri parent Par(p). The label x of the dashed arrows is the absolute
value of Rp. Note that the labels of the dashed arrows depend on the local feature size of
∂Ω and as such are always positive constants.

Recall that during refinement, free vertices might be deleted (because of R5). Neverthe-
less, such deletions of vertices are always preceded by insertion of feature points. Consid-
ering the fact that feature vertices are never deleted from the mesh, termination is guaran-
teed if we prove that the insertion radii of the inserted vertices cannot decrease indefinitely.
Clearly [37, 50, 51], if there is no solid cycle of product less than 1, termination is guaran-
teed.

Theorem 1 The algorithm terminates producing simplices of bounded aspect ratio, if

– (1−ζ)2

4 ρ̄ ≥ 1, and

– 1−ζ

2 b≥ 1.

Proof See Figure 3. The smallest product is produced by the solid cycles
R3→R4→R5→R3 and R4→R5→R4. By requiring the label product of these loops to be
more than 1, the desired result follows.

5 Accuracy

In this section, we prove that the mesh boundary is equal to the restriction of a ∂Ω sample Z
to ∂Ω . In the literature, it is proved that these tetrahedra approximate the surface correctly
in geometric and topological sense [3, 10, 16].

First, we show that δ directly controls the density of the feature vertices. Let V be the
set of vertices in the final mesh and Z be equal to V ∩∂Ω , i.e., Z is equal to the set of all the
feature vertices.

Lemma 8 Let δ < 1
4 . Then Z is a 5δ

1−4δ
-sample of ∂Ω .

* 11

S(t)

p

p′

c

v

Fig. 4: Proof of Lemma 8.

Proof Recall that upon termination, there is no tetrahedron for which R1, R2, R3, R4, or R5
apply.

See Figure 4. Let p be an arbitrary point on ∂Ω . Since D (V) covers all the domain, point
p has to lie on or inside the circumsphere of a pentatope σ (not shown). Hence, Bσ intersects
∂Ω . Let point p′ be the feature point closest to c(σ). Note that |c(σ)− p| ≥ |c(σ)− p′| and
therefore p′ lies on or inside σ ’s circumsphere. We also know that σ ’s circumradius has to be
less than 2∆∂Ω (p′), since otherwise R2 would apply for t. Therefore, we have the following:

|p− p′| < 2Rσ (because both p and p′ lie on or inside Bσ)
< 4∆∂Ω (p′) (because of R2)
≤ 4δ (|p− p′|+ lfs∂Ω (p)) (from Inequality (2)),

and by reordering the terms, we obtain that:

∣∣p− p′
∣∣< 4δ

1−4δ
lfs∂Ω (p) , with δ <

1
4
. (3)

Moreover, there must exist a feature vertex v in the triangulation closer than ∆∂Ω (p′) =
δ · lfs∂Ω (p′) to p′ since otherwise R1 would apply for σ . Hence, |v− p′| < δ · lfs∂Ω (p′),
and using Inequality (2), we have that:∣∣v− p′

∣∣< δ
(∣∣p− p′

∣∣+ lfs∂Ω (p)
)

(4)

Applying the triangle inequality for4pvp′ yields the following:

|p− v| ≤ |−pp′|+ |v− p′|
< |p− p′|+δ (|p− p′|+ lfs∂Ω (p)) (from Inequality (4))
= |p− p′|(1+δ)+δ · lfs∂Ω (p)
< 4δ

1−4δ
lfs∂Ω (p)(1+δ)+δ · lfs∂Ω (p) (from Inequality (3))

=
(

4δ (1+δ)
1−4δ

+δ

)
lfs∂Ω (p)

= 5δ

1−4δ
lfs∂Ω (p) ,

and the proof is complete.

12 Panagiotis Foteinos, Nikos Chrisochoides

Let us denote with ωi one of the n connected components that Ω consists of: Ω =
n⋃

i=1

ωi.

The next two Lemmas prove a few useful properties for the mesh M and its boundary ∂M .
Our goal is to show that ∂M is always non-empty and does not have boundary (Lemma 10),
a fact that will be used for proving the fidelity guarantees (Theorem 2).

Lemma 9 Let δ ≤ 1
4 . Then, for every ωi there is a pentatope σ ∈D (V) such that c(σ) lies

inside ωi.

