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Abstract We consider the co-clustering of time-varying data using evolutionary co-
clustering methods. Existing approaches are based on the spectral learning framework,
thus lacking a probabilistic interpretation. We overcome this limitation by developing
a probabilistic model in this paper. The proposed model assumes that the observed
data are generated via a two-step process that depends on the historic co-clusters. This
allows us to capture the temporal smoothness in a probabilistically principled manner.
To perform maximum likelihood parameter estimation, we present an EM-based algo-
rithm. We also establish the convergence of the proposed EM algorithm. An appealing
feature of the proposed model is that it leads to soft co-clustering assignments nat-
urally. We evaluate the proposed method on both synthetic and real-world data sets.
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W. Zhang et al.

Experimental results show that our method consistently outperforms prior approaches
based on spectral method. To fully exploit the real-world impact of our methods,
we further perform a systematic application study on the analysis of Drosophila gene
expression pattern images. We encode the spatial gene expression information at a par-
ticular developmental time point into a data matrix using a mesh-generation pipeline.
We then co-cluster the embryonic domains and the genes simultaneously for multi-
ple time points using our evolutionary co-clustering method. Results show that the
co-clusters of gene and embryonic domains reflect the underlying biology.

Keywords Evolutionary co-clustering · Expectation maximization · Biological
image computing · Bioinformatics

1 Introduction

The data generated by many real-world processes are dynamically changing over time.
For example, in literature mining, the author-conference co-occurrence matrix evolves
dynamically over time, since authors may shift their research interests smoothly.
In biology, gene expression controls are deployed sequentially in many biological
processes. This generates the expression data matrices that are evolving over time.
Temporal data mining aims at discovering knowledge from time-varying data and
is now receiving increasing attention in many domains, including graph and net-
work analysis (Leskovec et al. 2007; Asur et al. 2007; Sun et al. 2007), information
retrieval (Tong et al. 2008; Saha and Sindhwani 2012), text mining (Mei and Zhai
2005), clustering analysis (Aggarwal et al. 2003; Chakrabarti et al. 2006; Chi et al.
2009; Lin et al. 2009), and matrix factorization (Wang et al. 2008, 2011a,b). Since
the data are evolving smoothly over time, the patterns embedded into the data are also
expected to change smoothly. Therefore, one of the key challenges in temporal data
mining is how to incorporate temporal smoothness into the patterns identified from
adjacent time points.

In traditional clustering analysis, the sample and feature dimensions are treated
asymmetrically (Jain et al. 1999). In contrast, co-clustering aims at clustering both the
samples and the features simultaneously to identify hidden block structures embedded
into the data matrix (Hartigan 1972; Cheng and Church 2000; Dhillon et al. 2003; Long
et al. 2005; Deodhar and Ghosh 2010). Co-clustering is closely related to matrix and
tensor factorization (Tao et al. 2007; Li and Tao 2013a,b). Currently, co-clustering has
been widely applied in many domains, including biological data analysis (Madeira
and Oliveira 2004; Kluger et al. 2003), text mining (Dhillon et al. 2003; Dhillon
2001), and social studies (Giannakidou et al. 2008). However, most existing studies
on co-clustering assume that the data are static.

In this paper, we consider the co-clustering of data matrices that evolve dynamically
over time. A simple approach is to apply co-clustering methods to each data matrix
separately. This approach, however, ignores the smoothness between adjacent matri-
ces. Existing methods are based on the spectral learning framework and do not require
the co-cluster indicator matrices to be nonnegative, hindering a probabilistic interpre-
tation of the results (Green et al. 2011). We overcome this limitation by developing a
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probabilistic model for this problem. The proposed probabilistic model assumes that
the observed data matrices are generated via a two-step process that depends on the
historic co-clusters. This allows us to capture the temporal smoothness in a probabilis-
tically principled manner. To enable maximum likelihood parameter estimation, we
develop an EM algorithm for the probabilistic model. We further establish the con-
vergence of the EM algorithm. An appealing feature of the proposed method is that
it leads to soft co-clustering assignments naturally. We evaluate the proposed meth-
ods on both synthetic and real data sets. Experimental results show that the proposed
model consistently outperforms prior methods based on spectral learning.

We perform a systematic application study on the analysis of Drosophila gene
expression pattern images. In this application, we use a geometric domain tessella-
tion pipeline to convert gene expression pattern images to an algebraic representa-
tion, which is a data matrix for each of the developmental time point. We then apply
our evolutionary co-clustering algorithm to cluster the genes and the mesh elements
simultaneously across multiple time points. Experimental results show that the co-
expressed embryonic domains and the associated genes reflect the underlying biology
of Drosophila embryogenesis.

A preliminary version of the evolutionary soft co-clustering formulation described
in the current paper appeared at the 2013 SIAM International Conference on Data
Mining (Zhang et al. 2013). We extend the conference paper by establishing the con-
vergence of the proposed EM algorithm in this paper. In addition, complete details
on the probability distributions underlying the proposed model are provided. We also
perform a systematic application study on the analysis of Drosophila gene expres-
sion pattern images. The new study involves a mesh generation pipeline that converts
genome-wide expression pattern images into the same coordinate space in which
the evolutionary co-clustering method is applied to identify co-expressed genes and
embryonic domains. The background and discussions have also been substantially
expanded to provide more insights.

