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Abstract

In this paper, we present a Delaunay refinement algorithm for meshing 3D
medical images. Given that the surface of the represented object is a smooth
2-manifold without boundary, we prove that (a) all the tetrahedra of the

output mesh have radius-edge ratio less than
√√

3 + 2 (≈ 1.93), (b) all the
boundary facets have planar angles larger than 30 degrees, (c) the symmetric
(2-sided) Hausdorff distance between the object surface and mesh bound-
ary is bounded from above by a user-specified parameter, and (d) the mesh
boundary is ambient isotopic to the object surface. The first two guarantees
assure that our algorithm produces elements of bounded radius-edge ratio.
The last two guarantees assure that the mesh boundary is a good geometric
and topological approximation of the object surface. Our method also offers
control over the size of tetrahedra in the final mesh. Experimental evaluation
of our algorithm on synthetic and real medical data illustrates the theory and
shows the effectiveness of our method.
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1. Introduction

Delaunay meshing is a popular technique for generating tetrahedral meshes,
since it is able to mesh various domains such as: polyhedral domains [1, 2],
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domains bounded by surfaces [3, 4], or multi-labeled images [5, 6], offering
at the same time mathematical guarantees on the quality and the fidelity of
the final mesh.

In the literature, Delaunay refinement techniques have been employed to
mesh objects whose surface is already meshed as a Piecewise Linear Complex
(PLC) [1, 2, 7–9]. The challenge in this category of techniques is that the
quality of the input PLC affects the quality of the final volume mesh. For
example, if the input angles of the PLC are small, then even termination
might be compromised [10]. For images, one way to alleviate this challenge
is to consider the faces of each outer voxel as the input PLC, since these
faces meet at large angles (90◦ or 180◦). However, this would result in an
unnecessarily large final mesh.

Another approach is to assume that the object Ω to be meshed is known
only through an implicit function f : R3 → Z such that points in differ-
ent regions of interest evaluate f differently. This assumption covers a wide
range of inputs used in modeling and simulation, such as parametric sur-
faces/volumes [3], level-sets, and segmented multi-labeled images [5, 6, 11],
the focus of this paper. If the subsequent simulation permits sharp features
of the domain to be rounded-off, such functions can be used to represent
PLCs as well [11], a fact that renders this approach quite general. It should
be noted that these methods do not suffer from any small input angle arti-
facts introduced by the initial conversion to PLCs, since the isosurface ∂Ω
of the object Ω is recovered and meshed during refinement. In this paper,
we deal with objects whose surface is a smooth 2-manifold (see Section 2).
It is the algorithm’s responsibility to mesh both the surface and the interior
of the object such that the mesh boundary describes the object surface in a
way that meets the predefined fidelity and quality requirements.

The quality of an element is traditionally measured in terms of its circum-
radius-to-shortest-edge ratio or radius-edge ratio for short. It is desirable
that the mesh elements have radius-edge ratio bounded from above. Meshes
satisfying that bounded ratio property are called almost-good meshes in the
literature [12]. Miller et al. [13] show that almost-good meshes guarantee
optimal convergence rates for approximate solutions of Poisson’s equation.

Delaunay volume meshing algorithms extend the popular Delaunay sur-
face meshing and reconstruction algorithms described in [14, 15], and they
offer quality and fidelity guarantees [3, 4] under the assumption that the sur-
face of the object is smooth [3, 15] or does not form input angles less than
90◦ [4]. However, the quality achieved by these algorithms is somewhat weak:
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the upper bound for the elements’ radius-edge ratio is larger than 4. In con-

trast, the upper bound guaranteed by our algorithm is
√√

3 + 2 (≈ 1.93). To
our knowledge, our algorithm is the first volume Delaunay mesher for surfaces
achieving such a small radius-edge ratio with these fidelity guarantees.

Almost-good meshes, however, might contain nearly flat elements, the so
called slivers. The reason is that slivers can have a very small radius-edge
ratio and at the same time a very small dihedral angle. In the literature,
there are post-processing techniques that given an almost-good mesh, they
are able to remove slivers. See for example the work of Li and Teng [12],
the exudation technique of Cheng et al. [8], and the sliver perturbation of
Tournois et al. [16]. In fact, the sliver removal technique of Li and Teng [12]
requires a low radius-edge ratio, since the lower the radius-edge ratio, the
larger the guaranteed bound on the minimum dihedral angles. This is another
motivation for achieving low radius-edge ratio.

The success of Delaunay techniques to approximate the surface relies on
the notion of ε-samples, first introduced by Amenta and Bern [17]. The con-
struction of ε-samples directly from the surface is a challenging task. In the
literature, however, it is assumed that either such a sample is known [15,
17, 18] or that an initial sparse sample is given on every connected compo-
nent [3, 4, 19]. In this paper, we propose a method that starts directly from
labeled images and computes the appropriate sample on the fly.

In summary, we present a Delaunay refinement algorithm which:

• operates directly on images, samples and meshes the surface and the
volume of the represented biological object at the same time,

• is proved to generate tetrahedra with radius-edge ratio less than√√
3 + 2 (≈ 1.93) and boundary facets with planar angles more than

30◦,

• is proved to yield meshes of good fidelity, i.e., the mesh surface is
guaranteed to be a faithful geometric and topological approximation of
the object’s surface, and

• offers control over the size and the grading of the final mesh.

In the literature, there are also non-Delaunay surface and volume meshing
algorithms for 3D images. Marching Cubes [20] is a very popular technique
for surface meshing; it guarantees, however, neither good quality triangu-
lar facets nor faithful surface approximation. Furthermore, since the cubes
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have a very small size (close to the voxel size), Marching Cubes does not
offer a way to control the size of the mesh. Molino et al. [21] develop the
Red-Green Mesh (RGM) method. RGM starts by meshing an initial body-
centric cubic (BCC) lattice which is then compressed such that its boundary
fit on the surface. RGM gives, however, no quality or surface approxima-
tion guarantees. Another lattice-based method is the Isosurface Stuffing of
Labelle and Shewchuk [11]. They prove that the graded version of the final
mesh consists of elements with dihedral angles larger than 1.66◦. The Lattice
Decimation method proposed by Chernikov and Chrisochoides [22] is guar-
anteed to produce a good geometric approximation of the underlying object;
however, topological faithfulness is not guaranteed. Alliez et al. [23] intro-
duce a Delaunay-based optimization technique. Specifically, they iteratively
compute the new locations of the points by minimizing a quadratic energy.
The connectivity of these points is recalculated by finding their Delaunay tri-
angulation each time. They show that this technique produces meshes that
respect the boundary of the domain. Klingner and Shewchuk [24] extend the
work of Freitag and Ollivier-Gooch [25] by proposing smoothing and topo-
logical transformations which improve the quality of the mesh substantially.
The execution time, however, can be very high, even for small mesh size
problems.

The rest of this paper is organized as follows: Section 2 provides the
necessary definitions and Section 3 outlines our algorithm. Section 4 proves
the quality, Section 5 proves the good grading, and Section 6 proves the
fidelity guarantees. Finally, Section 7 elaborates on certain implementation
details, Section 8 assesses the practical value of our work on both synthetic
and real medical data, and Section 9 concludes our paper.

2. Preliminaries

Let I ⊂ R3 be the (spatial) domain of a multi-tissue segmented image.
I is the input of our algorithm that contains the object Ω ⊂ I to be meshed.
We assume that the object is partitioned into a finite number of n distinct

tissues Ω =
n⋃
i

Ωi, i = 1, . . . , n. Each Ωi defines an interface ∂Ωi that consists

of the set of points that lie on the boundary between Ωi and at least one more
tissue or the background of the image. The isosurface ∂Ω of Ω is then the

collection of all interfaces; that is, ∂Ω =
n⋃
i

∂Ωi, i = 1, . . . , n. We assume
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that we are given a function f : I → {−1, 0, 1, . . . , n}, which classifies every
point p ∈ I appropriately. Specifically, p evaluates f to −1 if it lies on ∂Ω,
to 0 if it lies in the background (i.e., outside the object), or to a positive
integer i if it belongs to the tissue Ωi. The existence of such a function is
a quite reasonable assumption: f can be constructed or approximated from
the image voxels quite well for any segmented image (see Section 7 for details
on f ’s implementation).

As is generally the case in the literature [3, 15, 19], we also assume that
∂Ω is a smooth (twice differentiable) 2-manifold without boundary.

Definition 1 (medial axis, Blum [26]). The medial axis of ∂Ω is the closure
of the set of those points having more than one closest point on ∂Ω.

Definition 2 (local feature size, Amenta and Bern [17]). The local feature
size of a point p ∈ ∂Ω, denoted as lfs∂Ω (p), is the distance from p to the
medial axis of ∂Ω.

We denote with lfsinf
∂Ω and lfssup

∂Ω the infimum and the supremum of the local
feature sizes of all the points on ∂Ω respectively, that is: lfsinf

∂Ω = inf{lfs∂Ω (p) :
p ∈ ∂Ω} and lfssup

∂Ω = sup{lfs∂Ω (p) : p ∈ ∂Ω}. Note that since ∂Ω is assumed
to be a smooth manifold, both lfsinf

∂Ω and lfssup
∂Ω are positive real constants.