Proof Let us consider a single connected component ωi. The same reasoning applies for
any connected component of Ω .

For the sake of contradiction, assume that there is no pentatope whose circumcenter
lies inside ωi. Since the triangulation D (V) covers all the domain, the circumballs of the
pentatopes in D (V) also cover the domain ωi. Therefore, there has to be a circumball Bσ

(σ ∈D (V)) which intersects a point m on the medial axis of ∂ωi such that m lies inside ωi.
By our assumption, the circumcenter c(σ) cannot lie inside ωi. Therefore, Bσ intersects
∂ωi. Also, recall that R2 cannot apply to any pentatope. Hence, we have the following:

2 ·δ · lfs∂Ω (cfp∂Ω (c(σ))) > Rσ (from R2)

≥ |cfp∂Ω (c(σ))−m|
2 (since m and cfp∂Ω (c(σ)) do not lie outside Bσ)

≥ lfs∂Ω (cfp∂Ω (c(σ)))
2 (since m is on the medial axis) ⇒

δ > 1
4 ,

which raises a contradiction.

Lemma 10 Let δ ≤ 1
4 . Then, ∂M is a non-empty set and does not have boundary.

Proof The fact that ∂M is a non-empty set follows directly from Lemma 9: since M can-
not be empty, its boundary ∂M cannot be empty too. For the other part, since ∂M is the
boundary of a set of pentatopes, it cannot have a boundary.

The following Theorem proves the fidelity guarantees:

Theorem 2 The mesh boundary ∂M is the restriction to ∂Ω of Z =V ∩∂Ω .

Proof Let f be a tetrahedron σ3 in ∂M . As such, Vor(σ3) intersects ∂Ω . Due to R5, the
vertices of σ3 lie on ∂Ω . Recall that the surface ball Bz,σ3 does not contain vertices in its
interior. Therefore, Bz,σ3 is empty of vertices in V ∩ ∂Ω also. Without loss of generality,
assume that the vertices in V are in general position. Since there is a ball that circumscribes
σ3 and does not contain vertices of V ∩ ∂Ω in its interior, σ3 has to appear as a simplex in
D (V ∩∂Ω). Since the center z of the surface ball lies on ∂Ω , then the Voronoi dual of σ3
intersects ∂Ω in D|∂Ω (∂Ω)∂Ω ∩V , as well. Hence, ∂M ⊆D|∂Ω (∂Ω)∂Ω ∩V .

For the other direction, we will prove that ∂M cannot be a proper subset of D|∂Ω (∂Ω)∂Ω ∩V ,
so equality between these 2 sets is forced. We will prove that any proper non-empty subset
of D|∂Ω (∂Ω)∂Ω ∩V has boundary; this is sufficient, because we have proved in Lemma 10
that ∂M is non-empty and does not have boundary.

D|∂Ω (∂Ω)∂Ω ∩V is the restriction of a sample of a closed manifold ∂Ω , and therefore
it is a 3-manifold without boundary [3], meaning that any 2-simplex in D|∂Ω (∂Ω)∂Ω ∩V

* 13

Table 1: Information about the images of the five patients used in this section. The spacing
for all the images is (1.77,1.77,6,1).

Case Pat1 Pat2 Pat3 Pat4 Pat5
#Voxels (100×100×44×15) (100×100×34×15) (100×100×26×15) (100×100×31×15) (100×100×29×15)

Table 2: Statistics of the output meshes generated for each patient.

Pat1 Pat2 Pat3 Pat4 Pat5
#Pentatopes 49,479 43,673 8,883 63,016 56,528

#Boundary Tetrahedra 30,758 29,089 8,271 36,281 33,308
#Vertices 4,709 4,314 1,362 5,567 5,132

Shortest edge (mm) 3.45 3.87 3.90 3.5 4.63
Radius-edge ratio

(maximum, average, deviation) (1.93, 1.02, 0.17) (1.78, 0.98, 0.15) (1.54, 0.92, 0.10) (2.20, 1.06, 0.18) (1.87, 1.05, 0.18)

Normalized volume
(minimum, average, deviation) (0.01, 0.34, 0.18) (0.01, 0.38, 0.18) (0.02, 0.43, 0.17) (0.01, 0.32, 0.17) (0.01, 0.33, 0.17)

is incident to exactly two 3-simplices of D|∂Ω (∂Ω)∂Ω ∩V . Since any proper non-empty
subset A of D|∂Ω (∂Ω)∂Ω ∩V has fewer 3-simplices, A contains at least a 2-simplex σ2
incident to only one 3-simplex. But this implies that σ2 belongs to the boundary of A , and
the proof is complete.

