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Purpose: This paper presents a non-rigid registration method to align preoperative MRI (preMRI) 35 

with intra-operative MRI (iMRI) to compensate for brain deformation during tumor resection. This 

method extends traditional point-based non-rigid registration in two aspects: 1) allow the input data to 

be incomplete, and 2) simulate the underlying deformation with a heterogeneous biomechanical 

model. 

Methods: The method formulates the registration as a three-variable (point correspondence, 40 

deformation field, and resection region) functional minimization problem, in which point 

correspondence is represented by a fuzzy assign matrix; Deformation field is represented by a piece-

wise linear function regularized by the strain energy of a heterogeneous biomechanical model; and 

resection region is represented by a maximal simply connected tetrahedral mesh. A Nested 

Expectation and Maximization framework is developed to simultaneously resolve these three 45 

variables. 

Results: To evaluate this method, we conducted experiments on both synthetic data and clinical MRI 

data. The synthetic experiment confirmed our hypothesis that the removal of additional elements from 

the biomechanical model can improve the accuracy of the registration. The clinical MRI experiments 

on 25 patients showed the proposed method outperforms the ITK implementation of a physics-based 50 

non-rigid registration (PBNRR) method. The proposed method improves the accuracy by 2.88 mm on 

average when the error is measured by a robust Hausdorff distance metric on Canny edge points, and 

improves the accuracy by 1.56 mm on average when the error is measured by 6 anatomical points. 

Conclusions: The proposed method can effectively correct brain deformation induced by tumor 

resection. 55 

 

1. INTRODUCTION 

Brain deformation severely compromises the fidelity of Image-Guided Neurosurgery (IGNS). Most 

studies use a biomechanical model to estimate the brain deformation based on sparse intra-operative 

data after the dura is opened [1-3]. Very few studies address brain deformation during and after tumor 60 

resection. The difficulty originates from the fact that resection creates a cavity, which renders the 

biomechanical model defined on preoperative MRI inaccurate due to the existence of the additional 

part of the model corresponding to the resection region. In this work, the model accuracy will be 

improved by 1) removing the tetrahedra in the model corresponding to the resection region and 2) 

simulating the brain deformation with a heterogeneous biomechanical model. Miga et al. [5] 65 

investigated tissue retraction and resection using sparse operating room data and a finite element 

model. They developed a two-step method: 1) remove tissue volume by manual deletion of model 

elements that coincide with the targeted zone, and 2) apply boundary conditions to the new surfaces 

created during the excision process. Determining the cavity is challenging because a portion of it will 

be filled by surrounding tissues [6]. In this work, we introduced a variable: resection region and 70 



developed a Nested Expectation and Maximization (NEM) framework to automatically resolve it. For 

convenience, in this paper, we refer to the proposed method as NEMNRR. Based on the Bijective 

Demons algorithm, Risholm et al. [8] presented an elastic FEM-based registration algorithm and 

evaluated it on the registration of 2D pre- with intra-operative images, where a superficial tumor has 

been resected. Vigneron et al. [21] used the extended finite element method (XFEM) to model 75 

surgical cuts, retractions, and resections. XFEM eliminates the computationally expensive re-meshing 

for the standard finite element method (FEM). The experiment on the simulation of 2D retraction 

demonstrated the effectiveness of this method. Ding et al. [6] presented a semi-automatic method 

based on post-brain tumor resection and laser range data. Vessels were identified in both preoperative 

MRI and laser range image, and then the Robust Point Matching (RPM) method [9] was used to force 80 

the corresponding vessels to exactly match each other under the constraint of the bending energy of 

the whole image. RPM uses Thin-Plate Splines (TPS) as the mapping function. The basis function of 

TPS is a solution of the biharmonic [10], which does not have a compact support and will therefore 

lead to, in real applications, unrealistic deformation in the region far away from the matching points. 

In other words, TPS is not suitable for estimating deformation with sparse data. We used a 85 

heterogeneous biomechanical model to realistically simulate the underlying movement of the brain, 

which extended our previous work using a homogeneous model [19]. Clatz et al. [16] presented a 

physics-based non-rigid registration (PBNRR) method to deal with the registration between the 

preMRI and iMRI. We completely implemented this method in ITK [35, 36]. PBNRR used a 

homogeneous biomechanical model to estimate the entire brain deformation. In this work, we 90 

introduced a heterogeneous model into the registration and enabled the removal of the portion of the 

model corresponding to the resected tumor. Risholm et al. [37] presented a registration framework 

accommodating resection and retraction based on the bijective Demons algorithm. Retraction is 

detected at areas of the deformation field with high internal strain, and resection is detected by a level 

set method evolving in the space where image intensities disagree. Their preliminary results on both 95 

synthetic and clinical data showed the added value of explicitly modeling these processes in a 

registration framework. Periaswamy et al. [38] presented an intensity-based registration method 

dealing with partial data, in which the transformation was modeled as locally affine but globally 

smooth, and the Expectation and Maximization (EM) algorithm served to estimate the missing or 

partial data. Their work was not directly related with tumor resection but motivated us to use EM 100 

strategy to deal with tumor resection.  

In this paper, we present a point-based NRR method, which is characterized by using a heterogeneous 

biomechanical model to simulate the underlying deformation and using a Nested EM strategy to 

remove point outliers and element outliers. 