Another useful property is that the local feature size is 1-Lipschitz, that is,

lfs∂Ω (p) ≤ |pq|+ lfs∂Ω (q) . (1)

Definition 3 (ε-sample, Amenta et al. [15]). A point set P ⊂ ∂Ω is called
an ε-sample of ∂Ω, if for every point p ∈ ∂Ω there is a sample point q ∈ P ,
such that |pq| ≤ ε · lfs∂Ω (p).

Next, we define a special restriction:

Definition 4 (restricted Delaunay triangulation, Boissonnat et al. [19]). Let
D (P ) be the Delaunay triangulation of the point set P . The restriction of
D (P ) to ∂Ω, denoted as D|∂Ω (P ), contains the facets in D (P ) whose dual
Voronoi edges intersect ∂Ω.

We shall refer to a facet whose dual Voronoi edge intersects ∂Ω as a
restricted facet. We denote the Voronoi edge of a facet f with Vor (f).

In [19], the following useful theorem is proved:

Theorem 1 (Boissonnat et al. [19]). If P is an ε-sample of ∂Ω with ε < 0.09,
then:
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• D|∂Ω (P ) is a 2-manifold ambient isotopic to ∂Ω and

• the 2-sided Hausdorff distance between D|∂Ω (P ) and ∂Ω is O(ε2).

We next define the surface ball of a restricted facet:

Definition 5 (surface ball, Oudot et al. [3]). Let f be a restricted facet and
e be f ’s dual Voronoi edge. The surface ball Bsurf (f) of f is a closed ball
which is centered at a point p ∈ e ∩ ∂Ω and passes through f ’s vertices.

In the rest of the paper, the center and radius of restricted facet f ’s
surface ball Bsurf (f) are denoted by csurf (f) and rsurf (f), respectively.

The following Remark follows directly from the fact that the center of
restricted facet f ’s surface ball lies on its Voronoi edge:

Remark 1. The surface ball of f contains no vertices in its interior.

A real point p is called a vertex, if it has been already inserted into the
mesh. Point p is called a feature point (or a feature vertex, if p is inserted
into the mesh), if it is a surface point, i.e., p ∈ ∂Ω. In the rest of the paper,
cfp (p) denotes the Closest Feature Point to p.

An element t is a tetrahedron, a (triangular) facet, or an edge. The
diametral ball B(t) of t is the set of points that lie inside or on t’s smallest
circumscribing sphere. The smallest circumscribing sphere of an element t
will be sometimes called its diametral sphere and symbolized by S(t). The
center of t’s diametral ball/sphere and the radius of t’s diametral sphere are
denoted by c (t) and r(t), respectively. The shortest edge of element t is
denoted by lmin (t). Finally, the radius-edge ratio ρ (t) of a tetrahedron or

facet t is defined as ρ (t) = |r(t)|
|lmin(t)| .

3. Algorithm

The user specifies as input the target upper radius-edge ratio ρ̄t for the
mesh tetrahedra, the target upper radius-edge ratio ρ̄f for the mesh boundary
facets, and parameter δ. It will be clear in Section 6 that the lower δ is, the
better the mesh boundary will approximate ∂Ω. For brevity, the quantity
δ · lfs∂Ω (z) is denoted by ∆∂Ω (z), where z is a feature point.

Our algorithm initially inserts the 8 corners of a cubical box B that
contains the object Ω, such that the distance between a point p on the box
and any feature point z is at least 2∆∂Ω (z). Since lfs∂Ω (z) ≤ lfssup

∂Ω , it suffices
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to construct B such that it is separated from the minimum bounding box of
Ω by a distance of at least 2 · δ · lfssup

∂Ω . Let d be the diagonal of the minimum
bounding box of Ω. Clearly, constructing box B to be separated from the
minimum bounding box by a distance of at least δ ·d fulfills the requirement,
since lfssup

∂Ω cannot be larger than d
2
.

After the computation of this initial triangulation, the refinement starts
dictating which extra points (also known as Steiner points) are inserted or
which vertices are deleted. At any time, the Delaunay triangulation D (V )
of the current vertices V is maintained. Note that by construction, D (V )
always covers the entire object and that any point on the box is separated
from ∂Ω by a distance of at least 2∆∂Ω (z), where z is a feature point.

The users can also define their own customized Size Function sf : Ω 7→ R+

and pass it as input to our mesher. The size function sets an upper bound on
the radii of the circumballs of the tetrahedra, and thus offers the flexibility
of controlling which parts of the domain need a denser representation.

During the refinement, some vertices are inserted exactly on the box;
these vertices are called box vertices. The edges that lie precisely on one of
the 12 edges of the bounding box are called box edges. We further divide the
box vertices into two categories: box-edge vertices and non-box-edge vertices.
The former vertices lie precisely on a box edge, while the latter do not. The
facets that lie precisely on one of the 6 faces of the box are called box facets.
For example, the initial triangulation contains just 8 box vertices (which are
also box-edge vertices) and 12 box edges (among other edges). Note that the
endpoints of a box edge are always box edge vertices, but the opposite is not
always true. We shall refer to the vertices that are neither box vertices nor
feature vertices as free vertices.

Next, we define two types of tetrahedra:

• intersecting tetrahedra: tetrahedra whose circumsphere intersects
∂Ω (i.e., there is at least one feature point in their circumball), and

• interior tetrahedra: tetrahedra whose circumcenter lies (strictly) in-
side Ω.

Note that a tetrahedron might be both intersecting and interior or might
belong to neither type.

The algorithm inserts new vertices or removes existing ones for three
reasons: to guarantee that the mesh boundary is close to the object surface,
to remove tetrahedra or facets with large radius-edge ratio, and to satisfy
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the sizing requirements. Specifically, let t be a tetrahedron and f a facet in
D (V ); the following five rules are checked in this order:

• R1: Let t be an intersecting tetrahedron and z be equal to the Closest
Feature Point cfp (c (t)) of t’s circumcenter c (t). If z is at a distance
not closer than ∆∂Ω (z) to any other feature vertex, then z is inserted
and all the free vertices closer than 2∆∂Ω (z) to z are deleted.

• R2: Let t be an intersecting tetrahedron and z be equal to cfp (c (t)).
If r(t) ≥ 2 ·∆∂Ω (z), then c (t) is inserted.

• R3: Let f be a restricted facet. If either ρ (f) ≥ ρ̄f or a vertex of f is
not a feature vertex, then z = csurf (f) is inserted. All the free vertices
closer than 2∆∂Ω (z) to z are deleted.

• R4: If t is an interior tetrahedron whose radius-edge ratio is larger
than or equal to ρ̄t, then c (t) is inserted.

• R5: Let t be an interior tetrahedron. If |r(t)| ≥ sf (c (t)), where sf (·)
is the user-defined Size Function, then c (t) is inserted.

Whenever there is no simplex for which R1, R2, R3, R4, or R5 apply, the
refinement process terminates. The final mesh reported is the set of tetrahedra
whose circumcenters lie inside Ω (i.e., interior tetrahedra). Thereafter, the
final mesh is denoted by M.

Definition 6 (Mesh boundary). Let f be a facet of the final mesh M. Con-
sider its two incident tetrahedra. If one tetrahedron has a circumcenter lying
inside a tissue Ωi and the other tetrahedron has a circumcenter lying either
outside Ωi or on ∂Ωi, then f belongs to the mesh boundary ∂M.

In Section 6, we prove that ∂M meshes all multi-tissue interfaces
n⋃
i

∂Ωi (= ∂Ω, see Section 2) accurately, in both geometric and topological

sense.
To prove termination (see Section 4), no vertices should be inserted out-

side the bounding box. Notice, however, that vertices inserted due to R2 may
lie outside the bounding box. To deal with such cases, we propose special
projections rules. Their goal is to reject points lying outside the box and
insert other points exactly on the box. They are simple to implement, com-
putationally inexpensive, and do not compromise either quality or fidelity.

8



S(t)

c (t)
F

c′ (t)

(a) c′ (t) is a box-edge point.

S(t)

c (t)

F

c′ (t)

(b) c′ (t) is a non-box-edge point.

Figure 1: The projection rule. The circumcenter c (t) of a tetrahedron t
(not shown) does not lie inside the box. c (t) is rejected for insertion; rather,
its projection c′ (t) precisely on the box is computed and inserted into the
triangulation.

Note that the projection rules are different than the traditional encroachment
rules described in [1, 2, 27].

Specifically, assume that R2 is triggered for a (intersecting) tetrahedron
t and c (t) lies outside the box. In that case, c (t) is rejected for insertion.
Instead, its projection c′ (t) on the box is inserted in the triangulation. That
is, c′ (t) is the closest to c (t) box point. Notice that c′ (t) can either lie exactly
on a box edge (see Figure 1a) or in the interior of a box facet (see Figure 1b).

Recall that tetrahedra with circumcenters on ∂Ω or outside Ω are not
part of the final mesh, and that is why rules R4 and R5 do not check them.