6 Experimental Evaluation

The algorithm is implemented in C++. We employed the Bowyer-Watson kernel [13, 57] for
point insertions. The removal of a point p is implemented by computing the small Delaunay
triangulation of the vertices incident to p [26], such that the vertices inserted earlier in the
triangulation are inserted into the small triangulation first. It can be shown [30] that these
new created pentatopes can always be connected back to the original triangulation without
introducing invalid elements. For the Euclidean Distance Transform, we made use of the
related filter implemented in ITK [2] and described in [40]. Lastly, we borrowed CGAL’s [1]
exact predicates for the accurate computation of the 4D in-sphere tests.

We ran our code on five (segmented) images obtained from the 4D Heart Database [43].
The first three represent the moving left ventricle of the patients, while the last two represent
the ventricle together with the myocardium for 15 cardiac cycles (see Table 1).

Recall that our algorithm needs the distance of any point on ∂Ω from the medial axis.
The robust computation of the medial axis is a very difficult problem (see [27, 33] for com-
puting the exact medial axis, [23] for a review of image-based medial axis methods, and [5]
for computing the medial axis given a set of surface points) and out of the scope of this
work. In the implementation, we assume that lfs∂Ω (p) is uniform and equal to the unit,
which implies that ∆∂Ω (p) becomes equal to δ . That is, in practice, δ determines a uniform
and (if small enough) dense sample of the surface. We experimentally verified that a δ value
equal to 5 (the length of five consecutive voxels along the fourth dimension) yielded man-
ifold mesh boundaries with vertices lying precisely on the iso-surface in accordance with
Theorem 2.

The quantity τσ determines the aspect ratio of pentatope σ [37], but it is not normalized,
and is therefore difficult to draw comparative conclusions. Consequently, for a pentatope
σ of the final mesh, we report its normalized volume τ̂σ defined as the ratio of its volume
over the volume of a regular pentatope with circumradius equal to the circumradius of σ

14 Panagiotis Foteinos, Nikos Chrisochoides

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91
0

200

400

600

800

1000

1200

normalized volume

N
u

m
b

e
r

o
f

P
e

n
ta

to
p

e
s

Fig. 5: Normalized volume histogram of the output mesh obtained for the input image Pat1.

(or alternatively τ̂σ = 384Volσ
24R4

σ

√
5
). Clearly, τ̂σ ∈ [0,1], where a value of 0 implies a degenerate

pentatope, while 1 implies a perfect quality.
Table 2 shows quantitative data for the mesh generated on each image. We set the radius

of the picking regions equal to ζ = 1
2 . Theorem 1 suggests that ρ̄ be at least 16 and b at least

4. We experimentally observed that by selecting 4 to 10 random points within the picking
regions (both the 4- and the 3-topological balls), no small element σ was created with τ̂σ

less than 0.01. Despite the fact a value of 0.01 is rather small, it is three orders of magnitude
larger than the minimum normalized volume reported in the case where no picking regions
are employed at all. Also, we notice that the average normalized volume is much higher than
the minimum value. This fact together with the observed small standard deviation implies
that most pentatopes have normalized volume away from the minimum value and very close
to the average. Figure 5 shows the histogram of the normalized volumes for the first experi-
ment of Table 2 (i.e, when the input image Pat1 was used). Similar histograms are observed
for all the other inputs as well.

7 Improving the 4D Meshing Performance

During the development of the 4D Delaunay refinement code, we realized that its perfor-
mance behaves very differently than the performance of the optimized 3D code we devel-
oped and described in the past [31, 32]. This is due to mainly two reasons: (a) the storage
requirements and computations involved in a point insertion or removal are higher because
of the increased dimensionality, and (b) the 4D CGAL predicates we employed to enforce
robustness are not optimized as well as their 3D counterparts. Indeed, the achieved rate of
meshing a 4D hyper-sphere with 40,000 elements is 145 pentatopes per second, while the
achieved rate of meshing the hypersphere’s equator with the same number of elements is
107,037 tetrahedra per second.