 105 

 

 



 

2. METHODS AND MATERIALS 

In this section, we present the details of the proposed registration method and the experimental data 

for the evaluation. We begin from a complete flowchart to describe the entire procedures of aligning 110 

preoperative MRI and intra-operative MRI. Then, we briefly describe a multi-tissue mesh generation 

method, which serves to build a heterogeneous biomechanical model in the registration method. Next, 

we present the details of the proposed registration method including the derivation of the cost function 

and the Nested Expectation and Maximization solver. Finally, the synthetic data and the clinical MRI 

data are presented. 115 

Figure 1 illustrates the complete flowchart to align preoperative MRI with intra-operative MRI. In this 

paper, we focus on the Nested Expectation and Maximization non-rigid registration (NEMNRR) 

component highlighted with a blue color. For self-containedness, we also briefly describe our multi-

tissue mesh generation presented in [4, 40].  

The brain was automatically extracted from the skull by a Brain Extraction Tool (BET) [22], and the 120 

ventricle was segmented by a region growing method in 3DSlicer [23]. The resulting two-tissue (brain 

and ventricle) multi-label image was fed into a multi-tissue mesher to produce a heterogeneous model 

in conjunction with specific biomechanical attributes. Edge detection was performed on both pre- and 

intra-operative MRI to produce a source point set and a target point set. Classic Canny edge detection, 

facilitated by an open source tool ITK [24], was employed to produce these two point sets.  125 

 

 

Figure 1. The complete flowchart to align preoperative MRI with intra-operative MRI, in which only the 

highlighted Mesh generation and NEMNRR are addressed in this paper. 



The feature point-based non-rigid registration problem addressed in this paper can be stated as: 130 

Given a source point set in preoperative MRI and a target point set in intra-operative MRI, find the 

point correspondence, deformation field, and resection region.  

We resolve this problem by incorporating all three variables into a single cost function, which is 

minimized by a Nested EM strategy. A displacement vector defined on the mesh nodes represents the 

deformation field; a correspondence matrix represents the correspondence between two point sets; and 135 

a connected submesh represents the resection region. Our Nested EM method does not require the 

correspondence to be known in advance and allows the input images to be incomplete, thereby 

making this method a generalized point-based registration method. Moreover, to improve the 

accuracy, a heterogeneous biomechanical model serves to realistically simulate the underlying 

movement of the brain. This heterogeneous model includes a multi-tissue mesh and specific 140 

biomechanical attributes of each tissue.  

In the following subsections, we first briefly describe the multi-tissue mesh generation method; then 

derive the cost function step by step; finally present a Nested EM strategy to resolve this cost function.  

 

2.1 Multi-tissue Tetrahedral Mesh Generation 145 

A biomechanical brain model is able to realistically describe the deformation of the entire brain based 

on sparse information. A heterogeneous model is more realistic than a homogeneous model, but 

necessitates a multi-tissue mesher. Given a multi-label brain image as input, the multi-tissue mesher 

should discretize the entire brain to connected tetrahedra. In a multi-tissue mesh, each tetrahedron is 

assigned with a tissue label based on the tissue in which the volume fraction of the element is the 150 

largest. The interface of any two submeshes is well aligned with the tissue boundary defined in the 

multi-label image. In this section, we describe our previous work on a multi-tissue mesher [4, 40]. 

The multi-tissue mesher consists of two steps: 1) start from a homogeneous Body-Centered Cubic 

(BCC) mesh [25, 26] to identify a coarse multi-tissue mesh by assigning each tetrahedron with a 

specific tissue label, and 2) deform the coarse multi-tissue mesh surfaces to tissue boundaries defined 155 

in the multi-label image.  

 2.1.1 Generate a coarse multi-tissue mesh 

BCC mesh is an actual crystal structure ubiquitous in nature. The nodes of BCC are grid points of two 

interlaced grids. The edges of BCC consist of edges of the grid and additional edges between a node 

and its eight nearest neighbors in the other grids. The advantage of the BCC mesh is that it is highly 160 

structured and easily refined during the simulation after subdivision [26]. Label distribution is 

performed on the homogeneous BCC mesh to produce a coarse multi-tissue mesh, which is deformed 

subsequently to the real tissue boundaries identified in the multi-label image.  

 



 

 165 

                                   a                        b                                    c                       d 

Figure 2. Coarse multi-tissue mesh generation. (a) L1 and L2 are tissue labels; the dashed line is the real 

boundary; and the blue line is the submesh interface. (b) Redistribution of labels. (c) Subdivision of tetrahedra if 

the submesh interface is not close enough to the real boundary. (d)  Redistribution of labels again. 

 170 

Given an initial label assignment (Figure 2a), labels are redistributed to produce a surface robust (not 

zigzag) against deformation (see the blue line in Figure 2b). If the surface is not close enough to the 

tissue boundary (dashed line in Figure 2b), mesh subdivision will be performed on the tetrahedra 

across the tissue boundary as shown in Figure 2c. The subdivision might impair the robustness of the 

surface. In this case, label redistribution is performed to produce a surface that is robust and better 175 

approximates the tissue boundary (see Figure 2d). The above procedures are repeated until the multi-

tissue surface is well-posed for deformation and close enough to the tissue boundary. 

 

 2.1.2 Deform the coarse multi-tissue mesh surface to the tissue boundary 

To make the mesh surface conform to the tissue boundary, the coarse multi-tissue mesh surface is 180 

iteratively deformed to the tissue boundary by moving surface nodes with a displacement vector  , 

which is resolved by minimizing, 

 ( )  ∑(       ‖      ‖
 )

 

   

 (1) 

  is the number of tissues;    is the global stiffness matrix assembled by the elements within the i-th 

tissue.    depends on two biomechanical attributes of the i-th tissue: Young’s modulus and Possion’s 

ratio. The building of    has been well-documented in [12].    is the global linear interpolation matrix 185 

related to the registration points or source points within the i-th tissue. In the next subsection, we will 

present the assembly of   .    is the global displacement vector from the i-th mesh surface to the i-th 

tissue boundary.   controls the balance of the quality (the first term) and the fidelity (the second term). 

  can be resolved by a linear system of equations,    
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In energy function (1), the second terms is used to match the mesh surface to the tissue boundary. To 

control the mesh quality while deforming the mesh surface, we introduce a biomechanical model and 

use the strain energy of the model (Finite Element representation) as the regularization (the first term). 