Algorithm 1 summarizes our mesh generation algorithm. Observe that
at line 10, we ask for the closest feature point cfp (c) of a given circumcenter
c. Also, given a feature point z ∈ ∂Ω, the algorithm asks for its distance
lfs∂Ω (z) from the medial axis. The computation of cfp (·) and lfs∂Ω (·) is
explained in detail in Section 7. In the next section, we will prove that
Intersecting ∪ Interior eventually will run out of elements, and the algorithm
terminates.
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Algorithm 1: The mesh generation algorithm.
1 Algorithm: Refine(I, δ, ρ̄t, ρ̄f , sf (·))

Input : I is the image containing Ω,
δ is the parameter that determines how dense the surface sampling will be,

ρ̄t (≥
√√

3 + 2) is the target radius-edge ratio for the tetrahedra,
ρ̄f (≥ 1) is the target radius-edge ratio for the facets,
sf (·) is the size function.

Output: A Delaunay mesh M that approximates ∂Ω well and is composed of tetrahedra with radius-edge ratio
less than ρ̄t and boundary facets with planar angles larger than 30◦.

2 Let V be the set of vertices inserted into the triangulation;
3 Let D (V ) be the triangulation of the set V ;
4 Let Intersecting and Interior be the set of the intersecting and interior tetrahedra in D (V ), respectively;

/* At this point, all the above sets are equal to the empty set. */

5 Insert the 8 vertices of a cubical box which contains Ω such that any point inserted on the box is separated from
any point z ∈ ∂Ω by a distance of at least 2 · δ · lfs∂Ω (z);

6 Update V,D (V ), Intersecting, and Interior ;
7 while Intersecting ∪ Interior 6= ∅ do
8 if Intersecting 6= ∅ then
9 Pick a tetrahedron t ∈ Intersecting;

10 Compute steiner = cfp (c (t));
11 if there is no feature vertex closer than δ · lfs∂Ω (steiner) to steiner then

/* R1 applies. */

12 else
13 if r(t) ≥ 2 · δ · lfs∂Ω (steiner) then
14 Compute steiner = c (t); /* R2 applies. */

15 if steiner lies outside the box then
16 Compute steiner = c′ (t); /* Projection rules apply. */

17 end

18 else
19 if t is adjacent to a restricted facet f , such that ρ (f) ≥ ρ̄f or f ’s vertices do not lie on ∂Ω

then /* Since f is a restricted facet, f is necessarily incident to at least one

intersecting tetrahedron t. */

20 Compute steiner = csurf (f); /* R3 applies. */

21 else
22 Intersecting = Intersecting \ t; /* No steiner point found. */

23 continue;

24 end

25 end

26 end

27 else /* Interior cannot be empty. */

28 if ρ (t) ≥ ρ̄t or r(t) ≥ sf (c (t)) then
29 Compute steiner = c (t); /* R4 or R5 apply. */

30 else
31 Interior = Interior \ t; /* No steiner point found. */

32 continue;

33 end

34 end
35 Insert steiner ;
36 if steiner is a feature vertex then
37 Delete all the free vertices that are closer than 2 · δ · lfs∂Ω (steiner) to steiner .
38 end
39 Update V , D (V ), Intersecting, and Interior ;

40 end
41 Let the final mesh M be equal to the set of the tetrahedra in D (V ) whose circumcenter lies inside Ω;
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4. Proof of Quality

In this section, we prove that if the target upper bound ρ̄t for the radius-

edge ratio is no less than
√√

3 + 2, then our algorithm terminates outputting
tetrahedra with radius-edge ratio less than ρ̄t and boundary facets with pla-
nar angles larger than 30◦ (see Theorem 2). Note that termination and
quality are not compromised by any positive value of δ. Parameter δ affects
only the fidelity guarantees (see Section 6).

Suppose that an element (tetrahedron or facet) t violates a rule Ri, where
i = 1, 2, 3, 4, 5, proj, where Rproj denotes the projection rules. That is, if t
violates R2, but its circumcenter lies on or outside the box, then we say that
t violates Rproj instead. t is called an Ri element. Ri dictates the insertion
of a point p (and possibly the removal of free points). Point p is called an Ri
point. Although the initial 8 box corners inserted into the triangulation do
not violate any rule, we shall refer to these corners as Rproj vertices as well.

Following similar terminology to [1, 27], we next define the insertion
radius and the parent of a point p.

Definition 7 (Insertion radius). Let v be a vertex inserted into the triangula-
tion. Right after the insertion of v (i.e., before any potential vertex removals),
the insertion radius R(v) of v is equal to |vq|, where q is:

• v’s closest box vertex already inserted into the mesh, if v is a box vertex,

• v’s closest feature vertex already inserted into the mesh, if v is an R1
vertex,

• v’s closest vertex already inserted into the mesh, otherwise.

Definition 8 (Parent). Let v be an Ri vertex inserted into the mesh because
an element (tetrahedron or facet) t violated Ri. The parent Par(v) of v is:

• an arbitrary box vertex, if t is a facet incident to at least one box vertex,

• the most recently inserted vertex of t, if t is a facet with ρ (f) < ρ̄f ,

• the most recently inserted vertex of lmin (t), otherwise.

The following two Lemmata relate the insertion radii of a vertex v with
the distance between v and its neighbors.
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rv

S(t)

c (t)

c′ (t) = v F

2D disk
z ∈ ∂Ω

(a) c′ (t) is not a box-edge vertex.

rv

S(t)

c (t)

c′ (t) = v

F

2D disk

z ∈ ∂Ω

s

G

(b) c′ (t) is a box-edge vertex.

Figure 2: Illustration to the proof of Lemma 3.

Lemma 1. Let w be an R2, R3, R4, or an R5 vertex inserted into the
triangulation and let x be an arbitrary vertex already in the triangulation.
Then, R(w) ≤ |wx|.

Proof. According to Definition 7, R(w) is the distance between w and its
closest neighbor, say q. Therefore, R(w) = |wq| ≤ |wx|.

Lemma 2. Let w be an R1 vertex inserted into the triangulation and let x be
an arbitrary feature vertex already in the triangulation. Then, R(w) ≤ |wx|.

Proof. According to Definition 7, R(w) is the distance between w and its
closest feature vertex, say q. Therefore, R(w) = |wq| ≤ |wx|.

Lemma 3. Let v be a box vertex. Then, R(v) ≥ 2∆∂Ω (z), where z is the
closest feature point of v.

Proof. According to Definition 7, R(v) is the distance between v and its
closest box vertex.

Initially, only the 8 box vertices of the bounding box are inserted. By
construction, no matter the order they are inserted, no box point is closer
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than 2δlfssup
∂Ω ≥ 2δlfs∂Ω (z) for any z ∈ ∂Ω. Therefore, the initial edges are

definitely larger than 4∆∂Ω (z) for any z ∈ ∂Ω, and the statement holds.
During the course of refinement, a box point v is inserted either because

the circumcenter c (t) of an intersecting tetrahedron t lies on or outside the
box. According to the projection rules, c (t) is ignored, and its projection
c′ (t) is inserted instead.

See Figure 2 for two examples illustrating the insertion of a non box-edge
vertex and a box-edge vertex. In both cases, consider the 2D disk (drawn in
both Figure 2a and Figure 2b) of the t’s sphere S(t) that contains c′ (t) and
is perpendicular to the segment c (t) c′ (t). This disk partitions t’s circumball
in two parts: the upper part that contains c (t) and the lower part that
intersects the interior of the box. From the empty ball property, we know
that the insertion radius of c′ (t) cannot be less than the radius of the 2D
disk. Let z be the closest feature point to c′ (t). Since t is an intersecting
tetrahedron, z has to lie in the lower part of t’s circumball, which means
that R(c′ (t)) ≥ |c′ (t) z|. By construction, however, |c′ (t) z| is larger than
2δlfssup

∂Ω ≥ 2∆∂Ω (z), and the proof is complete.

Lemma 4. Let v be a box vertex. Then |vcfp (v)| ≤ R(v)
√

3.

Proof. If v is a box vertex inserted because the circumcenter of an R2 element
lies on or outside the box, then the statement holds, because the proof of
Lemma 3 directly suggests that |cfp (v) v| ≤ R(v).

Consider the case where the box vertex v is one of the initially inserted 8
box corners. Note that the circumballs of all the resulting tetrahedra are the
same with the circumscribed ball of the box. Let us denote with r the length
of the radius of that ball. Since that ball contains the whole box, we have
that |vcfp (v)| ≤ 2r. It is easy to show that r =

√
3

2
L, where L is the box’s

edge length edge. From Definition 7, we know that R(v) = L, and therefore,
we obtain that |vcfp (v)| ≤ 2r = L

√
3 = R(v)

√
3.

Lemma 5. Let f be a facet and wx be its second smallest edge. If ρ (f) ≤ ρ̄f ,

then |r(f)| ≥ |wx|√√
4− 1

ρ̄2
f

+2

.
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w

qx

c

b

θ

Figure 3: Illustration to the proof of Lemma 5. The facet f is shown in bold
together with its circumcircle. The radius of the circumcircle of f is bounded
from below by |wx|√√

4− 1

ρ̄2
f

+2

, where wx is the second smallest edge of f .

Proof. Let f be a facet defined by the vertices w, x, and q. Assume that
xq = lmin (f) and wq is the largest edge. If there are more than one smallest
edges and/or largest edges, choose arbitrarily one edge as the smallest and/or
one edge as the largest. In this example, wx is the second smallest edge of
f .