The rest of this paper is organized as follows: We begin by introducing some
background in Sect. 2 and related work and extensions in Sect. 3. In Sect. 4, the
probabilistic model is presented. The experimental studies on synthetic and publication
data sets are reported in Sect. 5. The in-depth application study is described in Sect. 6,
and this paper concludes with discussions in Sect. 7.
Notations We use Tr(W ) to represent the trace of matrix W where Tr(W ) =∑n

i=1wi i

for any matrix W ∈ R
n×n . The squared Frobenius norm of a matrix W is defined as

‖W‖2F =
∑

i, j w
2
i, j = Tr(W T W ). We use A ∈ R

m×n to denote the data matrix
for a problem with k co-clusters, the co-clustering results can be encoded into a co-
cluster indicator matrix R ∈ R

(m+n)×k . Let RT = [RT
1 , RT

2 ], where R1 ∈ R
m×k

and R2 ∈ R
n×k . The indicator matrix R is defined as follows: (R1)i j = 1 if the i th

row belongs to the j th co-cluster, and zero otherwise; (R2)i j = 1 if the i th column
belongs to the j th co-cluster, and zero otherwise. We further define R̃ ∈ R

(m+n)×k ,
where each column of R̃ is the corresponding column in R divided by the square root
of the number of ones in that column.
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2 Background

Cluster analysis aims at grouping a set of data points into clusters so that the data points
in the same cluster are similar, while those in different clusters are dissimilar. Given
a data matrix A = [a1, a2, . . . , an] ∈ R

m×n consisting of n data points {ai }ni=1 ∈
R

m . Let Π = {π j }kj=1 denote a partition of the data into k clusters; that is, π j =
{v|avin cluster j} and πi

⋂
π j = ∅ for i �= j . The partition can also be encoded

equivalently into an n×k cluster indicator matrix Y = [y1, y2, . . . , yk], where Ypq = 1
if the pth data point belongs to the qth cluster, and 0 otherwise. We further define a
normalized cluster indicator matrix Ỹ = [ỹ1, ỹ2, . . . , ỹk], where ỹi = yi/

√|πi | and
|πi | denotes the number of data points in the i th cluster. It can be verified that the
columns of ỹ are orthonormal, i.e., ỹT ỹ = Ik .

2.1 Spectral clustering

In spectral clustering (Shi and Malik 2000; Luxburg 2007; Ng et al. 2001; Dhillon
et al. 2004), the data set is represented by a weighted graph G = (V, E) in which
the vertices in V correspond to data points, and the edges in E characterize the sim-
ilarities between data points. The weights of the edges are usually encoded into the
adjacency matrix W . Several constructions of similarity graph are regularly used, such
as the ε-neighborhood graph and the k-nearest neighbor graph (Luxburg 2007).

Spectral clustering is based on the idea of graph cuts, and different graph cut
measures have been defined. Two popular approaches are to maximize the aver-
age association and to minimize the normalized cut (Shi and Malik 2000). For two
subsets, πp, πq ∈ Π , the cut between πp and πq is defined as cut (πp, πq) =∑

i∈πp, j∈πq
W (i, j). Then the k-way average association (AA) and the k-way nor-

malized cut (NC) can be written as

AA =
k∑

l=1

cut (πl , πl)

|πl | , NC =
k∑

l=1

cut (πl ,Π \ πl)

cut (πl ,Π)
, (1)

where \ denotes the set minus operation. In Chi et al. (2009), the negated average
association is defined as NA = Tr(W )− AA. Note that the average association char-
acterizes the within cluster association, while the normalized cut captures the between
cluster separation. Furthermore, maximizing the average association is equivalent to
minimizing the negated average association. Hence, the negated average association
will be used throughout this paper.

It has been shown (Shi and Malik 2000) that exact minimization of common graph
cut measures, such as the normalized cut and the negated average association, is an
intractable problem. Hence, a two-step procedure is commonly employed in spec-
tral clustering. In the first step, the graph cut problems are relaxed to a trace opti-
mization problem, whose solution typically can be obtained by computing the eigen-
decomposition of the graph Laplacian matrices (Luxburg 2007; Chung 1997). Then
in the second step, the final clustering results are generated by clustering the solution
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of the relaxed problem. The focus of this paper is on how to incorporate smoothness
constraints into the first step, the second step is outside the scope of this paper.

2.2 Spectral co-clustering

In Dhillon (2001), Zha et al. (2001), the spectral clustering formalism is extended
to solve co-clustering problems. Given a data matrix A ∈ R

m×n , such as the word-
by-document matrix, a bipartite graph is constructed, where the two sets of vertices
correspond to the rows and the columns, respectively. Then the co-clustering problem
is reduced to perform graph cuts on this bipartite graph. Formally, the similarity matrix
of the bipartite graph can be written as

W =
[

0 A
AT 0

]

. (2)

A variety of graph cut criteria can then be applied to partition the bipartite graph. For
example, when the normalized cut is used, the Laplacian matrix and the degree matrix
for this bipartite graph can be written as

L =
[

D1 −A
−AT D2

]

, D =
[

D1 0
0 D2

]

, (3)

where D1 and D2 are diagonal matrices whose diagonal elements are defined as

D1(i i) =
∑

j

Ai j , D2( j j) =
∑

i

Ai j .

Then the normalized cut criterion can be relaxed, and the solution for the relaxed
problem can be obtained by solving the following eigenvalue problem:

[
D1 −A
−AT D2

] [
x
y

]

= λ
[

D1 0
0 D2

] [
x
y

]

, (4)

where x ∈ R
m and y ∈ R

n are the relaxed row and column cluster indicator matrices,
respectively.

2.3 Evolutionary clustering

When the data matrices evolve along the temporal dimension, it is desirable to cap-
ture the temporal smoothness in clustering analysis. Recently, several evolutionary
clustering methods have been developed to cluster time-varying data by incorporating
temporal smoothness constraints directly into the clustering framework (Chakrabarti
et al. 2006; Chi et al. 2009; Lin et al. 2009; Tianbing et al. 2012).
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In Chi et al. (2009), two main frameworks, known as preserving cluster quality
(PCQ) and preserving cluster membership (PCM), are proposed to incorporate tempo-
ral smoothness. In these two formulations, the cost functions contain two terms, known
as the snapshot cost (CS) and the temporal cost (CT) as Cost = α · CS+ (1− α)CT,
where 0 ≤ α ≤ 1 is a tunable parameter. In this formulation, the snapshot cost captures
the clustering quality on the current data matrix, while the temporal cost encourages the
temporal smoothness with respect to either historic data or historic clustering results.
The main difference between PCQ and PCM lies in the definitions of the temporal
costs. Specifically, the temporal cost in PCQ is devised to encode the consistency
between current clustering results with historic data, while that in PCM is used to
encourage temporal smoothness between current and historic clustering results.