The strain energy is a measure of the magnitude of the mesh deformation. As a result, the resulting 

mesh obtained by minimizing function (1) is a trade-off of the boundary matching and the mesh 195 

quality. To improve the performance of the multi-tissue mesher, we model the brain as a 

heterogeneous biomechanical model, in which each tissue is characterized by biomechanical attributes. 

The mesh surface is determined by the label of the tetrahedral elements. For each element, if its 

volume fraction inside tissue i is the largest, this element is assigned label i. The interface of two 

tissues is determined by looping all element surfaces to check if the surface is shared by two elements 200 

with different labels.  

Mesh quality control is one advantage of our multi-tissue mesher [4, 40]. Mesh quality is the measure 

of how well the elements of a mesh are shaped. Mesh quality can be evaluated using different metrics, 

such as the minimal dihedral angle, aspect ratio, etc. Mesh quality influences the accuracy and 

convergence of the finite element solver as demonstrated in our previous work [34]. For example, if 205 

the angle between two triangles of a tetrahedron is very small, the assembled stiffness matrix will be 

ill-conditioned, characterized by a larger condition number (a measure of the asymptotically worst 

case of how much the error can be magnified in proportion to a small error). This characteristic of 

“magnifying the error” of an ill-conditioned matrix severely deteriorates the convergence of a linear 

system of equations, especially when the linear system is solved iteratively. 210 

 

2.2 Nested Expectation and Maximization Non-rigid Registration (NEMNRR) 

We treat the registration as an optimization problem, which includes three variables: point 

correspondence, deformation field, and resection region. In this section, we first derive a cost function 

to incorporate these three variables. To make the derivation easily to be followed, we start from a 215 

simple point-based non-rigid registration cost function with an analytical format, and then gradually 

derive our cost function by relaxing the requirement for the point correspondence, incorporating a 

heterogeneous model and discretizing with Finite Element Method. To resolve the cost function, we 

present a Nested Expectation and Maximization algorithm to iteratively estimate the three variables. 

 2.2.1 Cost function 220 

Given a source point set   *  +   
     and a target point set    *  +   

     with known 

correspondence (i.e.,    corresponds to   ), the point-based non-rigid registration problem can be 

formulated as the minimization of the functional, 

 ( )  ∫  ( )   
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where   is the unknown deformation field. The first term is smoothing energy for regularization, and 

the second term is similarity energy.   controls the trade-off between these two terms.   is the 225 

problem domain, namely the segmented brain of preoperative MRI, in the brain MRI registration.  

The tumor resection influences  , and therefore influences both terms of functional (3). We introduce 

a variable    to represent the resection region in preoperative MRI corresponding to the resection 

region in iMRI. To relax the requirement of one-to-one correspondence between   and  , we 

introduce variable     to represent the degree to which point    corresponds to   . To reach realistic 230 

deformation, the general regularization term of functional (3) is specified as the strain energy of a 

linear elastic homogeneous model. As a result, functional (3) changes to, 
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(4) 

 ( ) is the stress tensor, and  ( ) is the strain tensor. Their tensor product represents strain energy. d 

is the differential sign. The     is defined as in RPM [27] with soft assignment, which is suitable for 

non-rigid registration. The classic Iterative Closest Point (ICP) method [28] treats the correspondence 235 

as a binary variable and assigns the value based on the nearest-neighbor relationship; however, this 

simple and crude assignment is not valid for non-rigid registration, especially when large deformation 

and outliers are involved [27]. We define a search range   , a sphere centered at the source point with 

a radius  , and only take into account: 1) the target points, which are located in    of the source point, 

and 2) the source points, which have at least one target point in   . Thus, with this simple extension 240 

of RPM, the method is capable of eliminating outliers existing in both point sets. In functional (4), the 

first two terms come from the extension of functional (3), and the last term serves to prevent a too 

large resection region from being rejected. Without the last term, the entire   might be rejected as the 

outlier, leading to the vanishing of the integral domain. 

The homogeneous model employed in the regularization term of functional (4) is further extended to a 245 

heterogeneous model, 

 (       
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(5) 

where                 .    is the i-th tissue domain and   is the number of tissues.   ( )  ( ) 

represents the strain energy associated with the i-th tissue. 



Remark:
 
If                {

                  
            

, then functional (5) is reduced to functional (3), 

which means the proposed method might be viewed as a generalized point-based NRR method 250 

characterized by 1) employing a heterogeneous biomechanical model as the regularization term, 2) 

accommodating incomplete data, and 3) without correspondence requirement. 
 