Keeping the circumball fixed, move w along the circumcircle such that
the length of wx becomes equal to the length of wq. In such a configuration
(which is shown in Figure 3), the length of wx (i.e., the length of the second
smallest edge) is maximized. Also observe, the radius wc bisects angle θ.

From the right triangle 4cbw, we get that cos θ
2

= |wx|
2|r(f)| . Since θ is still

the angle opposite to f ’s shortest edge, θ and ρ (f) are related through the
following equality: sin θ = 1

2ρ(f)
[27]. This fact and basic trigonometry yield

that cos θ
2

=

√√
1− 1

4ρ(f)2
+1

√
2

. Note that the right-hand side is maximized when

ρ (f) gets its highest value. Since the Lemma assumes that ρ (f) ≤ ρ̄f ,

we obtain that cos θ
2
≤

√√
1− 1

4ρ̄2
f

+1

√
2

. Therefore, we finally conclude that

|r(f)| ≥ |wx|√√
4− 1

ρ̄2
f

+2

.
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The following lemma sets a lower bound on the shortest edge introduced
into the mesh after the insertion of a point according to the five rules.

Lemma 6. Let v be inserted as dictated by the five rules and w be its parent.
Then,

• R(v) ≥ ∆∂Ω (z), if v is an R1 or an R2 vertex, where z is the closest
feature point to v,

• R(v) ≥ min
{

R(w)√√
4− 1

ρ̄2
f

+2

, ρ̄fR(w),∆∂Ω (v)
}

, if v is an R3 vertex and w

is a free or a box vertex,

• R(v) ≥ min
{
ρ̄fR(w),∆∂Ω (w)

}
, if v is an R3 vertex and w is a feature

vertex,

• R(v) ≥ ρ̄tR(w), if v is an R4 vertex,

• R(v) ≥ sf (v), if v is an R5 vertex.

Proof. We separate cases according to the type of v.

• Case 1: v is an R1 or an R2 vertex.

If R1 is triggered, then v is equal to z. According to Definition 7,
R(v) is the distance between v and its closest feature vertex. Vertex v,
however, is inserted only if v is separated from any other feature vertex
by a distance of at least ∆∂Ω (v) = R(v), and the statement holds.

Otherwise, R2 applies for a tetrahedron t and v is equal to c (t). Ac-
cording to Definition 7, R(v) is the distance between v and its clos-
est neighbor. Because of the empty ball property, R(v) is at least
r(t) ≥ 2∆∂Ω (cfp (v)), and the statement holds.

• Case 2: v is an R3 vertex.

In this case, v is equal to the center csurf (f) of f ’s surface ball, where
f is the restricted facet that violates R3. According to Definition 7,
R(v) is the distance between v and its closest neighbor. Since any
surface ball is empty of vertices in its interior (Remark 1), we know that
R(v) = |rsurf (f)|. The rest of this proof attempts to bound |rsurf (f)|
from below. We separate three scenaria:

15



(a) First, consider the case where f is incident to at least on box
vertex. According to Definition 8, this box vertex can be the parent w
of v. By construction, the distance between csurf (f) and w is at least
2∆∂Ω (z) for any feature point z. Therefore, the surface radius is at
least 2∆∂Ω (v) > ∆∂Ω (v), and the statement holds.

(b) Second, consider the case where ρ (f) ≥ ρ̄f . According to Defini-
tion 8, w is the most recently inserted vertex incident to wq = lmin (f).
Since ρ (f) is no less than ρ̄f , |r(f)| = ρ (f) |lmin (f)| ≥ ρ̄f |lmin (f)|.
If w is not an R1 vertex, from Lemma 1, we get that |r(f)| ≥ ρ̄f |lmin (f)| ≥
ρ̄fR(w).

If w is an R1 vertex and q is a feature vertex (that is, q is either an R1 or
an R3 vertex), then from Lemma 2, we get that |r(f)| ≥ ρ̄f |lmin (f)| ≥
ρ̄fR(w).

If w is an R1 vertex and q is a free vertex then q has to be separated from
w by a distance of at least 2∆∂Ω (w), because R1 deleted all the free
points closer than 2∆∂Ω (w) to w. That means that |wq| ≥ 2∆∂Ω (w),

a fact that also bounds |r(t)| from below by |wq|
2
≥ ∆∂Ω (w).

(c) Lastly, consider the case where f ’s radius-edge ratio is less than ρ̄f .
Since R3 is triggered, f has to be incident to at least one free vertex
q. According to Definition 8, w is the most recently inserted vertex of
f . If w is a feature vertex (i.e., w is either an R1 or an R3 vertex),
then q must be separated from w by a distance of at least 2∆∂Ω (w),
because w was inserted after q, and by R1 and R3, all the free points
closer than 2∆∂Ω (w) to w were deleted. Since wq is an edge of f , the

radius of any surface ball of f has to be at least 2∆∂Ω(w)
2

= ∆∂Ω (w) in
length. Otherwise, w is in fact a free vertex (i.e., it is an R2, R4, or
R5 vertex).

Any vertex w of f is incident to f ’s shortest edge (say L1), or f ’s
second shortest edge (say L2), or both. From Lemma 5, we have that

|r(f)| ≥ |L2|√√
4− 1

ρ̄2
f

+2

≥ |L1|√√
4− 1

ρ̄2
f

+2

. From Lemma 1, we finally get that:

|r(f)| ≥ R(w)√√
4− 1

ρ̄2
f

+2

.

• Case 3: v is an R4 vertex.
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There has to be a tetrahedron t that violates R4, and therefore, |r(t)| ≥
ρ̄t |lmin (t)|. According to Definition 7, R(v) is the distance between v
and its closest neighbor. Because of the empty ball property, R(v) =
|r(t)| ≥ ρ̄t |lmin (t)|. According to Definition 8, the parent w of v is the
most recently inserted vertex of wq = lmin (t).

If w is not an R1 vertex, from Lemma 1, we get that ρ̄t |lmin (t)| ≥
ρ̄tR(w).

If w is an R1 vertex and q is a feature vertex (that is, q is either an R1
or an R3 vertex), then from from Lemma 2, we get that ρ̄t |lmin (t)| ≥
ρ̄tR(w).

If w is an R1 vertex and q is a free vertex then q has to be separated from
w by a distance of at least 2∆∂Ω (w), because R1 deleted all the free
points closer than 2∆∂Ω (w) to w. That means that |wq| ≥ 2∆∂Ω (w),

a fact that also bounds |r(t)| from below by |wq|
2
≥ ∆∂Ω (w).

• Case 4: v is an R5 vertex.

v is the circumcenter of a tetrahedron t with radius no less than sf (c (t)) =
sf (v). According to Definition 7 and the empty ball property, however,
the radius of t is equal to R(v).

The next Lemma shows that the boundary facets of the output mesh are
in fact restricted facets.

Lemma 7. Let V be the set of vertices inserted into the triangulation. The
set ∂M of the boundary facets of the final mesh M is a subset of D|∂Ω (V ).

Proof. It follows directly from Definition 6. A facet f is a facet of the mesh
boundary, if it is incident upon a tetrahedron t1 whose circumcenter lies
inside Ωi (see Section 2) and upon a tetrahedron t2 whose circumcenter lies
either outside Ωi or on its surface ∂Ωi. However, this means that the dual
Voronoi edge e of f intersects ∂Ωi, and as a subsequence, e also intersects
∂Ω (⊇ ∂Ωi). Hence, f belongs to D|∂Ω (V ).
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∆∂Ω (z)

∆∂Ω (z)

1√√√√
√

4− 1
ρ̄2
f

+2

1√√√√
√

4− 1
ρ̄2
f

+2

1√√√√
√

4− 1
ρ̄2
f

+2

ρ̄f

ρ̄f

ρ̄f

ρ̄f

sf

sfsf

R3 R4

R5

R1/R2/projection

Figure 4: Flow diagram depicting the relationship among the insertion radii
of the vertices inserted because of the rules, where the arrows point from
parents to their offspring. A solid arrow from Ri to Rj with label x implies
that the insertion radius of an Rj point v is at least x times larger than the
insertion radius of its Ri parent w. The label of the dashed arrows is the
absolute value of R(v). No solid cycle should have a product less than 1.
The dashed arrows break the cycle.

Theorem 2 (Termination and quality). Let ρ̄f ≥ 1 and let

ρ̄t ≥
√√

4− 1
ρ̄2
f

+ 2
(
≥
√√

3 + 2 ≈ 1.93
)

. The algorithm terminates pro-

ducing tetrahedra of radius-edge ratio less than ρ̄t and boundary facets of
planar angles larger than 30◦.

Proof. Figure 4 shows the insertion radius of the inserted point as a fraction
of the insertion radius of its parent, as proved in Lemma 3 and Lemma 6.
An arrow from Ri to Rj with label x implies that the insertion radius of
an Rj point v is at least x times larger than the insertion radius of its Ri
parent w. The label of the dashed arrows is the absolute value of R(v), with
sf denoting that the insertion radius of v is no less than sf (v). Note that the
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labels of the dashed arrows depend on the local feature size of ∂Ω and the
size function sf, and as such are always positive constants.