Let Yt denotes the cluster indicator matrix for time t , then the objective function for
PCQ can be expressed as CostPCQ = α ·Costt |Yt + (1−α) ·Costt−1|Yt ,where Costt |Yt

and Costt−1|Yt denote the costs of applying the clustering results in Yt to the data at
time points t and t−1, respectively. In contrast, the temporal cost in PCM is expressed
as the difference between the current and the historic clustering results, leading to the
following overall objective function CostPCM = α ·Costt |Yt + (1−α) ·dist(Yt ,Yt−1),

where dist(·, ·) denotes certain distance measure.
Following the soft clustering framework proposed in Yu et al. (2006), an evolu-

tionary clustering method based on nonnegative matrix factorization (NMF) has been
developed in Lin et al. (2009). Let Wt be the similarity matrix for time point t , the
objective function for evolutionary clustering in Lin et al. (2009) can be expressed as

CostNMF = α · D
(

Wt‖XtΛt X T
t

)

+ (1− α) · D(Xt−1Λt−1‖XtΛt ), (5)

where D(·‖·) is the KL-divergence, Xt is the soft clustering indicator matrix, and Λt

is a diagonal matrix. An iterative procedure is devised to compute the solution. It is
also shown in Lin et al. (2009) that the proposed method can be interpreted from the
perspective of probabilistic generative models.

3 Related work and extensions

Following the evolutionary spectral clustering framework in Chi et al. (2009), two spec-
tral methods for evolutionary co-clustering have been proposed in Green et al. (2011).
In this section, we systematically extend the spectral methods in Green et al. (2011)
using two different graph cut criteria, leading to four different methods for capturing
the temporal smoothness. Our experimental results in Sect. 5 show that the probabilis-
tic model proposed in this paper consistently outperforms the spectral methods.

3.1 Preserving co-cluster quality

In preserving co-cluster quality (PCCQ), the temporal cost measures the quality of
current co-clustering results when applied to historic data. In the following, we describe
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the PCCQ formalism using both the negated average association and the normalized
cut criteria.

3.1.1 Negated average association

Given a data matrix A ∈ R
m×n , the negated average association objective function in

co-clustering can be written as

NA = Tr(W )− Tr
(

R̃T W R̃
)
, (6)

where R̃ ∈ R
(m+n)×k is the normalized co-cluster indicator matrix, W is defined in

Eq. (2) and denotes the similarity matrix associated with the bipartite graph. Writing
R̃ = [PT , QT ]T , where P ∈ R

m×k and Q ∈ R
n×k are the row and column cluster

indicator matrices, respectively, and substituting W into Eq. (6), we obtain

NA = −Tr
(

PT AT Q + PT AQ
)
= −2Tr

(
PT AQ

)
. (7)

We propose to employ the following cost function for the PCCQ evolutionary co-
clustering formalism based on negated average association:

NAPCCQ = α · N At |R̃t
+ (1− α) · N At−1|R̃t

= −Tr
(

PT
t (αAt + (1− α)At−1) Qt

)
,

where At , Pt , and Qt denote the corresponding matrices for time point t . Since solving
the above problem exactly is intractable, we propose to relax the constraints on the
entries in Pt and Qt while keeping the orthonormality constraints. It follows from
the spectral co-clustering formalism (Dhillon 2001) that columns of the optimal P∗t
and Q∗t that minimize the relaxed problem are given by the k principal left and right,
respectively, singular vectors of the matrix αAt + (1− α)At−1.

3.1.2 Normalized cut

It follows from Proposition 1 in Bach and Jordan (2006) that the normalized cut
criterion can be expressed equivalently as

NC = k − Tr
(

ST (D−
1
2 W D−

1
2 )S

)
, (8)

where

D =
[

D1 0
0 D2

]

, W =
[

0 A
AT 0

]

, (9)

and S ∈ R
(m+n)×k satisfies two conditions: (a) the columns of D−1/2S are piecewise

constant with respect to R, and (b) ST S = I . Let S = [ET , FT ]T , where E ∈ R
m×k
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and F ∈ R
n×k , then the normalized cut criterion in Eq. (8) can be written as NC =

k − 2Tr
(

ET (D−1/2
1 AD−1/2

2 )F
)
.

We propose to employ the following cost function in PCCQ under the normalized
cut criterion:

NCPCCQ = α · NCt |St + (1− α) · NCt−1|St

= k − 2Tr
(

ET
t (αD−1/2

1,t At D−1/2
2,t

+ (1− α)D−1/2
1,t−1 At−1 D−1/2

2,t−1)Ft

)
,

where D1,t and D2,t are the diagonal matrices at time t . Similar to the case of negated
average association, we relax the constraints on the entries of Et and Ft while keep the
orthonormality constraints. It can be verified that columns of the optimal E∗t and F∗t
that minimize the relaxed problem consist of the principal left and right, respectively,
singular vectors of the matrix αD−1/2

1,t At D−1/2
2,t + (1 − α)D−1/2

1,t−1 At−1 D−1/2
2,t−1. Then

the rows of the matrix

[
D−1/2

1,t E∗t
D−1/2

2,t F∗t

]

are clustered to identify co-clusters.

3.2 Preserving co-cluster membership

In preserving co-cluster membership (PCCM), the temporal cost measures the con-
sistency between temporally adjacent co-clustering results. Let Ut and Vt denote the
solutions of the relaxed problems at time point t as described in Sect. 3.1. Note that
columns of Ut and Vt are the left and right singular vectors, respectively, of certain
matrix. Since the singular vectors of a matrix may not be unique (Golub and van Loan
1996), we cannot require Ut and Ut−1 to be similar and Vt and Vt−1 to be similar.
However, it is known that Ut V T

t is unique in all cases. Hence, we propose to employ
the following temporal cost in PCCM:

CTPCCM = ‖Ut V
T

t −Ut−1V T
t−1‖2F . (10)

3.2.1 Negated average association

By using the temporal cost in Eq. (10) to quantify the smoothness, we propose the
following overall cost function for PCCM under the negated average association cri-
terion:

NAPCCM = α · CSNA + (1− α) · CTPCCM

= 2(1− α)k
− 2Tr

(
U T

t

(
αAt + (1− α)Ut−1V T

t−1

)
Vt

)
.
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Minimizing NAPCCM is equivalent to maximizing Tr
(

U T
t

(
αAt + (1− α)Ut−1V T

t−1

)

Vt

)
. Hence, columns of the optimal U∗t and V ∗t consist of the principal left and right

singular vectors, respectively, of the matrix αAt + (1− α)Ut−1V T
t−1.