Functional (5) is approximated by function (6) using the finite element method, 

 (        )  ∑      
 

           

  

    ∑ (    ( ))
 
 (    ( ))

           

   ∑    

       

 

(6) 

 The continuous domain   is discretized as a multi-tissue mesh   using the multi-tissue mesh 

generation method presented in Section 2.1 on a multi-label image segmented from the preoperative 255 

MRI.      is the removed mesh approximating the resection region   .    
 is the element stiffness 

matrix of element   . Each element is associated with a tissue label, which determines the elastic 

parameters to build the element stiffness matrix. The first term of equation (6) approximates the strain 

energy as in [12, 20], and the third term approximates the volume of the resection region, in which    
 

is the volume of element   . In the second term, the entries of the vector   are defined as   (   )  260 

   ∑           
             The equation to calculate     will be given in Section 2.2.2.a.   is a 

point correspondence matrix with entries    .   in the second term is a weighted matrix of size 

 | |   | |.   is a block-diagonal matrix whose     submatrix    is defined as 
 

| |
  
   

, where    

is the number of the vertices of the mesh. 
 

| |
 makes the matching term independent of the number of 

the vertices and the registration (source) points.   
    

is the average stiffness tensor for the k-th 265 

registration point.   
   

 makes the registration point act as an elastic node of the finite element model, 

leading to the same measurement unit of the regularization and matching terms of function (6) 

(without  , the matching term has a unit mm
2
, which is different from                in the 

regularization term). 

Assume the k-th registration point is located in the tetrahedron defined by vertices      ,   -. 270 

  
   

is calculated by   
   

 ∑      
 
   , where     is a     sub-matrix of the global stiffness matrix 

 .    is the interpolation factor, the element of the global linear interpolation matrix   [16].   is 

assembled by accumulating contributions of all registration points as follows: 

The k-th registration point    contained in the tetrahedron defined by vertices       ,  

 - contributes to four     sub-matrices:  , -   
 , -   

  , -   
  , -   

. The diagonal matrix 275 

, -   
     (        ), in which the linear interpolation factor    is calculated as, 
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where     is the mesh node with index   . 

  is also used in mesh deformation, the second step of multi-tissue mesh generation (see Section 

2.1.2). In mesh deformation, because we use the mesh nodes as registration points (i.e.,    is the same 

as one of the four tetrahedron nodes), equation (7) is reduced to, 280 

 

   {
                    

                    
 (8) 

 

Finding correspondence matrix   and removed mesh      is equivalent to outlier rejection. We 

developed a Nested Expectation and Maximization strategy to iteratively reject point and element 

outliers. 285 

 

 2.2.2 Nested Expectation and Maximization strategy 

The Expectation and Maximization (EM) algorithm [7] is a general algorithm for maximum-

likelihood [13] estimation of model parameters (unknowns) in the presence of missing or hidden data. 

EM proceeds iteratively to estimate the model parameters. Each iteration of the EM algorithm consists 290 

of two steps: the E step and the M step. In the E step, the missing data is estimated given the observed 

data and current estimate of the model parameters. In the M step, the likelihood function is maximized 

under the assumption that the missing data is known. The estimate of the missing data from the E step 

is used in lieu of the actual missing data. Convergence is assured since the algorithm is guaranteed to 

increase the likelihood at each iteration [7]. 295 

Considering the registration problem in the EM context, cost function (6), from the probability 

(Bayesian) point of view, defines the likelihood function, in which the unknown (model parameter) is 

the displacement vector  , and the missing data are the correspondence   and the resection region 

    . Assuming      is known, the more accurate the estimate of  , the more accurate the estimate 

of  , and vice versa. EM algorithm is very efficient for this kind of circular dependence problems [7, 300 

27, 37], so we employ EM to solve   and   under a specified     . To resolve     , we treat   

and   as an unknown pair 〈   〉. The more accurate the estimate of     , the more accurate the 

estimate of 〈   〉, leading to a Nested EM framework as shown in Figure 3, in which the inner EM 

serves to resolve 〈   〉  with      fixed, and the outer EM serves to resolve     .      is 

approximated by a collection of tetrahedra located in a region of the model, which corresponds to the 305 

resection region in the intra-operative MRI.      is initialized to   and updated at each iteration of 

the outer EM. If all the tetrahedra contained in the resection region are collected, the outer EM stops.  



 

Figure 3. Nested Expectation and Maximization framework. 

 310 

 a) Inner EM: Inner EM is used to resolve 〈   〉  given     . For each source point   , assume its 

correspondences are subject to Gaussian distribution [27], so     can be estimated (E step) by, 

    
   
 

∑    
  

   

    
  

 

 √  
 
 (     )

 

                 (9) 

Once   is estimated,  can be resolved by solving a linear system of equations resulting from setting 

the derivative of function (6) to zero, i.e.,       ⁄ . The resolved   is used to warp   closer to  , 

and then the correspondence matrix   can be updated. The pseudo code of the inner EM is presented 315 

in Algorithm 1. 

 

 b) Outer EM: Outer EM is used to identify     . In M step, the inner EM resolves 〈   〉. In E step, 

an element outlier rejection algorithm resolves     .      is approximated by a collection of 

tetrahedron outliers, which fall in the resection region of the intra-operative MRI.   320 

The resection region does not need to be identified in the intra-operative MRI, and in fact it is hard to 

distinguish the resection region from the background; however, a simple threshold segmentation 

method can very easily segment the background image     including the resection region and the 

background. We cannot determine if a tetrahedron is an outlier based only on whether it is located in 

the     because this tetrahedron might happen to fall in the background rather than the resection 325 

region. To make the element outlier rejection algorithm robust, we utilize the fact that the resection 

region is a collection of tetrahedra, which not only fall in the     of intra-operative MRI, but also 

connect with each other and constitute a maximal simply connected submesh. The collection of the 

outliers proceeds iteratively, and at each iteration, or more specifically in the E step of outer EM, 

additional outliers will be added into      if they fall in the     and connect with the maximal 330 

simply connected submesh identified in the previous iteration. The element outlier rejection algorithm 

is presented in Algorithm 2.  