In this Section, we improve the speed of our 4D code by optimizing its complexity and
by parallelizing the whole process. Since point removals account for approximately less
than 1% of the total number of operations in all the cases we investigated, we focus on 4D
Delaunay point insertions.

* 15

Number of Points

C
u
m

u
la

ti
v
e
 N

u
m

b
e
r

o
f
U

p
d
a
te

d
 C

e
lls

0 2000 4000 6000
0

0.5

1

1.5

2x 10
6

(a)
Number of Points

C
u

m
u

la
ti
v
e

 N
u

m
b

e
r

o
f

U
p

d
a

te
d

 C
e

lls

0 2000 4000 6000 8000
0

5

10

15x 10
5

(b)

Fig. 6: The complexity of the 4D code (a) before, and (b) after the Rule reordering.

7.1 Complexity

Ignoring the time involved for locating the first element in a point’s cavity, the optimal
complexity of a Delaunay insertion is constant. Therefore, inserting n points costs Ω(n)
time. Although the 3D code reaches the optimal complexity in all the case studies used in our
experiment, its 4D counterpart behaves very differently. Indeed, Figure 6a shows the number
of deleted and created elements involved so far with respect to the number of inserted points
on the 4D hyper-sphere. If the complexity was optimal, then the curve should look like a
straight line; however, the complexity is far from ideal after the insertion of approximately
2,500 points. We obtained similar results when we ran our code on other inputs, such as
hyper-torus and the five 4D hearts of Section 6.

Nevertheless, it can be proved [41] that it is possible to reach the optimal complexity
if, at any given moment of refinement, the radius-edge ratio is bounded from above. In fact,
this technique has already been applied successfully in the literature [34]. Therefore, we
reordered the Rules of our algorithm (see Section 3) such that rule R3 has the highest priority
among all the rest of the Rules. In this way, the mesh is of bounded radius-edge ratio at any
given time, and as such, the expected complexity should be close to the optimal. Indeed,
Figure 6b shows that the complexity curve behaves linearly. This improvement boosted the
performance of the 4D code by 27% on the hyper-sphere mentioned above, bringing the rate
of 145 pentatopes per second up to 184 for the 40,000 element mesh generated.

7.2 Parallelization

In this Subsection, we parallelize the 4D algorithm to take advantage of the multi-core and
many-core platforms already available in the market. To our knowledge, this is the first
attempt to parallelize the mesh generation and refinement of 4D space-time domains.

We employed a tightly-coupled approach similar to the concept presented in [31, 32].
Specifically, each thread Ti maintains its own list of poor elements, and it attempts to im-
prove them by inserting or removing the appropriate vertices according to the Rules de-
scribed in Section 3. To protect the cavities from concurrent accesses and guarantee valid
meshes, Ti has to lock the vertices associated to that cavity. If Ti attempts to lock a vertex
already acquired by another thread, it rolls back: the changes are discarded and Ti moves on
refining the next element. However, as shown in our past work [31], this optimistic specula-
tive approach might cause livelocks compromising in this way termination. We resolve this

16 Panagiotis Foteinos, Nikos Chrisochoides

issue by implementing special Contention Managers. The goal of the Contention Managers
is to guarantee that at least one thread Ti makes progress, i.e., Ti is not stuck in consecu-
tive rollbacks for an undefined period of time. Additionally, the 4D parallel tightly-coupled
approach has to address load imbalances. Indeed, a thread Ti might run out of elements to
refine. We chose the traditional Work Stealing [9] as our base load balance technique, since
it was proven to behave very well in our optimistic setting [31]. Briefly, when Ti has no ele-
ments to refine, it asks poor elements from another thread. See [32] for detailed explanations
about the Contention Managers and load balance techniques.

We deactivated the picking region technique described in detail in the previous Sections
because we wanted to perform a 1-to-1 comparison with the 3D code to investigate which
parallelization techniques applied successfully in 3D benefit the parallelization of the 4D
problem as well. Keeping the picking regions would imply more than one round per insertion
causing a considerable increase in the number of rollbacks, a fact not relevant to the nature
of the 4D problem but to the technique of eliminating slivers.