Recall that during refinement, free vertices might be deleted (because of
R1 or R3). Nevertheless, such deletions of vertices are always preceded by
insertion of feature points. Considering the fact that feature vertices are
never deleted from the mesh, termination is guaranteed if we prove that the
insertion radii of the inserted vertices cannot approach zero. Clearly [1, 27],
it is enough to prove that Figure 4 contains no solid cycle of product less
than 1. By requiring ρ̄f to be no less than 1 (cycle R3 → R3) and ρ̄t to be

no less than

√√
4− 1

ρ̄2
f

+ 2 ≥
√√

3 + 2 (cycle R3 → R4 → R3), no solid

cycle of Figure 4 has product less than 1, and termination is guaranteed.
Upon termination, the tetrahedra reported as part of the mesh have cir-

cumcenters that lie inside Ω and therefore they cannot be skinny, because
otherwise R4 would apply. This implies that any mesh tetrahedron has
radius-edge ratio less than ρ̄t.

Since a boundary facet f is a restricted facet (by Lemma 7), R3 guarantees
that the radius-edge ratio ρ (f) of f ’s diametral ball cannot be larger than
or equal to ρ̄f . Also, note that ρ (f) is equal to 1

2 sin θ
, where θ is the smallest

angle of f [27]. It follows that the planar angles are larger than 30◦.

5. Proof of Good Grading

In this Section, we show that the shortest edge connected to an inserted
vertex v is proportional to v’s local feature size, a property that is also
known as good grading. Although good grading implies size optimality in
2D domains [28], the same does not hold in general 3D domains, a mishap
associated to the fact that slivers are not provably eliminated. As explained
and demonstrated in [1], there are cases such that the local feature size
becomes arbitrary close to zero, while there is a way to mesh the domain
with very few (and poor) elements. However, infinitesimal local feature size
means that even a very large number of elements satisfy the good grading
property, despite the fact that many fewer elements would suffice. This is a
possible non size-optimal scenario.

Nevertheless, it is useful to show that parts of the domain with large local
feature sizes are meshed with larger and fewer elements than parts of smaller
local feature sizes. We also wish to show that dense size functions on certain
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parts will not affect considerably the density of vertices on other parts of the
domain.

Following similar terminology to [3], we define the general local feature
size and the general size function on a vertex v as follows:

Definition 9 (General Local Feature Size). The general local feature size
glfs∂Ω (v) on a vertex v is defined as

glfs∂Ω (v) = inf
z∈∂Ω

{
|vz|+ lfs∂Ω (z)} (2)

Definition 10 (General Size Function). The general size function gsf (v) on
a vertex v is defined as

gsf (v) = inf
p∈Ω

{
|pv|+ sf (p)

}
(3)

The definition of glfs∂Ω (·) implies that vertices far from ∂Ω will tend to
have large general local feature sizes. In the case where the vertex lies on
the surface, the general local feature size coincides with the local feature size
(see Definition 2) of the vertex, and it increases when the vertex lies far from
the medial axis. The definition of gsf (·) implies that vertices close to parts
of the domain on which the user-defined size function is small will evaluate
the general size function to a small number as well.

The following Remark states a few useful properties of the general local
feature size and the general size function:

Remark 2 (From [23, 29]). glfs∂Ω (·) and gsf (·) are 1-Lipschitz. Moreover,
glfs∂Ω (z) = lfs∂Ω (v), ∀z ∈ ∂Ω.

Following the terminology of [1, 27], the density D (v) of a vertex v is
defined as:

D (v) =
min{glfs∂Ω (v) , gsf (v)}

R(v)
(4)

Our goal is to bound from above the density of all inserted vertices by a
constant depending only on Ω and the input parameters. Notice that since
D (v) ≤ glfs∂Ω(v)

R(v)
and D (v) ≤ gsf(v)

R(v)
, it is enough to bound from above either

glfs∂Ω(v)
R(v)

or gsf(v)
R(v)

.
The following Lemma relates the insertion radius of a vertex with its

distance from its parent:
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Lemma 8. Let v be an R3 or an R4 vertex inserted into the mesh and w be
its parent. Then, R(v) = |vw|.

Proof. If v is an R3 or R4 vertex, then v is the center of an element t’s
circumball or surface ball. According to Definition 8, the parent w of v is
one vertex of t. Because of the empty circumball and surface ball property,
Definition 7 implies that R(v) = |vw|.

The following Lemma relates the density of a vertex v with that of its
parent:

Lemma 9. Let v be an R3 or R4 vertex and R(v) ≥ c · R(w), where w =
Par(v). Then

D (v) ≤ 1 +
D (w)

c
. (5)

Proof. The proof is similar to the proof of Lemma 6 in [27].
Let w = Par(v). Since glfs∂Ω (·) and gsf (·) are 1-Lipschitz (see Re-

mark 2), we have that:

min{glfs∂Ω (v) , gsf (v)} ≤ min{|vw|+ glfs∂Ω (w) , |vw|+ gsf (w)}
= |vw|+ min{glfs∂Ω (w) , gsf (w)}
= R(v) + min{glfs∂Ω (w) , gsf (w)} (from Lemma 8)

= R(v) +R(w)D (w) (from Equation (4))

≤ R(v) + R(v)
c D (w) ,

and the result follows by dividing both sides by R(v).

Before we proceed to the proof of good grading, we need two auxiliary
Lemmata:

Lemma 10. Let v be an R2 vertex. Then, |vcfp (v)| ≤ R(v).

Proof. Vertex v is an R2 vertex because of an intersecting tetrahedron t.
Since t is an intersecting tetrahedron and v is the center of t, we have that
|vcfp (v)| ≤ |r(t)|. Definition 7, however, implies that |r(t)| = R(v), and the
statement holds.

Lemma 11. Let v be a vertex inserted into the mesh. Then,

• D (v) ≤ 1+δ
√

3
δ

, if v is an R1, R2, or a box vertex,

• D (v) ≤ 1+δ
δ

, if v is an R3 vertex and R(v) ≥ min{∆∂Ω (w) ,∆∂Ω (v)},
where w = Par(v) ∈ ∂Ω, and
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• D (v) ≤ 1, if v is an R5 vertex.

Proof. We separate cases.
Let v be an R1 vertex. According to the flow diagram of Figure 4, we

have that R(v) ≥ ∆∂Ω (cfp (v)) = ∆∂Ω (v) = δ · lfs∂Ω (z). From Remark 2, we

have that R(v) ≥ δ · lfs∂Ω (z) = δ · glfs∂Ω (z), giving that D (v) ≤ 1
δ
≤ 1+δ

√
3

δ
,

and the statement holds.
Let v be an R2 or a box vertex. According to the flow diagram, R(v) ≥

∆∂Ω (cfp (v)) = δ·lfs∂Ω (cfp (v)) = δ·glfs∂Ω (cfp (v)), and from the fact that the
general local feature size is 1-Lipschitz, we have thatR(v) ≥ δ (glfs∂Ω (v)− |vcfp (v)|).
From Lemma 4 and Lemma 10, we know that |vcfp (v)| ≤ R(v)

√
3. There-

fore, we obtain that R(v) ≥ δ
(
glfs∂Ω (v)−R(v)

√
3
)
. Dividing both sides by

R(v) finally gives that D (v) ≤ 1+δ
√

3
δ

, and the statement holds.
Let v be an R3 vertex and R(v) ≥ ∆∂Ω (v) = δ · lfs∂Ω (v). It follows

directly that D (v) ≤ 1
δ
< 1+δ

δ
.

Let v be an R3 vertex and R(v) ≥ ∆∂Ω (w), where w ∈ ∂Ω is the parent
of v. From Remark 2, we obtain that R(v) ≥ ∆∂Ω (w) = δ · lfs∂Ω (w) =
δ · glfs∂Ω (w) ≥ δ (glfs∂Ω (v)− |vw|). From Definition 8, w is one of the
vertices of a restricted facet whose surface ball has v as the center. From
the empty surface ball property and Definition 7, we know that R(v) = |vw|.
Therefore, R(v) ≥ δ (glfs∂Ω (v)−R(v)). Dividing both sides by R(v) finally
gives that D (v) ≤ 1+δ

δ
, and the statement holds.

Let v be an R5 vertex. According to the flow diagram, all the arrows
pointing to R5 are dashed and labeled as sf. The label of dashed arrows
is the absolute value of R(v) and therefore, R(v) ≥ sf (v). Since, however,
gsf (v) = inf

p∈Ω

{
|pv|+sf (p)

}
≤ |vv|+sf (v) = sf (v), we get that R(v) ≥ gsf (v),

and the proof is complete.

Finally, the following Theorem proves that our algorithm achieves good
grading:

Theorem 3 (Good Grading). Let ρ̄f be strictly larger than 1 and let ρ̄t be

strictly larger than X =

√√
4− 1

ρ̄2
f

+ 2
(
≥
√√

3 + 2 ≈ 1.93
)

. Let v be an

Ri vertex inserted into the mesh, i = 1, 2, 3, 4, 5, proj. Then, right after its
insertion, its density D (v) is bounded from above by a fixed constant Di > 0.