 

 



 

 335 

[U, C] = PointOutlierRejection ( M, MRem, S, T,  , r, R ) 

 

Inputs:  : non-resected mesh,     : resected mesh,  : source points, 

 : target points,  : tolerance, r : annealing rate, R: search range 

Outputs:  : displacement vector,  : correspondence matrix 340 

 
1:      // identify transform 

2 : repeat 

3 :         Transform   based on  :    ( ) 

4:          E-Step: 345 

5:      // outlier rejection for S 

6:                           *   |                          + 

7:      // outlier rejection for T 

8:                            *  |                                         + 

9:       Estimate correspondence   using equation (9) 350 

10:        M-Step: 

11:          Solve   by minimizing function (6) 

12:              ‖       ‖ 

13:        Decrease R:         

14: until          355 

 

Algorithm 1. Point outlier rejection. 

 

The outer EM iteratively rejects element outliers using Algorithm 2 and computes 〈   〉  using 

Algorithm 1 until no additional element outliers are detected. We illustrate this NEM strategy in 360 

Figure 4, in which the inner EM iterates along the horizontal direction, and the outer EM iterates 

along the vertical direction. In Figure 4, we use subscript i to denote the inner EM and subscript o to 

denote outer EM. The superscript is used to denote the iteration number. For example,   
  denotes the 

k-th iteration of E step in the inner EM. The blue boundary in Pre-op MRI represents the resection 

surface corresponding with the resection surface of iMRI. In the horizontal direction, inner EM 365 

iteratively estimates the correspondence and deformation field until no point outliers are detected. 

Inner EM begins from a search range (green circle) with a larger radius R. For each source point, if 

there are no target points located in the circle centered at the source point, this source point will be 

rejected as an outlier. For each target point, if it is outside of the search range, this target point will be 

rejected as an outlier. Once all the outliers are rejected,   can be estimated by equation (9), and   can 370 

be solved by minimizing function (6) (see Algorithm 1). Then,      can be detected using Algorithm 



2. The      is removed from the pre-op MRI and the model leading to a resection surface close to 

the real resection surface (blue boundary) for the next iteration. In the next iteration, search radius R is 

reduced by multiplying with a simulated annealing factor 0.93 suggested in [27, 13],      is 

removed from M, and the above procedure is repeated. Algorithm 3 presents the whole pseudo code 375 

of the NEMNRR. 

 

[MRem, S] = ElementOutlierRejection(M, MRem, U, BGI, S) 

 

Inputs:  : non-resected mesh,     : removed mesh,  380 

 : displacement vector,    : background image, S: source points 

Outputs:     : new removed mesh,  : new source points 

 
1: Obtain deformed resected mesh       (      ) 

2: Find all elements    completely contained in the background  385 

Image     and constitute the largest connected mesh with      

3: Map    in      to    in        

4:              

5:        *   |        + 

 390 

Algorithm 2. Element outlier rejection. 

 

 

 



 

Figure 4. Illustration of Nested Expectation and Maximization strategy. Horizontal direction: inner EM, Vertical 395 

direction: outer EM. In the horizontal direction, each inner EM gradually detects the element outliers (resection 

region) and then removes them from the pre-op MRI. In the vertical direction, the resulting resection surface 

gradually approaches the real resection boundary (blue boundary). 

 

 400 

[U, MRem, C] = NEMNRR(preMRI, iMRI) 

 

Input: preMRI: preoperative MRI, iMRI: intra-operative MRI 

Output:  : displacement vector, MRem: resected mesh,  

C: correspondence matrix 405 

1: Segment brain in preMRI and do mesh generation to produce   

2: Segment background image BGI in iMRI 

3: Canny edge detection in preMRI to get   

4: Canny edge detection in iMRI to get   

5: Initialize  ,  , and r 410 

6: Initialize         

7: repeat 

8:        M-Step: 

,   -                       (                ) 

9:        E-Step:  

                  ,      -                         (              ) 415 

10: until      does not change 

 

Algorithm 3. Nested Expectation and Maximization non-rigid registration. 

 

2.3 Experimental Data 420 

To evaluate the proposed method, we conducted experiments on both synthetic and clinical data. The 

synthetic data serves to evaluate our hypothesis that the removal of the resection region can improve 

the accuracy of the registration, and the clinical data serves to evaluate the accuracy of the proposed 

method. 

 425 

2.3.1 Synthetic data 

To generate a synthetic resected brain, we developed a surgery simulation tool to simulate brain 

resection as shown in Figure 5a. To produce the synthetic data, about 1/27 brain volume is removed, 

and the resected surface is deformed with a magnitude of 10 mm along the direction from top to the 



bottom of the brain. The synthetic deformed resected brain is produced by our surface-based 430 

registration tool [29, 30], which is capable of deforming the brain based on a specific boundary 

condition: the deformation of the resection surface. The source points   are simulated as the surface 

nodes of the resection region (green points in Figure 5b) before deformation, and the target points   

(white points in Figure 5b) are the surface nodes of the resection region after deformation. All the 

surface nodes except the green nodes are added into   as the outliers (white points in Figure 5c). The 435 

outliers for   are generated using white Gaussian noise (green points in Figure 5d).  

 

   
         a                                                                       b                                             

   440 
                                                    c                                                                        d 

Figure 5. Synthetic data. (a) Surgery simulation. (b) Source (green) and target points (white). (c) Source points 

(green) with outliers (white). (d) Target points (white) with noises (green). 

