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Abstract In this paper we evaluate three different mesh generation approaches
with respect to their fitness for use in a surgery simulation and navigation system.
The behavior of such a system can be thought of as a trade-off between material
fidelity and computation time. We focus on one critical component of this system,
namely non-rigid registration, and conduct an experimental study of the selected
mesh generation approaches with respect to material fidelity of the resulting meshes,
shape of mesh elements, condition number of the resulting stiffness matrix, and the
registration error. We concluded that meshes with very bad fidelity do not affect
the accuracy drastically. On the contrary, meshes with very good fidelity hurt the
speed of the mesher due to the poor quality they exhibit. We also observed that
the speed of the solver is very sensitive to mesh quality rather than to fidelity. For
these reasons, we think that mesh generation should first try to produce high quality
meshes, possibly sacrificing fidelity.
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1 Introduction

Surgical simulation is the application of computers to synthesizing an anatomical
response to a simulated therapy. This is achieved through a software program that
synthesizes tissue response to virtual surgical tools, typically a mechanical response
to cutting or manipulation. This behavior can be thought of as a trade-off between
material fidelity and computation time, whose weighted emphasis on one or the
other can be characterized as a spectrum. At one end of the spectrum we have pre-
dictive simulation, which consists of highly faithful off-line computations used by
expert surgeons to predict the outcome of, and optimize, an intervention, on the ba-
sis of an anatomical model of the patient derived from that individuals preoperative
image dataset. At the other end of the spectrum, the objective of interactive simula-
tion is to offer a means of training surgical residents in order to improve their skill
without risk to a real patient, by way of a haptic device manipulated by the user
to position a virtual surgical tool, while producing a force feedback that simulates
tissue resistance and a real-time graphical rendering of an anatomical model at that
point in simulated time. Figure 1 illustrates some commonly used haptic devices.

Typically, the biomechanics engine used to achieve a response at near-haptic
rates (some interpolation is feasible for haptic rates of 500 Hz or more), in the con-
text of interactive simulation, is less constitutively faithful than that of predictive
simulation, although much recent work is devoted to reconciling the conflicting re-
quirements of interactivity and material faithfulness.

Irrespective of whether a medical simulator emphasizes interactivity or predictive
computation, the simulation requires an anatomical model on which to carry out its
synthesized therapy. For most clinical applications, such a model is not drawn with
3D CAD software, but rather extracted by image analysis from a patient dataset.
As a result, the starting point for this model is one or more MR or CT volumes,
which in the multi-modal case can be co-registered and resampled, which leads
to a volumetric scalar or vector image, typically of several hundred voxels along
each axis. For example, a 1mm isotropic MR image of the head is usually at least
256⇥ 256⇥ 256, which equates with more than 16 million voxels, which in turn
precludes efficient computation directly based on raw or segmented image data. In
addition, many biomechanical engines require the decomposition of a geometrically
complex body into simple shapes, e.g.: elements, given that the computation itself is
typically a matrix equation based on simple, well understood elemental expressions.

These requirements, computational efficiency and geometric decomposition, mo-
tivate the need for a representation of the anatomy in terms of simple shapes, such
as triangles and tetrahedra. It is worth noting that in the mesh generation commu-
nity, the generation of tetrahedra corresponds to unstructured mesh generation as
contrasted from structured meshes which are typically comprised of hexahedra. The
latter elements are not generally used in medical simulation, because this meshing
approach requires a significant amount of user interaction (in contrast with tetra-
hedral meshing, which can be automated). The reason is that hexahedral meshes
are more rigid structures and cannot be always automatically constructed for com-
plex geometries [24]. Moreover, the subdivision of a hexahedron does not reduce to
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(a) (b)

Fig. 1 Commercial haptic devices: (a) Sensable’s 6 degree-of-freedom (d.o.f.) Phantom 6S/1.5;
(b) MPB Technologies’ 7 d.o.f. Freedom 7S.

more hexahedra, which limits their applicability to interactive simulation, whereas
a tetrahedron ultimately is divisible into more tetrahedra.

Finally, recent surgery simulation research emphasizes so-called meshless meth-
ods [5], which involve a system of equations derived from point-centered shape
functions. Meshless methods discretize partial differential equations, including con-
tinuum mechanics expressions, through shape functions with compact support de-
fined on a local cloud of points (or nodes), rather than on non-overlapping elements.
Despite the name that implies that no mesh is involved, the latter approach requires
a preliminary meshing that establishes neighboring vertices in the point cloud used
in the discretization.