Proof. This theorem will be proved via induction.
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Initially, only the 8 box corners are inserted into the triangulation. Ac-
cording to Lemma 11, the induction basis holds, if

Dproj =
1 + δ

√
3

δ
. (6)

For the induction hypothesis, assume that the density D (w) of v’s parent
Rj vertex w is bounded from above by Dj, where j = 1, 2, 3, 4, 5, proj. We
need to show that one constant Di bounds from above the density of Ri

vertex v, where i = 1, 2, 3, 4, 5, proj.
We separate cases according to the type of v:

• v is an R1, R2, or a box vertex
According to Lemma 11, the insertion radius of v is bounded from
above by 1+δ

√
3

δ
. Therefore, no matter what the parent of v is, the

induction step holds, if

D1 = D2 = Dproj =
1 + δ

√
3

δ
. (7)

• v is an R5 vertex
Similarly to the case above, Lemma 11 suggests that no matter what
the parent of v is, the induction step holds, if

D5 = 1. (8)

• v is an R4 vertex
From the flow diagram, all the arrows pointing to R4 are labeled with ρ̄t.
Therefore, from Lemma 9 and Lemma 6, we get that D (v) ≤ 1 + D(w)

c
,

with c equal to ρ̄t for any parent w. Thus, the induction step would
be proved, if D4 was set to a value that satisfied all the following
inequalities:

1 +
D1

ρ̄t
≤ D4 (9)

1 +
D3

ρ̄t
≤ D4 (10)
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1 +
D4

ρ̄t
≤ D4 (11)

1 +
D5

ρ̄t
= 1 +

1

ρ̄t
≤ D4 (12)

Observe that the D5 term in Inequality (12) is replaced by 1, according
to Equality (8).

• v is an R3 vertex
According to Lemma 11, D (v) is bounded from above by 1+δ

δ
for the

relationships of Figure 4 that are depicted by the dashed arrows point-
ing to R3. Therefore, for the induction step to be proved, D3 has to
satisfy at least the following inequality:

1 + δ

δ
≤ D3 (13)

For the rest of the relationships (i.e., solid arrows), we know from

Lemma 9 and Lemma 6 that D (v) ≤ 1 + D(w)
c

, where c is equal to

ρ̄f if w is an R3 vertex or equal to min
{

1
X
, ρ̄f

}
if w is an R1, R2,

Rproj, R4 or R5 vertex.

Therefore, the induction step would be proved, if D3 was set to a value
that satisfied also the following inequalities:

1 +D1 max

{
X,

1

ρ̄f

}
= 1 +D1X ≤ D3 (14)

1 +
D3

ρ̄f
≤ D3 (15)

1 +D4 max

{
X,

1

ρ̄f

}
= 1 +D4X ≤ D3 (16)

1 +D5 max

{
X,

1

ρ̄f

}
= 1 +X ≤ D3 (17)
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Observe that X is always larger than 1
ρ̄f

when ρ̄f > 1 and that is

why the 1
ρ̄f

term is eliminated from Inequalities (14), (16), and (17).

Also, the D5 term in Inequality (17) is replaced by 1, according to
Equality (8).

Putting it all together and simplifying the results, Inequalities (9)- (17)
above are simultaneously satisfied by choosing:

D4 = max

{
ρ̄t + 1

ρ̄t −X
,
δ (ρ̄t + 1) +X

(
1 + δ

√
3
)

δρ̄t
,
ρ̄t (ρ̄f − 1) + ρ̄f
ρ̄t (ρ̄f − 1)

}
(18)

and

D3 = max

{
δ +X

(
1 + δ

√
3
)

δ
,
δρ̄t (1 +X) +X

(
1 + δ

√
3
)

δρ̄t
,

ρ̄f
ρ̄f − 1

,
ρ̄t (1 +X)

ρ̄t −X

}
(19)

Equalities (6), (7), (8), (18), and (19) satisfy both the induction basis
and the induction step for any number and type of vertices, and therefore,
the proof is complete.

6. Proof of Fidelity

In this section, we derive an upper bound for δ, such that the boundary
of the final mesh is a provably good topological and geometric approximation
of ∂Ω. Our goal is to prove that the mesh boundary ∂M (see Definition 6) is
equal to D|∂Ω (E) for E a 0.09-sample of ∂Ω (see Theorem 4 of this section).
To see why this is enough, recall that from Theorem 1, the restriction of a
0.09-sample of ∂Ω to ∂Ω is a good topological and geometric approximation
of ∂Ω.

First, we show that δ directly controls the density of the feature vertices.
Let V be the set of vertices in the triangulation and E be equal to V ∩ ∂Ω.

Lemma 12. Let δ < 1
4
. Then E is a 5δ

1−4δ
-sample of ∂Ω.
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v

Figure 5: Illustration to the proof of Lemma 12.

Proof. Recall that upon termination, there is no tetrahedron for which R1,
R2, R3, R4, or R5 apply.

See Figure 5. Let p be an arbitrary point on ∂Ω. Since D (V ) covers all
the domain, point p has to lie on or inside the circumsphere of a tetrahedron
t (not shown). Hence, t is an intersecting tetrahedron. Let point p′ be the
feature point closest to c (t). Note that |c (t) p| ≥ |c (t) p′| and therefore p′

lies on or inside t’s circumsphere. We also know that t’s circumradius has to
be less than 2∆∂Ω (p′), since otherwise R2 would apply for t. Therefore, we
have the following:

|pp′| < 2r(t) (because both p and p′ lie on or inside B(t))
< 4∆∂Ω (p′) (because of R2)
≤ 4δ (|pp′|+ lfs∂Ω (p)) (from Inequality (1)),

and by reordering the terms, we obtain that:

|pp′| < 4δ

1− 4δ
lfs∂Ω (p) , with δ <

1

4
. (20)

Moreover, there must exist a feature vertex v in the triangulation closer
than ∆∂Ω (p′) = δ · lfs∂Ω (p′) to p′, since otherwise R1 would apply for t.
Hence, |vp′| < δ · lfs∂Ω (p′), and using Inequality (1), we have that:

|vp′| < δ (|pp′|+ lfs∂Ω (p)) (21)

26



Applying the triangle inequality for 4pvp′ yields the following:

|pv| ≤ |pp′|+ |vp′|
< |pp′|+ δ (|pp′|+ lfs∂Ω (p)) (from Inequality (21))
= |pp′| (1 + δ) + δ · lfs∂Ω (p)
< 4δ

1−4δ
lfs∂Ω (p) (1 + δ) + δ · lfs∂Ω (p) (from Inequality (20))

=
(

4δ(1+δ)
1−4δ

+ δ
)

lfs∂Ω (p)

= 5δ
1−4δ

lfs∂Ω (p) ,

and the proof is complete.

Recall from Section 2 that the multi-tissue object Ω could be described

as a union of materials Ω =
n⋃
i

Ωi. Let us denote by Ωj
i , the jth connected

component of a specific tissue Ωi, j = 1, . . . ,m.
Similar to Definition 4, D|∂Ωji

(V ) denotes the set of those facets in the De-

launay triangulation of the vertices in V whose dual Voronoi edge intersects

the surface ∂Ωj
i of Ωj

i . Also, note that ∂Ω =
n⋃
i

m⋃
j

∂Ωj
i .

From Lemma 12 and Definition 3, the following Corollary follows:

Corollary 1. Let δ ≤ 0.09
5.36
≈ 0.0168 and let Ej

i = V ∩ ∂Ωj
i . Then, Ej

i is a

0.09-sample of ∂Ωj
i .

As we have already mentioned in Section 3, the final mesh M reported
consists of tetrahedra whose circumcenter lies inside Ω. Let Mj

i be the set
of tetrahedra whose circumcenter lies inside Ωj

i .
Similar to Definition 6, ∂Mj

i denotes the set of the boundary facets of
submesh Mj

i . That is, ∂Mj
i contains the facets incident to two tetrahedra

such that one tetrahedron has a circumcenter lying inside Ωj
i and the other

has a circumcenter lying either outside Ωj
i or on ∂Ωj

i .

Lemma 13. Let t be an intersecting tetrahedron whose circumball B(t) con-
tains a point m of ∂Ω’s medial axis. Then, δ > 1

4
.

Proof. Upon termination, rule R2 cannot apply for any tetrahedron. There-
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fore, we have the following:

2 · δ · lfs∂Ω (cfp (c (t))) > |r(t)| (from R2)

≥ |cfp(c(t))m|
2 (since m and cfp (c (t)) lie inside B(t))

≥ lfs∂Ω(cfp(c(t)))
2 (since m is on the medial axis) ⇒

δ > 1
4 .

Lemma 14. Let δ ≤ 1
4
. Any facet f ∈ ∂Mj

i belongs to D|∂Ωji
(V ) and has its

vertices on ∂Ωj
i .

Proof. Since f belongs to ∂Mj
i , f is incident to two tetrahedra t1, t2 ∈ D (V ),

such that the circumcenter of t1 lies inside Ωj
i and the circumcenter of t2 lies

outside Ωj
i or ∂Ωj

i . However, this means that the Voronoi edge of f intersects
∂Ωj

i , and therefore, f ∈ D|∂Ωji
(V ). This completes the first part.