 

2.3.2 Clinical data 445 

The proposed method was evaluated using 25 clinical volume MRI data. The Surgical Planning 

Laboratory (SPL), Harvard Medical School [31, 32] provided the first 10 cases and the Department of 

Neurosurgery at Shanghai Huashan Hospital (Figure 6) provided the rest 15 cases. 



 

 

Figure 6. The 3.0 T magnet system (Signa SP, Siemens Medical Systems) of the Neurosurgery Department of 450 
Huashan Hospital, Shanghai, China 

 

 

Table 1. Patient information of 25 clinical MRI cases. The first 10 cases were provided by SPL, and the rest 15 

cases by the Neurosurgery Department, Huashan hospital, China. 455 

 

Table 1 lists all patient information including the gender, tumor location, and histopathology. The 

MRI data of the first 10 cases were acquired with the protocol: whole brain sagittal 3D-SPGR (slice 

Case gender Tumor Location Histopathology 

1 M               L perisylvian Oligoastrocytoma WHO II/IV 

2 M fronto-temporal Oligodendroglioma WHO II/IV 

3 F R occipital Anaplastic Oligodendroglioma WHO III/IV 

4 N/A L frontal Oligodendroglioma WHO II/IV 

5 F L frontal Glioblastoma multiforme (WHO IV/IV) 

6 N/A R frontal Oligodendroglioma WHO II/IV 

7 N/A R occipital N/A 

8 F R frontal Oligoastrocytoma WHO II/IV 

9 F L Parietal Glioblastoma multiforme (WHO IV) 

10 M L frontal Glioblastoma multiforme (WHO IV) 

11 M R temporal Metastases 

12 F L posterior temporal Oligodendroglioma WHO II 

13 F L frontal Glioma 

14 F L frontal Glioma 

15 M L frontal Glioma 

16 M L frontal Glioma 

17 M R frontal Glioma 

18 M R parietal Glioma 

19 F R frontal Glioma 

20 M L frontal Glioma 

21 N/A N/A N/A 

22 M L frontal Glioma 

23 M L frontal Glioma 

24 F L frontal Glioma 

25 F L frontal Glioma 



thickness 1.3 mm, TE/TR=6/35 ms, FA=75˚, FOV=24 cm, matrix=256 × 256). For the rest 15 cases 

of Huashan hospital, the MRI data were acquired (IMRISneuro, IMRIS, Canada) in 8 minutes with 460 

the protocol: 3D T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) sagittal images 

with [dimension = 256 × 256 × 176, in plane resolution = 1.0 × 1.0 mm, thickness = 1.0 mm, FOV = 

256 × 256]. 

 

3. RESULTS 465 

In this section, we first evaluate the proposed NEMNRR method on both synthetic data and clinical 

MRI data and then compare the proposed NEMNRR with a classic point-based NRR: PBNRR. 

 

3.1 Experiments on Synthetic Data 

Figure 7a and Figure 7b show that Algorithm 1 correctly detects all the source points and target points. 470 

Most outliers are rejected from   and   except three outliers in   (white points in Figure 7a) and 

corresponding three outliers in   (white points in Figure 7b). Figure 7c shows the mesh with element 

outliers removed, i.e.,         , produced by Algorithm 2. We purposely put the non-resected mesh 

  and the resected mesh          together to show the resection region clearly. We conducted an 

experiment to verify our hypothesis: the removal of element outliers from the model can improve the 475 

accuracy of the registration. In the experiment, we registered the non-resected brain with the 

synthetic deformed resected brain with and without rejecting element outliers. In both registrations, 

we used the same source points and target points. So, the removal of element outliers or not is the 

unique reason causing variation of the results. For each registration, the registration result was 

compared with synthetic deformed resected brain (ground truth) by subtracting one from another to 480 

produce a discrepancy image. If the registration result is closer to the ground truth, the discrepancy 

image should look smoother. Comparing Figure 7d to Figure 7e, the method with element outlier 

rejection demonstrates a more accurate result, which confirms our hypothesis. To quantitatively 

compare the two registration experiments, we used Hausdorff Distance (HD) of Canny edge points 

and the average distance of 6 feature points as the metrics. Please see section 3.2.1 for HD evaluation 485 

and section 3.2.2 for the feature points we choose. The results show that the removal of the elements 

can reduce the average HD from 4.9 mm to 3.6 mm, and reduce the average distance of feature points 

from 3.1mm to 1.4 mm. 
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                                                       d                                                                   e 

Figure 7. The results of synthetic data. (a) Estimated source points. (b) Estimated target points. (c) Non-resected 

mesh   and resected mesh         . (d) Discrepancy between non-resection and ground truth. (e) 

Discrepancy between resection and ground truth.  495 
 

3.2 Experiments on Clinical MRI 

Figure 8a shows the resected mesh and mesh quality. The minimal dihedral angle measures the 

quality of the resected mesh after deformation. Figure 8b shows the deformation field of the 

heterogeneous model. A portion of the brain is purposely severed to expose the ventricle and its 500 

deformation field. The largest deformation reaches 18.2 mm, which occurs in the region near the 

resection including parts of the ventricle as the red color shows.  The ventricles are squeezed inward. 

In this work, we compared our method with PBNRR [16], which has been implemented in ITK and 

released in ITK4.3 [35, 36]. PBNRR uses a homogeneous model and does not account for model 

resection. To compare with PBNRR, we built a simple two-tissue mesh (ventricle plus the rest of the 505 

brain) as shown in Figure 9 using our multi-tissue mesher. To specifically measure the influence of 

the model on the registration, we used the same multi-tissue mesh in both methods. As a result, the 

influence of the discrepancy of the geometry and topology between single mesh and multi-tissue mesh 

can be eliminated. In the homogeneous model we used Young’s modulus E = 3000Pa, Poisson’s ratio 

 = 0.45 for all tetrahedra, and in the heterogeneous model we replaced Young’s modulus with E = 510 

10Pa and Poisson’s ratio with  = 0.1 for the ventricle [15]. 