Table 3a illustrates the weak scaling performance of the 4D parallel implementation
on the Pat5 input 4D heart. The speedup is computed with respect to the rate of generated
pentatopes (number of elements per second). The table also shows the average total overhead
seconds per thread (last row) and the exact source of the overhead. As described in [31, 32],
contention seconds is the time wasted by a thread invoking the Contention Manager, balance
seconds is the time spent by a thread waiting for extra work to arrive, and rollback seconds
is the time elapsed for the partial expansion of a cavity.

Although the same parallelization techniques scaled the 3D counterpart for a core count
higher than 128, we observe that intensive overhead hampers scalability even on 12 cores in
4D domains. For example, more than 58% of the total execution time on 12 cores consisted
of waiting on contention lists, balance lists, and rollbacks. Interestingly, the overhead of the
3D counterpart on a slice of the same 4D input was only 40% on 12 cores, when it generated
a mesh of approximately the same size. This different behavior could be attributed to the fact
that now the size of the cavity is much larger in 4D than it is in 3D. Indeed, we computed
that the average size of the 4D cavity (4D Pat5 heart) is about 72.9 pentatopes, while the
average size of the 3D cavity (slice of Pat5) is 18.0.

Nevertheless, the fact that most of the time is spent idling on contention and balance lists
gives us the opportunity to perform cavity expansions in parallel. When a thread is working
on inserting a point, it invites idling threads to perform the operation in parallel. This par-
allelization scheme is called fine grained parallelization and was successfully employed in
the past by our group [6].

Table 3b shows the fine grained performance of our implementation. We observe that
the overhead seconds were greatly reduced. For example, on 12 cores, the overhead seconds
were reduced by 2.9X simply because threads help active threads to do useful work, and thus
they wait on the contention/balance lists much less. As an immediate result, the number of
elements per second (i.e., rate) of the fine grained implementation is 1.3X and 1.7X faster
on 6 and 12 cores respectively when compared to the non fine grained version.

8 Conclusions

In this paper, we presented a space-time meshing method for (3D+t) image data. The method
is able to provably clean up slivers and recover the hyper-surfaces faithfully. Experiments
on five 4D cardiac images show that the resulting meshes consist of elements of bounded
aspect ratio.

* 17

Table 3: The weak scaling performance of the parallel 4D method (a) without, and (b) with
fine grained parallelism.

(a)

Threads 1 6 12

#Elements 301,336 1,559,480 2,870,670
Time (secs) 1687.80 2681.41 4283.94

Elements per second 178.54 581.59 670.10
Speedup 1.00 3.26 3.75

Contention seconds per
thread

0.00 992.12 2,399.01

Balance seconds per
thread

0.00 2.68 42.84

Rollback seconds per
thread

0.00 53.63 85.68

Total overhead seconds
per thread

0.00 1,048.43 2,527.52

(b)

Threads 1 6 12

#Elements 301,336 1,558,020 2,837,830
Time (secs) 1679.33 2039.95 2489.33

Elements per second 179.44 763.75 1,140.00
Speedup 1.00 4.26 6.35

Contention seconds per
thread

0.00 346.79 771.69

Balance seconds per
thread

0.00 2.04 24.89

Rollback seconds per
thread

0.00 81.60 74.68

Total overhead seconds
per thread

0.00 430.43 871.27

Efficient Discontinuous Galerkin formulations require that not only the hyper-surface
∂Ω =

⋃
ti

∂Ωti should be recovered but also the evolving 3D object Ωti at certain time steps

ti [22]. This is a more challenging task considering the non-manifold nature of the underly-
ing space-time domain at the intersection of ∂Ω and Ωti and is left as future work.