3.2.2 Normalized cut

When the temporal cost in Eq. (10) is used along with the normalized cut criterion,
we obtain the following problem:

NCPCCM = (2− α)k
− 2Tr

(
U T

t

(
αD−1/2

1,t At D−1/2
2,t + (1− α)Ut−1V T

t−1

)
Vt

)
.

Minimizing NCPCCM is equivalent to maximizing

Tr
(

U T
t

(
αD−1/2

1,t At D−1/2
2,t + (1− α)Ut−1V T

t−1

)
Vt

)
.

Hence, columns of the optimal U∗t and V ∗t consist of the principal left and right singular

vectors, respectively, of the matrix αD−1/2
1,t At D−1/2

2,t + (1 − α)Ut−1V T
t−1. The final

co-clusters are obtained by clustering the rows of the matrix

[
D−1/2

1,t U∗t
D−1/2

2,t V ∗t

]

.

4 Evolutionary soft co-clustering

Although both co-clustering and evolutionary clustering have been intensively studied,
the field of evolutionary co-clustering remains largely unexplored (Green et al. 2011).
In addition, prior method (discussed in Sect. 3) employs singular value decomposition
(SVD) in computing the solutions of relaxed problems. In many applications, such as
image and text analysis, the original data matrices are nonnegative. A factorization
such as SVD produces factors containing negative entries. This leads to complex can-
celations between positive and negative numbers, and the results are usually difficult to
interpret (Lee and Seung 1999). We address this challenge by proposing a probabilistic
model for evolutionary co-clustering in this section. This model results in nonnega-
tive factors, thereby overcoming the limitation of spectral methods. In addition, the
probabilities can be interpreted to produce soft co-clusters.

4.1 The proposed model

In the proposed model, we assume that the similarity matrix Wt of the bipartite graph
can be factorized as

Wt = Ht H̃t , (11)
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where

Wt =
[

0 At

At
T 0

]

, (12)

At ∈ R
m×n is the data matrix,

Ht =
[

H1,t 0
0 H2,t

]

, H̃t =
[

0 H T
2,t

H T
1,t 0

]

, (13)

where Ht ∈ R
(m+n)×(2k), H̃t ∈ R

(2k)×(m+n), H1,t ∈ R
m×k denotes the row cluster

indicator matrix, and H2,t ∈ R
n×k denotes the column cluster indicator matrix. It

follows that

Ht H̃t =
[

0 H1,t H T
2,t(

H1,t H T
2,t

)T
0

]

, (14)

which matches the structure of Wt in Eq. (12).
In the proposed probabilistic model, the similarity matrix Wt is generated via a

two-step process. In the first step, Ht H̃t is generated based on the co-clustering results
Ht−1 H̃t−1 at time point t − 1 using P(Ht H̃t |Ht−1 H̃t−1). In the second step, the
observed similarity matrix Wt is generated based on Ht H̃t using P(Wt |Ht H̃t ). Fol-
lowing Lin et al. (2009), we employ the Dirichlet and multinomial distributions in the
first and second steps, respectively.

Specifically, we model log P(Wt |Ht H̃t ) by a multinomial distribution with para-
meter ωt,i j = (Ht H̃t )i j as

log P(Wt |Ht H̃t ) = log
Γ

(
1+∑

i j (Wt )i j

)

∏
i j Γ

(
1+ (Wt )i j

)
∏

i j

ω
(Wt )i j
t,i j

∝
∑

i j

(Wt )i j log
(

Ht H̃t

)

i j

= 2
∑

i j

(At )i j log
(

H1,t H T
2,t

)

i j
,

where the last step follows from the symmetry of matrices Wt and Ht H̃t .
Since the conjugate prior for the multinomial distribution is the Dirichlet distri-

bution, it is natural to use a Dirichlet distribution to model P(Ht H̃t |Ht−1 H̃t−1).
Specifically, we assume that Ht H̃t follows a Dirichlet distribution with parameters
ψt = ν ·vec(Ht−1 H̃t−1)+1, where 1 is a vector of ones of appropriate length. Through
the parameters ψt , the distribution P(Ht H̃t ) at time t is determined by Ht−1 H̃t−1 at
time t − 1. Under this model, we have
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log P
(

Ht H̃t |Ht−1 H̃t−1

)
= log

Γ (
∑

k ψt,k)
∏

k Γ (ψt,k)

∏

i j

(
Ht H̃t

)ν·
(

Ht−1 H̃t−1

)

i j

i j

∝ 2ν
∑

i j

(
H1,t−1 H T

2,t−1

)

i j
log

(
H1,t H T

2,t

)

i j
.

This gives rise to the following log likelihood function of observing the current weight
matrix Wt :

L = log P
(

Wt |Ht H̃t

)
+ ν log P

(
Ht H̃t |Ht−1 H̃t−1

)

= 2
∑

i j

(At )i j log
(

H1,t H T
2,t

)

i j

+ 2ν
∑

i j

(
H1,t−1 H T

2,t−1

)

i j
log

(
H1,t H T

2,t

)

i j
, (15)

where parameter ν controls the temporal smoothness.

4.2 An EM algorithm

To maximize the log likelihood in Eq. (15), we derive an EM algorithm in the following.
To simplify notation, we omit the subscript t when the time information is clear from
context. We use variables with hat (e.g., ĥ1;ik and Ĥ1) to denote the values obtained
from the previous iteration.