2 Background

2.1 Non-Rigid Registration

We used the non-rigid registration method described by Clatz et al. [7] which is
shown to be robust enough to be usable to clinical studies. Below, we outline the
main aspects of this NRR method.

The method consists of three steps, namely, feature points selection, block match-
ing, and system solution. See Figure 2 for an illustration. During feature points selec-
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Fig. 2 The non-rigid registration procedure.

tion, a sparse set of points is chosen from the pre-operative image. These points are
called registration points. Then, the correspondence of these points into the intra-
operative image is found via a block matching scheme. Specifically, for a given reg-
istration point r, a small window around it in the intra-operative image is searched;
the corresponding point r0 reported is the one that maximizes the correlation coeffi-
cient between r0 and r.

Having computed the deformation vector D on the registration points (as a result
of the block matching step), the deformation vector on the mesh vertices U (the
unknowns) is calculated so that the following energy is minimized:

W = (HU�D)

>
(HU�D)

| {z }

Error energy

+ U>KU
| {z }

Mechanical energy

(1)

In the above equation, K is the |U |⇥ |U | mechanical stiffness matrix. H is the
linear interpolating matrix of size |D|⇥ |U |; this matrix contains the measurements
of the linear shape functions on every registration point. The contributing shape
functions for each registration point ri are those defined over the mesh nodes whose
forming mesh element includes ri.

The block matching deformation di of a registration point ri affects the deforma-
tion of a mesh node v j, only if v j is incident upon a mesh element e that contains
r j. In fact, if the minimization of the error energy (also known as matching energy)
was perfect (i.e., if it vanished), then the linear interpolation (of the solution of the
mesh nodes of e) on ri would give the value di. As Clatz et al. show [7], this method
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tries to minimize this exact error energy E:

E =

q

(HU�D)

>
(HU�D) = |HU�D| (2)

which is the interpolation error on the registration points r1,r2, . . . ,r|D|.
Since the minimization of only the error energy is under-constrained, the me-

chanical energy in Equation (1) is used to model the deformation of the brain as a
physical body based on FEM. This, in turn, is used to discover and discard the outlier
registration points, i.e., points whose deformation estimation from block matching
contradicts the physical properties of the brain. For information about the construc-
tion of the mechanical stiffness matrix K, see Delingette and Ayache [8].

The deformation vector U, over which energy W is minimized, is computed
through the following iterative equations:

F0 = 0 ,
⇣

K+H>H
⌘

Ui = H>D+Fi�1, i = 1,2, . . . ,

Fi = KUi, i = 1,2, . . .

Clatz et al. [7] showed that the system above converges. Also, observe that K+H>H
is the matrix responsible for the robustness of NRR; its condition number affects
both the accuracy and the speed of the solution.

2.2 Image-To-Mesh Conversion

The problem of unstructured Image-To-Mesh conversion (I2M) is the following.
Given an image as a collection of voxels, such that each voxel is assigned a label
of a single tissue or of the background, construct a tetrahedral mesh that overlays
the tissues and conforms to their boundaries. In this paper we study three I2M algo-
rithms with respect to their suitability for real-time finite element analysis, based on
the following requirements:

• The mesh offers a reasonably close representation (fidelity) of the underlying
tissues. Our approach is to expose parameters that allow for a trade-off between
the fidelity and the final number of elements with the goal of improving the end-
to-end execution time of the FE analysis codes.

• The number of tetrahedra in the mesh is as small as possible provided the two
requirements above are satisfied. This requirement is based on the cost of as-
sembling and solving a sparse system of linear equations in the finite element
method, which directly depends on the number of tetrahedra.

• Elements do not have very small angles which lead to poor conditioning of the
stiffness matrix in Finite Element (FE) Analysis for biomechanics applications.
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There is a large body of work on constructing guaranteed quality meshes for
Computer Aided Design (CAD) models. The specificity of CAD-oriented approaches
is that the meshes have to match exactly to the boundaries of the models. In contrast,
the I2M problem allows for a certain distance between the mesh boundary and the
image boundary, usually specified as a fidelity tolerance.