Because of the increased memory space needed for high dimensional meshing, our 4D
algorithm is rather slow compared to the optimized three dimensional Delaunay mesher
described in our past work [31, 32]. Nevertheless, the tightly-coupled fine grained paral-
lelization of the 4D code did yield a 6.35 speedup on 12 cores. We argue that the main
bottleneck for its scalability is the excessive amount of contention, a fact that we did not
observe in the 3D counterpart. We attribute this difference in behavior between the 3D and
4D implementation to the fact that the cavity size increases in higher dimensions, and there-
fore, tightly-coupled techniques need to lock many more vertices. In the future, we plan

18 Panagiotis Foteinos, Nikos Chrisochoides

to investigate other parallelization techniques, such as data decomposition [21] and domain
decomposition [18, 38] since they are expected to alleviate the increased synchronization
overhead observed in high dimensional meshing. In the future, we also plan to theoretically
characterize the complexity of our parallel methods described in Section 7.2, determining
their scalability on machines of different architecture [24].

Acknowledgements

The authors would like to thank Dr. Marek Behr, RWTH Aachen University, for the con-
structive discussions, and the anonymous reviewers for their comments and insight that
helped the presentation of this paper. This work is supported in part by NSF grants: CCF-
1139864, CCF-1136538, CSI-1136536 and CCF-1439079 and by the John Simon Guggen-
heim Foundation and the Richard T. Cheng Endowment.

References

1. CGAL, Computational Geometry Algorithms Library. http://www.cgal.org, v4.0.
2. ITK, Insight Segmentation and Registration Toolkit. http://www.itk.org, v4.1.0.
3. Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi filtering. In SCG ’98: Proceedings

of the fourteenth annual symposium on Computational geometry, pages 39–48, New York, NY, USA,
1998. ACM.

4. Nina Amenta, Sunghee Choi, Tamal K. Dey, and N. Leekha. A Simple Algorithm for Homeomor-
phic Surface Reconstruction. International Journal of Computational Geometry and Applications, 12(1-
2):125–141, 2002.

5. Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust. In Proceedings of the sixth
ACM symposium on Solid modeling and applications, SMA ’01, pages 249–266, New York, NY, USA,
2001. ACM.

6. Christos Antonopoulos, Filip Blagojevic, Andrey Chernikov, Nikos Chrisochoides, and Dimitris
Nikolopoulos. A multigrain Delaunay mesh generation method for multicore smt-based architectures.
Journal on Parallel and Distributed Computing, 69:589–600, 2009.

7. Dominique Attali, Herbert Edelsbrunner, and Yuriy Mileyko. Weak witnesses for delaunay triangulations
of submanifolds. In Proceedings of the 2007 ACM symposium on Solid and physical modeling, SPM ’07,
pages 143–150, New York, NY, USA, 2007. ACM.

8. Marek Behr. Simplex space-time meshes in finite element simulations. International Journal for Nu-
merical Methods in Fluids, 57:1421–1434, 2008.

9. Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: an efficient multithreaded runtime system. In Proceedings of the fifth ACM SIG-
PLAN symposium on Principles and practice of parallel programming, PPoPP ’95, pages 207–216, New
York, NY, USA, 1995. ACM.

10. Jean-Daniel Boissonnat, Leonidas J. Guibas, and Steve Y. Oudot. Manifold reconstruction in arbitrary
dimensions using witness complexes. Discrete Comput. Geom., 42:37–70, May 2009.

11. Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and meshing of surfaces. Graphical
Models, 67(5):405–451, 2005.

12. Dobrina Boltcheva, Mariette Yvinec, and Jean-Daniel Boissonnat. Mesh Generation from 3D Multi-
material Images. In Medical Image Computing and Computer-Assisted Intervention, pages 283–290.
Springer, September 2009.

13. Adrian Bowyer. Computing Dirichlet tesselations. Computer Journal, 24:162–166, 1981.
14. Frëdëric Cazals and Joachim Giesen. Delaunay triangulation based surface reconstruction: Ideas and

algorithms. In Effective Computational Geometry for Curves and surfaces, pages 231–273. Springer,
2006.

15. Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-Hua Teng. Sliver
exudation. Journal of the ACM, 47(5):883–904, 2000.

16. Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Manifold reconstruction from point samples. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’05, pages
1018–1027, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

* 19

17. Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Delaunay refinement for piecewise smooth
complexes. In Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1096–1105. ACM
Press, 2007.

18. Andrey Chernikov and Nikos Chrisochoides. Algorithm 872: Parallel 2D constrained Delaunay mesh
generation. ACM Transactions on Mathematical Software, 34:6–25, January 2008.