In the E-step, we compute the expectation as

φi jk = ĥ1;ik ĥ2; jk
(

Ĥ1 Ĥ T
2

)

i j

, (16)

where
∑

k φi jk = 1, ĥ1;ik and ĥ2; jk denote the ikth and the jkth entries, respectively,
of H1 and H2 computed from the previous iteration.

In the M-step, we maximize the expectation of log likelihood with respect to Φ =
(Φ)i jk

EΦ [L] = 2×
∑

i jk

φi jkat
i j log

(
ht

1;ikht
2; jk

)
+ 2× ν

∑

i jk

ht−1
1;ikht−1

2; jk log
(

ht
1;ikht

2; jk

)
,

(17)

where the superscripts t and t − 1 are used to denote variables at the corresponding
time points. To facilitate a probabilistic interpretation of the co-clustering results, we
impose the following normalization constraints:

∑

i

ht
1;ik = 1,

∑

j

ht
2; jk = 1.
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By using Lagrange multipliers for these constraints, it can be shown that the fol-
lowing update rules will monotonically increase the expected log likelihood defined
in Eq. (17), thereby leading to convergence to an locally optimal solution (Yu et al.
2006):

h1;ik ← 2×
∑

j

ĥ1;ik ĥ2; jkat
i j

(
Ĥ1 Ĥ T

2

)

i j

+ 2× ν
∑

j

(
ht−1

1;ikht−1
2; jk

)
,

h2; jk ← 2×
∑

i

ĥ1;ik ĥ2; jkat
i j

(
Ĥ1 Ĥ T

2

)

i j

+ 2× ν
∑

i

(
ht−1

1;ikht−1
2; jk

)
.

The results are then normalized such that
∑

i ht
1;ik = 1 and

∑
j ht

2; jk = 1, ∀k.
The E-step and M-step are repeated until a locally optimal solution is obtained.

Then the matrices H1,t and H2,t can be used as row and column co-cluster indicator
matrices, respectively, to obtain soft co-clustering results. Our experimental results
show that this probabilistic model achieves superior performance on both synthetic
and real data sets.

4.3 Convergence of the EM algorithm

In this section, we establish the convergence of the proposed EM algorithm. To this
end, we need to show that the cost function in Eq. (15) is non-decreasing under the
update rules proposed in Sect. 4.2. To simplify the notation, we use Ht to denote{

H1,t , H2,t
}
. Given Ht−1, the objective in Eq. (15) is a function of Ht as

L(Ht ) = 2
∑

i j

at
i j log

(
H1,t H T

2,t

)

i j

+ 2ν
∑

i j

(
H1,t−1 H T

2,t−1

)

i j
log

(
H1,t H T

2,t

)

i j
.

To show that the above objective is non-decreasing, we need to construct an auxiliary
function f (·, ·) so that

f (Ht , Ht ) = L(Ht ),

f (Ht , H∗t ) ≤ L(Ht ),

for any H∗t . Then, we need to show that the proposed update rule satisfies

H p+1 = arg max
H

f (H, H p),

where the superscript p denotes the value at the p-th iteration. This would allow us to
show that the objective function does not decrease, since
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L(H p+1) ≥ f (H p+1, H p) ≥ f (H p, H p) = L(H p).

To this end, we define

f (Ht , H∗t ) =
∑

i jk

2at
i j

ht,∗
1;ikht,∗

2; jk
∑

l ht,∗
1;il h

t,∗
2; jl

[

log
(

ht
1;ikht

2; jk

)
− log

ht,∗
1;ikht,∗

2; jk
∑

l ht,∗
1;il h

t,∗
2; jl

]

+ 2ν
∑

i jk

ht−1
1;ikht−1

2; jk log
(

ht
1;ikht

2; jk

)
,

where we use the superscripts t and t − 1 to denote variables at the corresponding
time points. The following derivations verify that f (Ht , Ht ) = L(Ht ):

f (Ht , Ht ) =
∑

i jk

2at
i j

ht
1;ikht

2; jk
∑

l ht
1;il h

t
2; jl

[

log
(

ht
1;ikht

2; jk

)
− log

ht
1;ikht

2; jk
∑

l ht
1;il h

t
2; jl

]

+ 2ν
∑

i jk

ht−1
1;ikht−1

2; jklog
(

ht
1;ikht

2; jk

)

=
∑

i jk

2at
i j

ht
1;ikht

2; jk
∑

l ht
1;il h

t
2; jl

log
∑

l

ht
1;il h

t
2; jl

+ 2ν
∑

i jk

ht−1
1;ikht−1

2; jklog
(

ht
1;ikht

2; jk

)

=
∑

i j

2at
i j log

∑

l

ht
1;il h

t
2; jl + 2ν

∑

i jk

ht−1
1;ikht−1

2; jk log
(

ht
1;ikht

2; jk

)

= L(Ht ).

To prove the inequality f (Ht , H∗t ) ≤ L(Ht ), we need to show that the following
inequality is satisfied for all i, j :

∑
k

ht,∗
1;ik ht,∗

2; jk
∑

l ht,∗
1;il h

t,∗
2; jl

[

log
(

ht
1;ikht

2; jk

)
− log

ht,∗
1;ik ht,∗

2; jk
∑

l ht,∗
1;il h

t,∗
2; jl

]

≤ log
∑

l ht
1;il h

t
2; jl ,∀i, j.