For the second part and for the sake of contradiction, assume that there
is at least one vertex v of f that does not lie on ∂Ωj

i , but on another ∂Ωj′

i′ .
Consider the tetrahedron t1, one of the two tetrahedra incident to f with
circumcenter lying inside Ωj

i . Since v lies on ∂Ωj′

i′ , the circumball B(t1) of t1
intersects ∂Ω in more than one connected component. According to Lemma
7 of Amenta and Bern [17], this implies that B(t) contains a point m of
the medial axis of ∂Ω. Moreover, observe that t1 is in fact an intersecting
tetrahedron. From Lemma 13, we finally get that δ > 1

4
. However, this raises

a contradiction, since δ is assumed to be no larger than 1
4
.

The next two Lemmas prove a few useful properties for the meshM and
its boundary ∂M. Our goal is to show that ∂Mj

i is always non-empty and
does not have boundary (Lemma 16), a fact that will be used for proving the
fidelity guarantees (Theorem 4).

Lemma 15. Let δ ≤ 1
4
. Then, Mj

i 6= ∅.

Proof. For the sake of contradiction, assume thatMj
i is empty. That means

that there is no tetrahedron whose circumcenter lies inside Ωj
i . Since the

triangulation D (V ) covers all the domain, the circumballs of the tetrahedra
in D (V ) also cover the tissue Ωj

i . Therefore, there has to be a circumball
B(t) (t ∈ D (V )) which contains a point m on the medial axis of ∂Ωj

i , such
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that m lies inside Ωj
i . By our assumption, the circumcenter c (t) cannot lie

inside Ωj
i . Therefore, t is an intersecting tetrahedron. From Lemma 13, we

finally get that δ > 1
4
. However, this raises a contradiction, since δ is assumed

to be no larger than 1
4
.

Lemma 16. Let δ ≤ 1
4
. Then ∂Mj

i is a non-empty set and does not have
boundary.

Proof. The fact that ∂Mj
i is a non-empty set follows directly from Lemma 15:

sinceMj
i cannot be empty, its boundary ∂Mj

i cannot be empty too. For the
other part, since ∂Mj

i is the boundary of a set of tetrahedra, it cannot have
boundary.

The following Theorem proves the fidelity guarantees achieved by our
algorithm:

Theorem 4. Let δ = 0.0168. Then the mesh boundary ∂M is a 2-manifold
ambient isotopic to ∂Ω and the 2-sided Hausdorff distance between the mesh
boundary and ∂Ω is O(δ2).

Proof. By Theorem 1, it is enough to prove that ∂M is the restriction to
∂Ω of the Delaunay triangulation of a 0.09-sample. We will, in fact, show
that the boundary ∂Mj

i of the submesh Mj
i is equal to D|∂Ωji

(
Ej
i

)
(recall

that Ej
i is equal to V ∩ ∂Ωj

i ) which is the restriction to ∂Ωj
i of the Delaunay

triangulation of a 0.09-sample of ∂Ωj
i , by Corollary 1. This is enough, since

this would prove that the boundary of each submesh Mj
i is an accurate

representation of the interface ∂Ωj
i , for any i and j.

Let f be a facet in ∂Mj
i . From Lemma 14, we know that f ∈ D|∂Ωji

(V )

that f ’s vertices lie on ∂Ωj
i . Let B be the surface ball of f . From Definition 5,

the interior int (B) of B is empty of vertices in V . Therefore, int (B) is empty
of vertices in V ∩∂Ωj

i also. Without loss of generality, assume that the vertices
in V are in general position. Since there is a ball B that circumscribes f and
does not contain vertices of V ∩∂Ωj

i in its interior, f has to appear as a simplex
in D

(
V ∩ ∂Ωj

i

)
. Since the center of B lies on ∂Ωj

i , then the Voronoi dual of

f intersects ∂Ωj
i in D|∂Ω

(
V ∩ ∂Ωj

i

)
, as well. Hence, ∂Mj

i ⊆ D|∂Ωji

(
V ∩ ∂Ωj

i

)
.

For the other direction, we will prove that ∂Mj
i cannot be a proper subset

of D|∂Ωji

(
V ∩ ∂Ωj

i

)
, and therefore, equality between these two sets is forced.
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Toward this direction, we will prove that any proper non-empty subset of
D|∂Ωji

(
V ∩ ∂Ωj

i

)
has boundary; this is enough, because we have proved in

Lemma 16 that ∂Mj
i is non-empty and does not have boundary.

Since V ∩ ∂Ωj
i meets the requirements of Theorem 1, D|∂Ωji

(
V ∩ ∂Ωj

i

)
is a 2-manifold without boundary. Therefore, any edge in D|∂Ωji

(
V ∩ ∂Ωj

i

)
is incident to exactly two facets of D|∂Ωji

(
V ∩ ∂Ωj

i

)
. Since any proper non-

empty subset A of D|∂Ωji

(
V ∩ ∂Ωj

i

)
has fewer facets, A contains at least an

edge e incident to only one facet. However, this implies that e belongs to the
boundary of A, and the proof is complete.

7. Implementation details

We used the Insight Toolkit (ITK) for image processing [30]. ITK pro-
vides, among others, the implicit function f that describes object Ω to be
meshed (see Section 2). Specifically, given a real point p, f returns 0 if the
voxel enclosing p is in the background, or it returns the identifier i of the
tissue Ωi if that voxel belongs to Ωi, i = 1, . . . , n. In order to compute the
closest feature point function cfp (p) and identify the cloud of points lying on
∂Ω, we make use of the Euclidean Distance Transform (EDT) as implemented
in ITK and presented in [31]. Specifically, the EDT returns the boundary

voxel p′ which is closest to p. Then, we traverse the ray
−→
pp′ and we compute

the intersection between the ray and ∂Ω by interpolating the positions where
f changes value [20]. The actual mesh generator was built on top of the Com-
putational Geometry Algorithms Library (CGAL) [32]. CGAL offers flexible
data structures for Delaunay point insertions and removals and robust exact
geometric predicates.

The rest of this section describes important implementation aspects.

7.1. Medial Axis Approximation

Recall that rules R1 and R2 make an extensive use of lfs∂Ω (·), and there-
fore, knowledge about the medial axis is needed.

Since the computation of the exact medial axis is a difficult problem [33,
34], we seek a good (for our purposes) approximation of it. Precisely, we

are interested in computing l̃fs∂Ω (p): the approximation of lfs∂Ω (p), where
p ∈ ∂Ω.
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Remark 3. In this subsection, we do not alter the fidelity guarantees of
Theorem 4, since the theorem assumes that lfs∂Ω (·) is known and accurate;
in this subsection, we attempt to provide a fast way to approximate lfs∂Ω (·).

For an excellent review of image-based medial axis approximation meth-
ods, see the work of Coeurjolly and Montanvert [35]. The authors also de-
scribe an optimal algorithm (MAEVA1) for the computation of the medial
axis, which is a free implementation to download. We found out, however,
that although the method is fast, the resulted discrete medial axis was not
accurate enough for our purposes. We attribute this behavior to the fact
that image-based methods do not realize the underlying shape; they com-
pute the medial axis of volumetric data, which contains discontinuities and
thus, renders the computation unstable.

Amenta et al. [18] and Dey and Zhao [33] (and the references therein)
consider methods that given a set of sample points on the surface, they ap-
proximate the medial axis from their Voronoi diagram. Their key concept
is the Pole of a feature vertex, a technique that we integrate into our al-
gorithm in order to compute l̃fs∂Ω (·). Boissonnat and Oudot [19] describe
a two-phase algorithm that is able to approximate the medial axis based
on the notion of the Lambda-Medial Axis [36]. The Lambda-Medial Axis
makes weaker assumptions about the sample and as such, it is suitable for
noisy data. Nevertheless, we found that the Pole technique is easier to im-
plement and quite robust for our purposes in all the input images we tried.
It should also be mentioned that both the Pole and the Lambda-Medial Axis
technique focus on surface recovery and not volume meshing. That means
that they assume that only vertices on the isosurface are allowed (i.e., the
sample). This is not the case in this work, since the quality criteria might
dictate the insertion of vertices in the interior of the domain. As we explain
below, this difference necessitates the simultaneous maintenance of a second
triangulation.

Let E be a vertex set on ∂Ω and consider the voronoi vertices of the
voronoi cell of a feature vertex v ∈ E. The voronoi vertices inside Ω (if
any) are called internal and the rest (if any) external. Amenta et al. [18]
shows that if E is dense, the internal pole (i.e., the furthest from v internal
voronoi vertex) is close to the medial axis contained in Ω, and the external
pole (i.e., the furthest from v external voronoi vertex) is close to the medial

1http://liris.cnrs.fr/david.coeurjolly/doku/doku.php?id=code:maeva
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axis contained in the complement of Ω. Therefore, the poles of each sample
point form a good discrete approximation of the medial axis.

The problem with the poles (as a good approximation of the medial axis)
is that E has to be a dense sample of the surface; however, our algorithm
needs the approximation of the medial axis, so it can create a graded sample
E. Recall that we do not assume that a starting sample set is known a priori.
In fact, when the algorithm starts, there is not a even a single feature vertex
inserted into the triangulation. In order to resolve this cyclic dependency,
our algorithm alternates between two modes: a “uniform” and a “graded”.