19. Andrey Chernikov and Nikos Chrisochoides. Multitissue tetrahedral image-to-mesh conversion with
guaranteed quality and fidelity. SIAM Journal on Scientific Computing, 33:3491–3508, 2011.

20. Andrey Chernikov and Nikos Chrisochoides. Generalized insertion region guides for Delaunay mesh
refinement. SIAM Journal on Scientific Computing, 34(3):A1333–A1350, 2012.

21. Andrey N. Chernikov and Nikos P. Chrisochoides. Three-dimensional Delaunay refinement for multi-
core processors. In Proceedings of the 22nd annual international Conference on Supercomputing, ICS
’08, pages 214–224, New York, NY, USA, 2008. ACM.

22. Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu. Discontinuous galerkin methods: the-
ory, computation and applications. Lecture notes in Computational Science and Engineering, 11, 2000.

23. David Coeurjolly and Annick Montanvert. Optimal separable algorithms to compute the reverse eu-
clidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans. Pattern
Anal. Mach. Intell., 29:437–448, March 2007.

24. David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos,
Ramesh Subramonian, and Thorsten von Eicken. Logp: Towards a realistic model of parallel com-
putation. SIGPLAN Not., 28(7):1–12, July 1993.

25. Per Eric Danielsson. Euclidean Distance Mapping. Computer Graphics and Image Processing, 14:227–
248, 1980.

26. Olivier Devillers and Monique Teillaud. Perturbations and vertex removal in a 3D Delaunay triangu-
lation. In Proceedings of the 14th ACM-SIAM Symposium on Discrete algorithms, SODA ’03, pages
313–319. SIAM, 2003.

27. Tamal K. Dey and Wulue Zhao. Approximate medial axis as a voronoi subcomplex. Computer-Aided
Design, 36(2):195–202, 2004.

28. Herbert Edelsbrunner and Nimish R. Shah. Triangulating topological spaces. In SCG ’94: Proceedings
of the tenth annual symposium on Computational geometry, pages 285–292, New York, NY, USA, 1994.
ACM.

29. Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör. Building spacetime meshes over
arbitrary spatial domains. Eng. with Comput., 20(4):342–353, August 2005.

30. Panagiotis Foteinos and Nikos Chrisochoides. Dynamic parallel 3D Delaunay triangulation. In Interna-
tional Meshing Roundtable, pages 3–20, Paris, France, October 2012. Springer Berlin Heidelberg.

31. Panagiotis Foteinos and Nikos Chrisochoides. High quality real-time image-to-mesh conversion for
finite element simulations. In Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing, ICS ’13, pages 233–242, New York, NY, USA, 2013. ACM.

32. Panagiotis A. Foteinos and Nikos P. Chrisochoides. High quality real-time image-to-mesh conversion
for finite element simulations. Journal of Parallel and Distributed Computing, 74(2):2123–2140, 2014.

33. Peter Giblin and Benjamin B. Kimia. A formal classification of 3D medial axis points and their local
geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:238–251, January 2004.

34. Benoı̂t Hudson, Gary Miller, and Todd Phillips. Sparse voronoi refinement. In Proceedings of the 15th
International Meshing Roundtable, pages 339–356. Springer Berlin Heidelberg, 2006.

35. Xiangmin Jiao, Andrew Colombi, Xinlai Ni, and John Hart. Anisotropic mesh adaptation for evolving
triangulated surfaces. Eng. with Comput., 26(4):363–376, 2010.

36. François Labelle and Jonathan Richard Shewchuk. Isosurface stuffing: fast tetrahedral meshes with good
dihedral angles. ACM Transactions on Graphics, 26(3):57.1–57.10, 2007.

37. Xiang-Yang Li. Generating Well-Shaped D-dimensional Delaunay Meshes. In Jie Wang, editor, Com-
puting and Combinatorics, volume 2108 of Lecture Notes in Computer Science, pages 91–100. Springer
Berlin / Heidelberg, 2001.

38. Leonidas Linardakis and Nikos Chrisochoides. Graded Delaunay decoupling method for parallel guar-
anteed quality planar mesh generation. SIAM Journal on Scientific Computing, 30(4):1875–1891, March
2008.

39. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. SIGGRAPH Computer Graphics, 21(4):163–169, 1987.