Labelle and Shewchuk [15] described an Isosurface Stuffing method for guaran-
teed quality tetrahedral meshing of domains defined by general surfaces. They offer
a one-sided fidelity guarantee (from the mesh to the model) in terms of Hausdorff
distance, and, provided the surface is sufficiently smooth, also in the other direction
(from the model to the mesh). Their algorithm first constructs a body-centered cubic
(BCC) lattice that covers the model, then fills the BCC with high quality template
elements, and warps the mesh vertices onto the model surface, or inserts vertices
on the surface, and modifies the mesh. Using interval arithmetic, they prove that
new elements have dihedral angles above a certain threshold. However, images are
not smooth surfaces, and to the best of our knowledge, this technique has not been
extended to mesh images. One approach could be to interpolate or approximate the
boundary pixels by a smooth surface, for example using the m-reps segmentation
technique [21], but it would be complicated by the need to control the maximum
approximation (interpolation) error. On the other hand, an I2M solution can benefit
from the fact that images provide more information on their structure than gen-
eral surfaces. For example, the tasks of finding the local feature size [12] and all
connected components can be done relatively easily on images since they already
provide the finest known sampling of the space.

There are also heuristic solutions to the I2M problem, some of them developed in
our group [10, 16], that fall into two categories: (1) first coarsen the boundary of the
image, and then apply CAD-based algorithms to construct the final mesh, (2) con-
struct the mesh which covers the image, and then warp some of the mesh vertices
onto the image surface. The first approach tries to address the fidelity and then the
quality requirements, while the second approach does it in reverse order. Unfortu-
nately, neither of these approaches can guarantee the quality of elements in terms of
dihedral angles. Both of them face the same underlying difficulty which consists in
separating the steps that attempt to satisfy the quality and the fidelity requirements.
As a result, the output of one step does not produce an optimal input for the other
step. An approach based on filling in brick elements with quality tetrahedra was
developed by Hartmann and Kruggel [10], however, it keeps an over-refined mesh
near the boundaries. Another method by Dogan et al. [9] produces a mesh as a by-
product of an iterative segmentation procedure, by an application of a CAD-oriented
mesh generator Triangle [71] to the segmented boundaries.

Zhang et al. [29] described an algorithm to construct adaptive and quality 3D
meshes from imaging data. Similar to our approach, they create an initial octree-
based mesh, and then improve its quality using iterative edge contraction. Specifi-
cally, their approach removes tetrahedra with the worst ratio of the longest to short-
est edge length by contracting their shortest edges; however, when it is detected that
a requested ratio threshold cannot be reached the strategy is reversed to point inser-
tion through longest edge bisection. Another approach proposed by Reid et al. [22]
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and Goksel et al. [13] is to iteratively deform an initial mesh by vertex movement
and other operations to conform to the boundaries in the image.

In Computer Aided Surgery (CAS) and specifically in image guided neuro-
surgery, Magnetic Resonance Images (MRI) obtained before the procedure (pre-
operative) provide extensive information which can help surgeons to plan a resection
path. Careful planning is important to achieve the maximal removal of malignant tis-
sue from a patient’s brain, while incurring the minimal damage to healthy structures
and regions of the brain. However, current practices of neurosurgical resection in-
volve the opening of the scull and the dura. This results in a deformation of the
brain (known as the brain shift problem) which creates discrepancies between the
pre-operative imaging data and the reality during the operation. A correction is pos-
sible using non-rigid registration (NRR) of intra-operative MRI with pre-operative
data.

In this paper, we target Finite Element (FE) based approaches for the non-rigid
registration [7]. These methods use real-time landmark tracking across the entire
image volume which makes the non-rigid registration more accurate but computa-
tionally expensive, as compared to similar methods that use surface tracking [11].
The non-rigid registration problem should be solved fast enough, so that it can be
usable in clinical studies [2, 3].

Image-to-Mesh (I2M) conversion is a critical component of real-time FE-based
non-rigid registration of brain images. In this paper one of the I2M evaluation crite-
ria is the wall-clock time to construct the mesh. While in the current formulation the
NRR approach makes use of a single mesh constructed before the surgery, we aim
to address a general scenario, i.e., when the changes in the object geometry caused
by the surgical intervention cannot be accommodated by a pre-existing mesh.

3 Evaluation Of Mesh Generation Techniques

3.1 Mesh Fitness Criteria









Fig. 3 The dihedral angle between two triangular faces abc and abd is the angle between two
planes containing each of these faces.
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A mesh is characterized by its fidelity and quality. Fidelity measures how well
the mesh boundary resembles the surface of the biological object. Quality assesses
the shape of mesh elements; the higher the minimum dihedral angle of the mesh
elements is, the higher the quality. See Figure 3 for an illustration of a dihedral
angle.

It is well known that the quality of the mesh affects both the accuracy and the
speed of the solver [26], because the angles of the elements influence the condition
number of the stiffness matrix. In the literature, a good deal of effort has been put
towards high-quality mesh generation [6, 12, 15, 19, 28].