    

                                       a                                                                         b 

Figure 8. (a) Resected mesh and mesh quality after deformation. The mesh quality is measured by the minimal 

dihedral angle. (b) Deformation field. The color denotes deformation magnitude, and the arrow points to the 515 
deformation direction. A portion of the brain, not including ventricles, is purposely removed to display the 

deformation field of ventricles. 

 

   

                       a                                                    b                                                     c 520 

Figure 9. Multi-tissue mesh. (a) coarse multi-tissue mesh. (b) final multi-tissue mesh. (c) cut through of the final 

mesh. 

 

Figure 10 shows the comparison between NEMNRR and PBNRR for two cases. We use a red arrow 

to point to the boundary on which NEMNRR obviously demonstrates higher accuracy than PBNRR. 525 

 

3.2.1 Quantitative evaluation with the Hausdorff Distance metric 

To quantitatively evaluate the proposed method, we use an objective and automatic evaluation method 

presented in [39] for the accurate validation of intra-operative neuroimage registration. This method 

first uses Canny edge detection to detect two point sets, one in the aligned preoperative image and 530 

another in the intra-operative image; then excludes potential outliers with a round-trip distance larger 

than a prescribed threshold to get two consistent point sets; finally employs Hausdorff Distance [33] 

as the measurement of the degree of mismatch between two point sets with the equation,  

 (   )      , (   )  (   )- (10) 

where  (   )  and  (   ) are directed HD defined by baBAh
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 respectively.   and   are a pair of consistent point sets.  535 
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Figure 10. Comparison between NEMNRR and PBNRR. The first two rows correspond to case 1 and the last 

two rows correspond to case 2. In each case, the first row shows rigidly aligned preMRI, iMRI, warped preMRI 

by NEMNRR, and warped preMRI by PBNRR, respectively. The second row shows the overlay of the edge of 

the iMRI on rigidly aligned preMRI, iMRI, warped preMRI by NEMNRR, and warped preMRI by PBNRR, 540 
respectively.  

 

We follow the same procedures presented in [39] to do the evaluation. Table 2 shows the alignment 

error HDRR, HDPBNRR and HDNEMNRR after a rigid registration (RR), PBNRR and the proposed 

NEMNRR method, respectively. The          HD value is             ,              545 

and 9          , for the RR, PBNRR and NEMNRR, respectively.  



Compared to PBNRR the NEMNRR improves the accuracy by 2.88 mm on average. When the ratio 

(HDPBNRR / HDNEMNRR) > 1, NEMNRR is more accurate than PBNRR. On the other hand, when 

(HDPBNRR / HDNEMNRR) < 1, NEMNRR is less accurate than PBNRR. According to Table 2, the 

NEMNRR outperforms the PBNRR with an average ratio of 1.36. 550 

 

Table 2. Quantitative evaluation with the robust HD metric for 25 clinical cases. The HDRR, HDPBNRR and 

HDNEMNRR (in mm) correspond to a rigid registration (RR), PBNRR and NEMNRR method, respectively. The 

parameters used for the PBNRR are: block radius: [1,1,1] ,window radius: [5,5,5], selection fraction: 0.05, 

rejection fraction: 0.25, number of outlier rejection steps: 10, number of approximation steps: 10. The 555 
parameters used for the NEMNRR are:    = 1.0,    = 10.0, ε = 0.0001, r = 0.93, R = 10.0 mm. 

 

3.2.2 Quantitative evaluation with anatomical points 

To further quantitatively evaluate the proposed method, six anatomical points (A, B, C, D, E, F) were 

selected in the preoperative, intra-operative and warped preoperative MRI of each patient by a 560 

neurosurgery expert, as shown in Figure 11. The points A and B were selected on an individual basis 

at the cortex depending on the shift of the brain surface. The points C and D which could be securely 

Case HDRR HDPBNRR HDNEMNRR                  

1 13.41 7.81 5.00 1.56 

2 23.95 18.38 16.55 1.11 

3 26.43 20.51 14.56 1.41 

4 8.24 4.12 4.00 1.03 

5 17.00 10.00 5.38 1.86 

6 9.43 5.00 4.35 1.15 

7 9.69 7.28 5.00 1.46 

8 6.78 4.35 4.24 1.03 

9 14.45 9.84 3.74 2.63 

10 13.60 7.48 6.40 1.17 

11 17.72 12.20 9.00 1.36 

12 21.42 13.15 9.27 1.42 

13 17.83 10.04 8.06 1.25 

14 24.55 23.04 17.49 1.32 

15 10.67 7.28 6.40 1.14 

16 21.09 16.52 8.71 1.90 

17 25.61 21.30 17.14 1.24 

18 12.24 9.69 7.87 1.23 

19 13.15 6.78 6.40 1.06 

20 32.38 27.36 26.94 1.02 

21 18.68 12.24 9.16 1.34 

22 19.02 14.31 12.08 1.18 

23 18.05 17.97 13.92 1.29 

24 27.78 23.00 19.00 1.21 

25 13.92 8.12 5.09 1.60 

                                                   



 

identified were chosen around the ventricular system in each dataset. The points E and F correspond 

to the junction between the pons and mid-brain, and the roof of fourth ventricle, respectively [41].  