40. Calvin .R. Maurer, Qi Rensheng, and Vijay Raghavan. A linear time algorithm for computing exact
euclidean distance transforms of binary images in arbitrary dimensions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(2):265 – 270, feb 2003.

41. Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. A Delaunay based numerical
method for three dimensions: generation, formulation, and partition. In Proceedings of the 27th Annu.
ACM Sympos. Theory Comput, pages 683–692. ACM, 1995.

20 Panagiotis Foteinos, Nikos Chrisochoides

42. Scott A. Mitchell and Stephen A. Vavasis. Quality mesh generation in higher dimensions. SIAM J.
Comput., 29(4):1334–1370, February 2000.

43. L. Najman, J. Cousty, M. Couprie, H. Talbot, S. Clment-Guinaudeau, T. Goissen, and J. Garot. An open,
clinically-validated database of 3D+t cine-mr images of the left ventricle with associated manual and
automated segmentation. http://www.laurentnajman.org/heart/index.html.

44. Demian Nave, Nikos Chrisochoides, and Paul Chew. Parallel Delaunay refinement for restricted polyhe-
dral domains. Computational Geometry: Theory and Applications, 28:191–215, 2004.

45. Martin Neumüller and Olaf Steinbach. Refinement of flexible spacetime finite element meshes and
discontinuous Galerkin methods. Computing and Visualization in Science, 14:189–205, 2011.

46. Steve Oudot, Laurent Rineau, and Mariette Yvinec. Meshing volumes bounded by smooth surfaces.
In Proceedings of the International Meshing Roundtable, pages 203–219. Springer-Verlag, September
2005.

47. Jean-Philippe Pons, Florent Ségonne, Jean-Daniel Boissonnat, Laurent Rineau, Mariette Yvinec, and
Renaud Keriven. High-Quality Consistent Meshing of Multi-label Datasets. In Information Processing
in Medical Imaging, pages 198–210. Springer Berlin Heidelberg, 2007.

48. Stanley Rabinowitz. The volume of an n-simplex with many equal edges. Missouri Journal of Mathe-
matical Sciences, pages 11–17, 1989.

49. Laurent Rineau and Mariette Yvinec. Meshing 3D domains bounded by piecewise smooth surfaces. In
Proceedings of the International Meshing Roundtable, pages 443–460, 2007.

50. Jonathan Richard Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Proceedings of
the 14th ACM Symposium on Computational Geometry, pages 86–95, Minneapolis, MN, 1998. ACM.

51. Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Compu-
tational Geometry: Theory and Applications, 22(1-3):21–74, May 2002.

52. Hang Si. Constrained Delaunay tetrahedral mesh generation and refinement. Finite Elements in Analysis
and Design, 46:33–46, 2010.

53. Hang Si. TetGen, A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator. http:
//tetgen.berlios.de/, v1.4.3.

54. Shripad Thite. Efficient spacetime meshing with nonlocal cone constraints. In 13th International Mesh-
ing Roundtable, pages 47–58, 2004.

55. Yanghai Tsin, Klaus Kirchberg, Guenter Lauritsch, and Chenyang Xu. A deformation tracking approach
to 4d coronary artery tree reconstruction. In Guang-Zhong Yang, David Hawkes, Daniel Rueckert,
Alison Noble, and Chris Taylor, editors, Medical Image Computing and Computer-Assisted Intervention
MICCAI 2009, volume 5762 of Lecture Notes in Computer Science, pages 68–75. Springer Berlin /
Heidelberg, 2009.

56. M von Siebenthal, G Székely, U Gamper, P Boesiger, A Lomax, and Ph Cattin. 4D MR imaging of
respiratory organ motion and its variability. Physics in Medicine and Biology, 52(6):1547–1564, 2007.

57. David F. Watson. Computing the n-dimensional Delaunay tesselation with application to Voronoi poly-
topes. Computer Journal, 24:167–172, 1981.

58. Ernst Weigang, Fabian A. Kari, Friedhelm Beyersdorf, Maximilian Luehr, Christian D. Etz, Alex
Frydrychowicz, Andreas Harloff, and Michael Markl. Flow-sensitive four-dimensional magnetic res-
onance imaging: flow patterns in ascending aortic aneurysms. European Journal of Cardio-Thoracic
Surgery, 34(1):11–16, 2008.