It is not clear, however, what the impact of fidelity on the accuracy and speed
of the solver is. The reason is because there is a complicated trade-off between
quality and fidelity. The need for a better surface approximation always implies a
deterioration of mesh quality, simply because well-shaped elements cannot fill the
space formed by sharp surface creases or by surface parts of high curvature. Also,
higher fidelity usually results in an increase of the number of mesh elements which
in turn affects both the mesher’s and the solver’s speed.

In this paper, we evaluated the impact of three public mesh generators [12, 13, 27]
on the accuracy and speed of NRR. The meshers were chosen carefully to cover a
wide range of mesh generation approaches. The Delaunay mesh algorithm in [12]
offers simultaneous meshing of the surface and the volume of the object. The algo-
rithm in [27] is Delaunay but requires the surface of the object as input. Finally, the
algorithm in [13] is an optimization-based technique which compresses an initial
body-centered cubic lattice (BCC) to the surface. (See Section 4 for more details.)
For each mesher, we conducted an extensive series of experiments controlling the
fidelity of the output mesh used for the subsequent NRR [7].

3.2 Mesh Generation Libraries

In this paper, we tested the influence of three meshers on NRR, namely, High Qual-
ity Delaunay mesher (HQD) [12], Tetgen [27], and Point Based Matching mesher
(PBM) [18]. Below, we briefly describe each of them.

HQD meshes both the surface and the volume of the object at the same time with-
out an initial dense sampling of the object surface, as is the case in other Delaunay
volume techniques [20, 23]. As a result, the number of elements of the output mesh
is small.

Tetgen is a Delaunay mesh generator as well. However, it assumes that the sur-
face of the object is already meshed and represented as a polyhedron. This polyhe-
dron is also known as a Piecewise Linear Complex (PLC). Tetgen requires a PLC of
the object surface as its input. We used the algorithm in [4] for the PLC generation,
implemented in the Computational Geometry Algorithms Library (CGAL) [1].

PBM is an optimization-based approach. It starts with a triangulation of a regular
grid, i.e., a body-centered cubic lattice (BCC), and then it compresses the outer
nodes closer to the object surface as a result of energy minimization. In fact, the
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smaller the energy achieved, the better the fidelity of the output mesh. This method
is able to recover the surface of multi-tissue objects. In this paper, only the single-
tissue version of PBM is considered.

3.3 Evaluation Methodology

As mentioned in Section 2.1, registration computes the deformation on the mesh
nodes, so that the error energy E = |HU�D| is minimized. Mesh generation affects
how accurately the error energy is minimized. Therefore, we assess the accuracy of
registration by keeping track of this error E. There are two nested loops in the regis-
tration algorithm. The outer loop, which is run 10 times following the original paper
by Clatz et al. [7], is used to discard outlier registration points. The inner loop runs
the FE solution and has a fixed threshold on the convergence of the linear solver.
This threshold, however, does not translate to a fixed error in the registration result
due to the influence of mesh fidelity. Below we describe and report the results of
two types of experiments. In the experiments of the first type we vary mesh fidelity
and measure the registration error for the selected meshing algorithms. In the ex-
periments of the second type we fix both the fidelity and the registration error, and
measure the wall-clock time for the mesher and the solver.

Observe, however, that the outcome of the registration depends on the accuracy
of the block matching step (vector D). Also, notice that the mesh does not affect the
result of block matching (see Figure 2). Since we are interested in evaluating the im-
pact of mesh generation on registration, we wanted to make registration independent
of block matching. For this reason, we synthetically deformed the pre-operative im-
age according to the bio-mechanical properties of the brain. More specifically, we
initially ran the registration procedure to register the pre-operative with the intra-
operative image as shown in Figure 2, but that time we did not focus on the behav-
ior of the mesh. We just wanted the solution on the mesh nodes. Then, by (linearly)
interpolating the solution of the mesh nodes on any point of the image, we obtained
a synthetically deformed (intra-operative) image. After this initial registration, all
the other registrations (aiming at evaluating mesh generation) are performed be-
tween the pre-operative and the synthetically deformed image; that is, the real intra-
operative image is replaced by the deformed one. In this way, we achieve two things:

• we know the “true” deformation on any point, and therefore we know the “true”
block matching result on any set of registration points, and

• we do not simulate an arbitrary deformation, but rather a realistic one, because
the deformed image was obtained taking into account the elasticity properties of
the brain through the stiffness matrix K of Equation 1.