We denote βk = ht,∗
1;ik ht,∗

2; jk
∑

l ht,∗
1;il h

t,∗
2; jl

and Xk = ht
1;ikht

2; jk . Then, the above inequality can be

written as

∑

k

βk

[

log

(
Xk

βk

)]

≤ log

(
∑

k

(

βk · Xk

βk

))

= log
∑

k

Xk . (18)

The inequality in Eq. (18) follows from the concavity of log function. This proves that
f (Ht , H∗t ) ≤ L(Ht ). Finally, the update rules can be obtained by setting the derivative
of f with respect to ht

1;ik and ht
2; jk to zero respectively.
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4.4 Co-cluster evolution

An unique property of the proposed probabilistic model is that the identified co-clusters
can be related across time points, giving rise to co-cluster evolution. Figure 1 shows
how co-clusters evolve for a 5 × 4 example data matrix, where r1 to r5 correspond
to the five rows, c1 to c4 correspond to the four columns, and R1 to R4 denote the
co-clusters. In panel (a), the matrix is co-clustered into 3 co-clusters as indicated by
the dashed ovals. At time t in panel (b), the data is clustered into 4 co-clusters. The
row and column co-clusters across time points can be related naturally by considering
the sharing of rows and columns between co-clusters. This is illustrated in panels
(c) and (d), which depict how the row and column co-clusters, respectively, evolves
from time points t − 1 to t . Note that the co-cluster evolution is a direct product
of the soft co-cluster assignment proposed in this paper. This demonstrates that the
soft co-cluster assignment formalism captures additional temporal dynamics, which
have been ignored by prior methods. More importantly, we show in Sect. 5 that our
evolutionary soft co-clustering formulation outperforms prior methods consistently.

5 Experimental evaluation

5.1 Synthetic data # 1

We generate a synthetic data set with 7 time-steps and 5 co-clusters, each containing
200 instances and 10 features. At t = 0, the entries corresponding to rows and columns

R1

R2

R3

c1

c2

c3

c4

t-1

R1

R2

R3

r5

r4

r3

r2

r1

c1

c2

c3

c4

t

R4r5

r4

r3

r2

r1

r5

r4

r3

r2

r1R1

R2

R3

R1

R2

R3

R4
c4

c3

c2

c1R1

R2

R3

R1

R2

R3

R4

t-1 t t-1 t

(a) (b)

(d)(c)

Fig. 1 Illustration of co-cluster evolution. a and b show the co-clustering results at time points t − 1 and
t , respectively. c and d show the row and column co-cluster evolution, respectively, between time points
t − 1 and t . See text for detailed explanations
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Fig. 2 Performance comparison between the proposed probabilistic model (ProbEvol-Co) with that of the
co-clustering method when ν varies from 0 to 100

in the same co-cluster are set to nonzero with a high probability p while other entries
are set to nonzero with a low probability q which satisfies p = 4q and p + 4q = 1.
The data at t = 1 are generated by adding a Gaussian noise to each entry of the
data at t = 0. To simulate the evolving nature of the data, 20 % of the instances in
co-cluster I are set to be weakly correlated to features in co-cluster III at t = 2. The
level of correlation by the same set of instances is increased at t = 3 so that they are
equally correlated to features in co-clusters I and III. At t = 4, this set of instances
are no longer correlated to features in co-cluster I, and their correlations with features
in co-cluster III are further increased. At t = 5, a sudden change occurs and the data
matrix at t = 1 is restored. At t = 6, the size of the data matrix is changed by adding
some extra instances to co-cluster I.

To demonstrate the effectiveness of the temporal cost, we compare our formulation
with co-clustering method without the temporal cost. We use an error rate as the
performance measure, since the co-cluster memberships are known for synthetic data.
The performance of the proposed model along with that of the co-clustering method
(equivalent to ν = 0) is reported in Fig. 2. It can be observed that when ν is increased
from 0 to 20, the error rate drops gradually. When ν is increased beyond 20, the error
rate increases gradually. When ν lies in the interval (Chakrabarti et al. 2006; Shewchuk
1996), the proposed method outperforms the co-clustering method significantly. This
shows that the evolutionary co-clustering formulation yields improved performance
for a large range of ν.

5.2 Synthetic data # 2

The second synthetic data set is generated to evaluate the performance of the proposed
model in comparison to prior methods based on spectral learning. This data set contains
50 time-steps, each with 4 co-clusters, and each co-cluster contains 100 instances and
10 features. At t = 0, the data set is generated by following the same strategy as
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Fig. 3 Performance of the probabilistic model with four methods based on spectral learning and the co-
clustering method on synthetic data # 2

the first synthetic data set when t = 0. In each of the 0 to 49 time-steps, we add
Gaussian noise to the data from previous time-step. We optimize the α and ν values
on the synthetic data separately. This set of experiments, including data generation,
are repeated 40 times and the average results are reported in Fig. 3 for all time-steps.

We can observe from Fig. 3 that the proposed probabilistic model (ProbEVOL-CO)

consistently outperforms prior methods (i.e., NAPCCQ, NCPCCQ, NAPCCM, and
NCPCCM). This demonstrates that the proposed model is very effective in improv-
ing performance by requiring the factors to be nonnegative. Similar to the observa-
tion in Sect. 5.1, all evolutionary co-clustering approaches outperform co-clustering
method consistently across most time-steps. This demonstrates that the temporal cost
is effective in improving performance.

5.3 DBLP data

We conduct experiments on the DBLP data to evaluate the proposed methods. The
DBLP data (Tong et al. 2008; Wang et al. 2011b) contain the author-conference infor-
mation for 418,236 authors and 3,571 conferences during 1959–2007. For each year,
the author-conference matrix captures how many papers are published by an author
in a conference. The author-conference data matrices are very sparse, and we sample
252 conferences spanning 12 main research areas (Internet Computing, Data Mining,
Machine Learning, AI, Programming Language, Data Base, Multimedia, Distributed
System, Security, Network, Social Network, Operating System) in our experiments.
We also remove authors with too few papers, resulting in 4,147 authors from the 252
conferences. We choose the data for ten years (1998–2007) and add the data for two
consecutive years, leading to data of five time points.

We apply the probabilistic model to the DBLP data in order to discover the author-
conference co-occurrence relationship and their temporal evolution. We set the number
of co-clusters to be 12 in the experiments, and this results in 5 major co-clusters and 7
minor co-clusters as shown in Fig. 4. The 5 major co-clusters can be easily identified
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1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Fig. 4 The block structures identified by the proposed probabilistic model on the DBLP data

Jiawei Han

1998−1999 2000−2001 2006−20072004−20052002−2003

David Wagner

2002−2003 2004−2005 2006−20071998−1999 2000−2001

Elisa Bertino

Programming Lang.AIData MiningInternet Compu.