 565 

      

Figure 11. 6 anatomical points used for the quantitative evaluation. A and B: cortex feature points, C and D: ventricular feature points, E and 

F: junction between the pons and mid-brain.  
 

 570 

Table 3 shows the average errors (min, max, mean) of the 25 clinical cases after the PBNRR and the 

NEMNRR registration. The error was calculated as the distance between the anatomical points in the 

intra-operative MRI and the warped preoperative MRI. For each patient, we calculated the min, max 

and mean errors of 6 points and then calculated their average errors, respectively for 25 patients. 

Table 3 demonstrates that in this subjective evaluation the NEMNRR outperforms PBNRR, which is 575 

consistent with the objective evaluation using Hausdorff Distance. Compared Table 2 with Table 3, 

the HD evaluation shows a larger average error (       ) than the feature point based evaluation 

(3.69 mm). The reason is the HD measures the largest error in a huge superset (hundreds of thousands 

edge points) of the 6 anatomical points. The HD evaluation objectively demonstrates the proposed 

method outperforms PBNRR, but does not provide direct insight for the accuracy within the region of 580 

interest (ROI). In the feature point based evaluation, 6 anatomical feature points are purposely 

selected in the ROI suggested in [41]. The result shows the average min, max and mean errors can 

reach 1.36 mm, 7.79 mm and 3.69 mm, respectively, which is acceptable in clinic. Compared with a 

well evaluated and published method PBNRR, the proposed method increases the accuracy by 2.88 

mm regarding HD and 1.56 mm regarding feature points on average.  585 

 

Table 3. Quantitative evaluation with anatomical points A,B,C,D,E,F for the 25 clinical cases. The error (in mm) 

is the distance between the identified anatomical points in the warped preoperative MRI and the intra-operative 

MRI. 

Method Average min error Average max error Average mean error 

PBNRR 2.22 10.10 5.25 

NEMNRR 1.36 7.79 3.69 

PBNRR-NEMNRR 0.86 2.31 1.56 

 590 

 

4. DISCUSSION 

In this paper, we use the edge points in both registration and evaluation. In the registration, the edge 

points are used to drive a biomechanical model to estimate the entire deformation field. The reason we 



prefer edge points lies in the following consideration. In clinic, surgeons pay more attention to the 595 

boundary of critical brain structures. It would be valuable to directly control the matching of the 

boundary. Thus, we use Canny detection to detect the edges and then directly match the edges under 

the control of the second term in energy function (6). For non-edge regions of the brain, we use a 

biomechanical model (see the first term in the energy function (6)) to interpolate the deformation. In 

another word, our method directly matches the part, in which surgeons are interested. We think this 600 

“direct” method is better than an “indirect” method such as the intensity based method. The intensity 

based method aims to match the entire intensity, but lacks the direct control of the edges, in which 

surgeons are most interested. In this sense, we think incorporating edge points into the registration is 

actually one advantage of our method. To make our evaluation more comprehensive, we also 

conducted experiments using 6 anatomical points. This feature point based evaluation confirms our 605 

method is better than PBNRR and the average mean error is acceptable in clinic.  

In our work, we do not use the surface nodes of the multi-tissue mesh as the registration points. This 

is due to the limitation of brain segmentation. Currently, in over 160 brain tissues, not all of them can 

be precisely segmented. Thus the resulting multi-tissue mesh cannot precisely describe the geometry 

of the brain tissues, and the surface nodes cannot provide sufficient information to drive the 610 

biomechanical model. In this work, we only segmented the ventricles and the brain. The number of 

surface nodes is much less than the number of detected edge points. So, we use the edge points 

instead of the surface nodes. If many brain tissues can be segmented, we believe the edge points in the 

source point set can be replaced with surface nodes. 

In the total 25 cases, cases 4, 19 and 20 do not show obvious improvement of the accuracy. 615 

Examining these three cases, we found all these three cases only have a very small tumor or no tumor 

resected. Compared with PBNRR, one of the advantages of the proposed method lies in the removal 

of elements from the biomechanical model. Because the resection region is very small or zero, the 

removal of elements from the model does not affect the registration too much. Thus, the improvement 

of the accuracy for these three cases is not obvious. 620 

In this paper, we presented a Nested EM algorithm to resolve the three variables. We need to point out 

that the proposed Nested EM cannot avoid local minima. This is because the proposed Nested EM is 

based on the traditional EM, which is not a global optimizer. However, in practice, we think local 

minima is not an issue because the rigid registration can bring the potential solution close to the real 

solution.  625 

In this work, we used a simple two-tissue heterogeneous model to perform the evaluation, but the 

proposed method is capable of incorporating as many tissues as possible. We believe that as more 

tissues are incorporated into the model, such as the falx of the brain, the accuracy of the registration 

will be further improved. 

 630 

 



 

5. CONCLUSION 

We presented a non-rigid registration method to compensate for brain deformation resulting from 

tumor resection. This method does not require the point correspondence to be known in advance and 

allows the input data to be incomplete, thus producing a more general point-based NRR. This method 635 

uses strain energy of the biomechanical model to regularize the solution. To improve the fidelity of 

the simulation of the underlying deformation field, we built a heterogeneous model based on a multi-

tissue mesher. To resolve the deformation field with missing correspondence and resection region, we 

developed a Nested EM framework to resolve these three variables simultaneously. 

Compared to an ITK implementation of a cutting edge registration method PBNRR, the NEMNRR 640 

outperforms PBNRR by improving the accuracy by 2.88 mm regarding HD evaluation, and by 1.56 

mm regarding feature point evaluation on average for 25 clinical cases. The average mean error in the 

ROI can reach 3.69 mm. 
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