Since we want to measure the influence of mesh generation, only the mesh
changes in every experiment. That is, for all the various meshes, the pre-operative
image and the set of registration points (together with their deformation D of course)
remain fixed.
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As mentioned above, we wish to have control over the fidelity of the output mesh
produced by the different meshers. In this paper, we use the two-sided Hausdorff
distance DH to measure fidelity.

In our case, metric DH is defined upon two finite sets A,B as follows:

DH (A,B) = max{h(A,B) ,h(B,A)}, where
h(A,B) = max

a2A
min
b2B

|a�b|

The lower the value of DH (A,B), the more similar sets A,B are. In fact, DH (A,B)
is equal to 0 if and only if sets A,B are identical.

Fidelity of a mesh is measured as the 2-sided Hausdorff distance DH of the fol-
lowing sets:

• set A: a densely sampled point set on the surface of the biological object, and
• set B: a densely sampled point set on the boundary facets of the mesh.

Notice that the mesh boundary point set B does not consist of only boundary mesh
vertices. The reason is because otherwise, the Hausdorff distance of the meshes pro-
duced by HQD would always be 0 (or very close to 0), since this method guarantees
that the boundary mesh vertices lie precisely on the object surface.

Having defined fidelity, we proceed by explaining how we control fidelity for
each mesher.

For HQD, this is possible through the parameter d (see [12] for a more detailed
explanation). Low values of d increase the sampling on the object surface which
yields better fidelity. High values of d produce meshes whose boundary crudely
approximates the real surface.

For Tetgen, we had to change the fidelity of the PLC given by CGAL. We, there-
fore, had to adjust two parameters responsible for the PLC’s fidelity. The first im-
poses an upper bound on the circumradius of the Delaunay balls and the second
forces an upper bound on the distance between the circumcenter of the boundary
facets and the corresponding center of their Delaunay balls. More information can
be found in [4].

For PBM, control of fidelity is accomplished by adjusting the parameter l . This
parameter defines the trade-off between quality and fidelity: high values of l make
the optimization more sensitive to good fidelity, while low values do not change
a lot the position of the initial (high-quality) BCC. However, we observed that l

does not offer a very flexible control over flexibility. Therefore, to get meshes of
substantially different fidelity, we had to change not only l but also the density of
the initial BCC.

An important indicator of solution accuracy is the numerical conditioning of the
linear system measured by the condition number. The condition number measures
the extent by which a relative perturbation of the input affects the relative per-
turbation of the output. In the experimental evaluation below, we used Matlab’s
cond(A) function which computes the condition number as the ratio of the largest
singular value of A to the smallest.
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Fig. 4 Mesh properties and the resulting solution characteristics, depending on mesh fidelity mea-
sured in terms of symmetric Hausdorff distance. The x-axis measures the same fidelity values for
all plots, and therefore is annotated only once.

3.4 Results

Figure 4 presents the results obtained by various meshes produced by High Quality
Delaunay (HQD), Tetgen+CGAL, and Point Based Matching (PBM) approaches.
On all plots, the x-axis measures mesh fidelity in terms of the Hausdorff distance DH
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Table 1 Timings (in seconds) for various meshes obtained by different methods. Both the mesh
and the solver execution times are reported.

HQD Tetgen+CGAL PBM
DH Mesher Solver Total Mesher Solver Total Mesher Solver Total

15-16.5 6.89 0.04 6.93 0.01 0.06 0.07 132.34 0.05 132.39
14-15.5 6.4 0.05 6.45 0.01 0.17 0.18 165.02 0.06 165.08
13-14.5 10.23 0.06 10.29 0.02 0.16 0.18 164.93 0.06 164.99
8.5-9.5 21.57 0.08 21.65 0.09 4.88 4.97 189.19 0.09 189.28

7-8 17.62 0.46 18.08 0.13 45 45.13 263.39 0.19 263.58

between the mesh and the object surface. All distances are shown with respect to the
unit voxel width, and each voxel has physical dimensions 1 mm ⇥ 1 mm ⇥ 1 mm.
The condition number depicted is of the matrix K+H>H which is responsible for
the accuracy and speed of the NRR solver (see Section 2.1). The registration error
—as defined in Equation (2) —obtained after the end of the registration process.
Figure 5 illustrates the meshes obtained by the three meshing approaches for the
best and the worst fidelity.