Multimedia Distributed Sys.Data Base Security Network

1998−1999 2000−2001 2002−2003 2004−2005 2006−2007

Fig. 5 The evolution patterns of three authors identified by the proposed probabilistic model

from our co-clustering results, and their evolutions are temporally smooth. A close
examination of the results shows that related conferences are clustered into the same
co-cluster consistently across all time points. For example, the co-cluster for Data
Mining always contains KDD, ICDM, SDM etc., and the co-cluster for Data Base
always contains SIGMOD, ICDE, VLDB, etc.

We also investigate how the authors’ research interests change dynamically over
time. In Fig. 5, we plot the results for three authors: Jiawei Han, David Wagner, and
Elisa Bertino. For each author and each time point, we distribute the 12 conference
categories evenly around a circle, and each category occupies a sector. We then use
an arrow pointing to a particular sector to indicate the author’s participation in the
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conferences in this category, where the level of participation is indicated by the length
of the arrow.

It can be observed from Fig. 5 that Jiawei Han was actively participating Data
Mining and Data Base conferences across all five time points, and this pattern remains
very stable across years. On the other hand, David Wagner showed some change of
research interests. He is actively participating Security conferences across all years.
During 2000–2001, he developed interests in Network, and this is maintained through
2002–2003 before he smoothly switched to Programming Language. Elisa Bertino
showed very dynamic change of research interests during this 10-year period. She
is actively participating Data Base and Security conferences across all years. During
some period of time, she also participated Internet Computing, Distributed Systems,
AI, and Data Mining conferences. These results demonstrate that the proposed methods
can identify smooth evolution of author’s research interests over years.

6 Application study

To fully exploit the real-world impact of our methods, we further perform a systematic
application study on the analysis of Drosophila gene expression pattern images.

6.1 Background

Genes are the fundamental elements for regulating many biological activities from cell
division to protein composition. Currently, the protein-coding genes of many organ-
isms have been largely identified. However, how these sequences are orchestrated by
the regulatory sequences to transform a single cell into a functional organism during
development remains largely unknown. Investigations into the spatial and temporal
gene expression dynamics are essential for understanding the regulatory biology gov-
erning development. Recently, genome-wide spatial gene expression patterns in the
model organism fruit fly Drosophila melanogaster have been generated using high-
throughput RNA in situ hybridization (Tomancak et al. 2002; Lécuyer et al. 2007.
These data provide useful information to study the temporal and spatial gene expres-
sion patterns and the underlying developmental regulatory networks (Tomancak et al.
2007; Kumar et al. 2002; Frise et al. 2010; Lécuyer and Tomancak 2008).

In order to better understand the spatial and temporal gene regulation during devel-
opment, we use a geometry-based, standardized mesh-generation method to convert
Drosophila gene expression patterns into matrix representations. We build a fully auto-
mated mesh generation pipeline to map every gene expression pattern into the same
geometric space. We then organize the gene expression pattern images at a particu-
lar time point as a data matrix in which one dimension represents the genes and the
other dimension represents the mesh elements. To identify the co-expressed embry-
onic domains and the associated genes over different temporal stages, we apply the
proposed evolutionary co-clustering model to study the gene expression images in
the FlyExpress database (Kumar et al. 2011). Our results show that the co-clusters of
mesh elements and genes are correlated with the key events of embryogenesis.

123

Author's personal copy



Evolutionary soft co-clustering

6.2 Intensity-based mapping of geometry to algebraic representation

We employ a mesh generation pipeline to map all the in situ hybridization (ISH)
images into the same coordinate space with the goal of eliminating the effect of the
shape variations (Zhang et al. 2013). To this end, we compute the best-fit ellipse for the
boundary of each image using the least squares criterion. This way, a generic ellipse
for each time point can be obtained by averaging the fitted ellipses associated with all
images in that particular time point. We then generate a mesh on the generic ellipse to
obtain a discretized representation. This is achieved by first subdividing the boundary
iteratively using linear interpolation so that all the segmented pieces of the boundary
are approximately the same. The Delaunay mesh generator software (Shewchuk 1996)
is subsequently used to tessellate the interior of the generic ellipse. Once the generic
ellipse is meshed, we deform it to each of the individual images at the same time point.
More details behind the rationale for the use of triangular meshes can be found in Frise
et al. (2010).

We focus on Drosophila gene expression pattern images from stage 4 to stage 16,
which have been divided into five stage ranges; namely stage 4–6, 7–8, 9–10, 11–12,
and 13–16. We collect the images for genes that appear in all five stage ranges. This
generates a data set with 2,675 images capturing the expression patterns of 1,878
genes with clearly defined expression boundaries. We preprocess the images using
a similar procedure as in Frise et al. (2010) and then apply our tessellation pipeline
to obtain triangulated images. Following Frise et al. (2010), we extract the median
of gray-level intensities from each mesh element. This converts each triangulated
image into an n-dimensional vector. Hence, the images for m genes at a particular
time point can be encoded into a data matrix A, in which each row corresponds to
a gene, and each column corresponds to a mesh element. We apply the evolutionary
co-clustering algorithm on the five data matrices corresponding to five stage ranges
to identify the gene and mesh co-clusters simultaneously for multiple temporal time
points.

6.3 Evolutionary clustering of mesh elements

We apply our methods to all of the Drosophila gene expression pattern images from
stages 4–6 to 13–16 to gain insight on the developmental gene co-expression dynam-
ics. Evolutionary co-clustering with different numbers of co-clusters is applied to the
five data matrices simultaneously. The results are mapped to the average ellipsoid
and color-coded to visualize the co-clusters. In order to make sure that the generated
clusters are not the results of data processing artifacts, we randomize the data sets
at multiple points of the pipeline. Our results show that the co-expressed domains
established via our evolutionary co-clustering algorithm are consistent with many
actual embryonic structures. Moreover, we show that the co-clusters of mesh ele-
ments and genes have strong correlation with the key events of Drosophila embryo-
genesis.