For HQD, we observe that the error does not fluctuate considerably. All the errors
are about less than half the size of a voxel, even when the DH distance is very large.
For Tetgen+CGAL, similarly, fidelity does not seem to affect the error considerably.
Also, although the minimum dihedral angles are larger than those in HQD, the av-
erage minimum dihedral angles are 10 to 15 degrees less than those in HQD. This
results in generally higher error than the error in HQD, but still the differences in
accuracy are not very obvious. However, the much larger condition numbers affect
the speed of the FEM solver a lot. The FEM solver we use relies on the bicgstab
linear solver of the GMM library. Actually, for the two runs corresponding to the
meshes with the two best fidelity values and with the two higher condition numbers,
the solver could not even converge. For the PBM mesh we observe that the quality
is very good: the minimum and the average minimum dihedral angles reach perfec-
tion. This results in much lower condition numbers and generally lower error than
HQD and Tetgen. Again, we observe that fidelity does not play that important role
in the accuracy of the NRR. Even meshes with very bad fidelity yield an error less
than half the size of the voxel.

Also, see that for the two runs when the solver using the Tetgen meshes did
not converge, the condition number is extremely large. We wanted to look into the
timings of both the meshers and the solver in more depth, and to determine what
the influence of fidelity on speed is. We selected 5 meshes from each method of
approximately the same fidelity respectively and measured the time for meshing
and the time for solving the registration problem. For each case, the solver has been
running until the error becomes less than 0.5 (half the size of the voxel). Table 1
summarizes the results.

We observe that the meshing time of PBM is extremely large: more than 2 min-
utes in all cases. Actually, most of this time is spent for the initial BCC creation.
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Fig. 5 The rows show the meshes obtained with the three studied approaches, from top to bottom:
HQD, Tetgen+CGAL, and PBM. In each row the left image shows the mesh with the lowest DH
value, and the right image shows the mesh with the highest DH value.

On the other hand, the Tetgen+CGAL scheme is very fast: less than 2 seconds in all
cases, even for the bottom mesh which consists of 2,539 elements.

As far as the solver’s time is concerned, PBM yields the best meshes. Overall,
however, the registration process is much slower than the other methods due to the
time consuming mesh generation time. For Tetgen, the solver took much time, when
the Hausdorff distance dropped below 8.5 (see bold entries). The minimum dihedral
angle for this fidelity is more than 1�, but the very low average minimum dihedral
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angle (the lowest among all the methods) seems to affect the condition number a lot
and consequently the speed of the solver. Although the HQD meshes have elements
with very small angles, the average minimum angle is much better than Tetgen (10 to
15 degrees larger). This is why when the solver ran on HQD’s meshes, its execution
time was less than 2 seconds in all cases, yielding a good overall execution time,
even when the DH distance drops below 8.5.

4 Discussion

In this section, we summarize our findings.
The two Delaunay meshes (i.e., HQD and Tetgen) exhibit low quality when the

fidelity increases substantially (when the Hausdorff distance drops below 8 units
approximately, in our case studies). This quality deterioration yields a very large
condition number which affects the execution time of the solver (see Table 1). We
also observe that not only the minimum but also the average minimum dihedral
angle plays an important role to the solver’s speed. To see it, compare the solver’s
speed of HQD to the solver’s speed of Tetgen when the Hausdorff distance of the
meshes is between 7 and 8 units. When Tetgen’s mesh was used, the solver was
45 times slower. For these values of fidelity, Tetgen meshes have better minimum
dihedral angles than HQD meshes, but they also have much lower average minimum
dihedral angles (15 degrees smaller), which is likely to be the reason for a much
worse condition number and the consequent large solver’s speed.

The accuracy of the solver on the meshes produced by the two Delaunay meshers
does not fluctuate significantly by the different fidelity values. That means that the
need for good surface approximation does not seem to affect the accuracy of the
solver. Meshes approximating very crudely the object surface yielded an error less
than half the voxel size.

The main characteristic of the optimization-based mesher (i.e., PBM) is the high
minimum and average dihedral angles, even in the case of very good fidelity. The
reason is because relatively dense initial BCCs can easily capture the object surface
without so much compression, thus preserving the good angles of the BCC triangu-
lation. Of course, the number of elements increases significantly, which makes the
mesh generation time extremely slow (see Table 1). We also observe that the solver
on PBM’s meshes exhibit the least error which in fact is achieved when fidelity is
very good (less than 5 units approximately). This is reasonable because good fidelity
does not deteriorate the quality as much as is the case of the two Delaunay meshes.
Notice, however, that even when the PBM meshes have very bad fidelity, the error
does not increase significantly.
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