In Fig. 6, we show the co-clustering results of mesh elements when the num-
ber of clusters is varied from 20 to 40 on stage 4–6 data. A number of existing
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Fig. 6 Clusters of mesh elements when the number of clusters is varied from 20 to 40 with a step size of 5
(top to bottom) on stage 4–6 expression patterns. The left column shows the results of the proposed method
and the right column shows the results of NBIN + RI +MSSRCC + LS

co-clustering techniques also aim to identifying the block structures. In particu-
lar, we compare our evolutionary co-clustering method with a variant of the mini-
mum sum-squared residue co-clustering (MSSRCC) method (Cho and Dhillon 2008);
namely NBIN + RI + MSSRCC + LS, which denotes MSSRCC with random initializa-
tion, local search, and data binormalization (Livne and Golub 2004), since different
variants of MSSRCC generate similar results. We can observe that the co-clustering
boundaries of the proposed method are mostly parallel to the anterior/posterior (A/P)
and dorsal/ventral (D/V) axes of the embryo. This is consistent with the underlying
biology of Drosophila embryonic patterning, which is achieved by two sets of systems
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Fig. 7 The fate map of Drosophila blastoderm (Hartenstein 1995)

along the horizontal and vertical axis independently (Hartenstein 1995; Fig. 7). Fur-
thermore, as the number of co-clusters is increased, the shape of rectangular cluster
generated by our method is continuously preserved (the left column of Fig. 6); namely,
new clusters are generated by subdividing existing clusters, and all other clusters are
preserved. In comparison, the cluster boundaries generated by MSSRCC do not align
with the horizontal or vertical axes. Additionally, the cluster boundaries generated by
MSSRCC are mostly not preserved when the number of clusters varies.

In Fig. 8, we show the clustering results generated by our evolutionary co-clustering
method and by NBIN + RI + MSSRCC + LS for the five stage range data (i.e., stages
4–6 to 13–16) when the number of clusters is fixed to 35. We can again observe that
the clusters generated by our method usually have rectangular shapes whose sides
are approximately aligned with the horizontal or vertical axes. In comparison, the
results generated by MSSRCC do not have a rectangular shape. More importantly, our
evolutionary co-clustering is able to produce smoothly varying clustering boundaries
across time points, while MSSRCC is not able to achieve such effect. Note that,
theoretically, the EM algorithm might converge to different optimal points when it
is initialized to different values. However, we find in experiments that the clustering
results are the same when the EM algorithm is randomly initialized multiple times.
This empirical evidence shows that the clustering results are not sensitive to the initial
values.

6.4 Evolutionary co-clustering of genes and mesh elements

We evaluate the co-clustering of mesh elements and genes and show how they are cor-
related with developmental events of Drosophila embryogenesis. We apply our mesh
generation and evolutionary co-clustering methods to the data set of 2675 images
of gene expression in stage 4–6. Following Frise et al. (2010), we set the num-
ber of co-clusters to 39. We compute the enriched Gene Ontology terms (biological
process) (Ashburner et al. 2000) and evaluate the terms with p value < 0.001. We
subsequently apply the one-sided significance test and retain the enriched terms with
≥ 90 % significance. Among the 39 clusters, 22 of them have at least one enriched
term. The enriched terms in the 22 clusters are shown in Fig. 9, and the corresponding
mesh clusters are given in Fig. 10.
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Fig. 8 Clusters of mesh elements when the number of clusters is fixed to 35, and the time points are
changed from stages 4–6 to 13–16 (top to bottom, stages 4–6, 7–8, 9–10, 11–12, and 13–16). The left
column shows the results of the proposed method and the right column shows the results of NBIN + RI +
MSSRCC+ LS

We can see that terms such as gene regulation, pattern formation and embryo devel-
opment appear in the enriched term list. Note that stage 4–6 is the cellularization and
gastrulation stage, and thus the enrichment of these terms makes biological sense. With
the fixed stage 4–6, we can map the enriched GO terms back into the mesh cluster
visualization (Fig. 10). We can see that similar terms are located in spatially adjacent
clusters. We also find a subset of well known genes that are activated in the ventral
region of the embryo during stage 4–6 containing twist, snail, Mes2, brinker, and tin-
man. Our findings are consistent with the biological results reported in Stathopoulos
and Levine (2005); Sandmann et al. (2007).
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Fig. 9 The clusters with enriched terms and the corresponding terms. We use a p value threshold of 0.001
to obtain the enriched GO terms (biological process) and then apply the one-sided significance test to retain
the enriched terms with ≥ 90 % significance. Figure 10 shows the corresponding mesh clusters
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Fig. 10 Mesh clusters when the number of clusters is set to 39. Each mesh cluster element is labeled with
the cluster number

7 Conclusions and discussions

This paper studies the evolutionary co-clustering of time-varying data for the identifi-
cation of smooth block structures. To overcome the limitation of existing methods and
enable a probabilistic interpretation of the results, we propose a probabilistic model
for evolutionary co-clustering. We propose an EM algorithm to perform maximum
likelihood parameter estimation and establish the convergence of this algorithm. The
proposed methods are evaluated on both synthetic and real data sets. Results show that
the proposed method consistently outperforms prior methods.

We also perform an application study of Drosophila gene expression pattern image
analysis to demonstrate the impact of our method. We use a new mesh generation
pipeline that can more accurately map the expression patterns of many genes into
the same coordinate space. We then apply the evolutionary co-clustering algorithm to
identify the co-expressed mesh elements and genes across multiple developmental time
points. Experimental results indicate that the co-clusters of genes and mesh elements
have strong correlation with major embryogenesis events.

In this work, we describe a method for unsupervised learning from bipartite graphs.
In many applications, the relational data are more conveniently captured by k-partite
graphs (Long et al. 2006). We will extend our methods for unsupervised mining of
dynamic k-partite graphs. In addition, in our current work, we assume that the number
of co-clusters across all time points is the same. We will extend our method to this
more general setting in the future.
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