Specifically, the algorithm maintains a second triangulation D (Z) (to-
gether with the triangulation D (V ), see Section 3) which contains only fea-

ture vertices. To compute l̃fs∂Ω (z), z is inserted into the current set of feature
vertices Z, and D (Z) is updated. Next, the poles of z are computed from
D (Z), and the distance from z to its closest pole is returned as the ap-
proximation of the distance from z to the medial axis. Clearly, in the early
stages of the refinement, Z is a very sparse sample set, and, therefore, the
poles of z ∈ Z are not to be trusted as a good approximation of the medial
axis. Note, however, that these poles can only be further from z, than the
poles computed at a much denser sample set. In other words, when Z is
sparse, l̃fs∂Ω (z) gives a larger value than it should (i.e, l̃fs∂Ω (z) is larger than
lfs∂Ω (z)). This has severe consequences, since it is possible for the resulting
sample not to be as dense as it should.

For this reason, instead of returning just the value of l̃fs∂Ω (z), we choose

to return the following quantity: min{λ, l̃fs∂Ω (z)}, where λ will be specified

shortly. When l̃fs∂Ω (z) is too large (i.e., larger than λ), the value of λ is
returned. Parameter λ acts as a safety net and simulates the uniform mode
of the algorithm: in the worst case, a uniform sample set will be generated,
whose density depends on λ. Note that the uniform mode is triggered mostly
in the early stages of the algorithm. Later on, more and more feature ver-
tices are inserted into the triangulation, and the medial axis is sufficiently
described by the poles; and this is when the graded mode of the algorithm
is activated.

Specifying a value for λ is not intuitive. If λ is small, then the approxima-
tion of the medial axis would be more accurate, but the graded mode would
be activated fewer times, sacrificing in this way a well-graded surface mesh.
On the other hand, if λ is large, then we would expect to see better grading,
but it is likely for the approximation of medial axis to be so bad (i.e., it is
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likely that l̃fs∂Ω (·) is too large), such that the graded mode would fail to cap-
ture the curvature of ∂Ω. Nevertheless, extensive experimental evaluation on
both synthetic and real medical images has shown that in most cases, setting
λ to a value 12 times the size of the voxel suffices.

Note that if the users are not interested in achieving grading along the
surface, the second triangulation D (Z) is not needed at all, since they could

define l̃fs∂Ω (p) to be simply equal to λ.

7.2. Dihedral angle improvement

Provable theoretical guarantees on the minimum and maximum dihedral
angles are outside the scope of this paper. Nevertheless, for practical pur-
poses, we felt that the issue of sliver removal and dihedral angle improvement
should be addressed.

We could apply the sliver exudation technique [8] in order to improve
the dihedral angles. Edelsbrunner and Guoy [37], however, have shown that
in most cases sliver exudation does not remove all poor tetrahedra: ele-
ments with dihedral angles less than 5◦ survive. The random perturbation
technique [12] offers very small guarantees and sometimes requires many
(random) trials for the elimination of a single sliver as reported in [16].

A straightforward and inexpensive way to eliminate slivers is to try to split
them by inserting their circumcenter. Shewchuk [1] shows that this technique
works when the slivers are far away from the mesh boundary. However, when
slivers are close to the mesh boundary, the newly inserted points alter the
boundary triangles. In fact, the boundary triangles might not have their
vertices on the surface any more, or might not even belong to the restricted
triangulation. In this subsection, we propose point rejection strategies that
prevent the insertion of points which hurt fidelity.

Our algorithm first tries to convert illegal facets to legal ones. We define
legal facets to be those restricted facets whose vertices lie precisely on ∂Ω.
Conversely, a restricted facet with at least one vertex not lying on ∂Ω is
called an illegal facet.

Let f be an illegal facet and e its voronoi edge (see Figure 6a). Recall
that e has to intersect ∂Ω (see Section 2) at a point p. Any vertex v of f
which do not lie precisely on ∂Ω is deleted from the triangulation, while point
p is inserted.

In addition, the algorithm tries to keep in the Delaunay triangulation as
many legal facets as possible. Let c be the circumcenter of a sliver considered
for insertion. If the insertion of c eliminates a legal facet f (see Figure 6b),
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Figure 6: The point rejection strategies. (a) f is an illegal facet. (b) f is a
legal facet.

then c is not inserted. Instead, a point p on the intersection of ∂Ω and f ’s
voronoi edge e is inserted.

In summary, we cope with slivers by augmenting our algorithm (see Sec-
tion 3) with the following two rules:

R6: If an illegal facet f appears, then all its vertices that do not lie on the
surface are deleted and a point p on Vor (f)∩∂Ω is inserted (Figure 6a).

R7: Let t be a sliver and c its circumcenter. If c eliminates a legal facet
f , then c is rejected. Instead, a point on p on Vor (f) ∩ ∂Ω is inserted
(Figure 6b).

We define slivers via the optimization metric η, as described by Liu and

Joe [38]. Specifically, for a tetrahedron t, η (t) =
12 (3v)

2
3∑6

i=1 l
2
i

, where v is the

volume of t, and li are the lengths of t’s edges. We chose η, because its
computation is robust even when t is an almost flat element. In [38], it is
proved that 0 ≤ η (t) ≤ 1. Moreover, η is 0 for a flat element, and 1 for the
regular tetrahedron.

We consider a tetrahedron t to be a sliver, if η (t) is less than 0.06. The
reason we chose this value is because: (a) it introduces a small size increase
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(about 15%) over the mesh obtained without our sliver removal heuristic (i.e.,
without rules R6 and R7), and (b) it introduces a negligible time overhead.
In the Experimental Section 8, we show that this 0.06 bound corresponds to
meshes consisting of tetrahedra with dihedral angles between 4.6◦ and 171◦.

Note that R6 and R7 never remove feature vertices; on the contrary, they
might insert more to “protect” the surface. Hence, they do not violate The-
orem 4: the mesh boundary continues being equal to the restricted Delaunay
triangulation D|∂Ω (V ∩ ∂Ω), and therefore a good approximation of the sur-
face. In order not to compromise termination (and the guarantees we give for
the radius-edge ratio and the boundary planar angles), if R6 or R7 introduce
an edge shorter than the shortest edge already present in the mesh, then the
operation is rejected and the sliver in question is ignored.

We experimentally found that the point rejection strategies were able to
generate tetrahedra with angles more than 4.5◦ and less than 171◦. We em-
phasize that neither fidelity (see Theorem 4) nor termination (see Theorem 2)
is compromised with this heuristic.

8. Experimental Evaluation

This section presents the final meshes generated by our algorithm on
synthetic and real medical data. All the experiments were conducted on a 64
bit machine equipped with a 2.8 GHz Intel Core i7 CPU and 8 GB of main
memory. For the 3D visualization of the final meshes, we used ParaView [39],
an open source visualization application.

Although the fidelity guarantees we give hold for a very small value of δ
(see Theorem 4), we wanted to see if our algorithm works well for much larger
values of δ. Specifically, for all the experiments, we set δ to 2, i.e., we set
δ to a value about 200 times larger than Theorem 4 recommends. A larger
value of δ also implies that the size of the output mesh is smaller. Small-
size meshes are desirable for two reasons: first, because the mesh generation
execution time is considerably less (as it can be seen below, see Table 1a),
and second, because finite element simulations [40, 41] on them run faster.
We observed that even though the fidelity guarantees proved in Section 6
do not hold for large δ, the results in fact are pretty good. (We should also
note that in some applications fidelity is not that important. For instance,
a study on the impact of δ for the non-rigid registration problem [42] shows
that the accuracy and speed of the solver is not very sensitive to fidelity.)
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(a) sf1 (·): the radii are smaller than 5mm.

(b) sf2 (·): the radii are smaller than 1mm.

(c) sf3 (·): the radii are smaller than 5mm for z ≥ 0 and smaller than
1mm for z < 0.

Figure 7: Demonstrating the use of size functions. The whole mesh and a
cross section of it is displayed. λ is set to about 12 times the spacing length

of the image (i.e., λ = 12
√

3 · 0.042 ≈ 0.83), δ to 2, ρ̄t to
√√

3 + 2, and ρ̄f
to 1.

36



Table 1: Performance achieved by our algorithm and CGAL.

(a) Our algorithm. λ is set to 12 times the spacing length of the corresponding image, δ to

2, ρ̄t to
√√

3 + 2, and ρ̄f to 1.

Input
Embedded Spheres Torus Brain Stomach Skeleton Colon Knee atlas Head-neck atlas

achieved
radius-edge ratio 1.93 1.93 1.93 1.84 1.93 1.93 1.93 1.93
achieved planar
boundary angles

(degrees) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
#Vertices 2, 428 2, 299 6, 023 4, 712 50, 759 5, 917 102, 330 36, 174

#Boundary facets 3, 626 3, 898 10, 080 8, 254 95, 778 11, 040 146, 460 74, 768
#Elements 8, 774 7, 727 21, 136 15, 796 163, 120 18, 545 426, 592 112, 778

shortest mesh edge (mm) 0.45 0.61 2.83 4.78 3.9 3.19 2.2 8.2
achieved dihedral angles

(degrees) 13.13− 155.34 12.2− 155.6 12.0− 155.7 12.3− 155.2 10.8− 156.0 11.3− 155.8 4.6− 170.1 4.7− 170.0
Time (secs) 1.4 1.3 4.8 2.6 41.8 5.3 43.9 20.3

(b) Performance achieved by CGAL on the same set of images. ρ̄t is set to
√√

3 + 2, and
ρ̄f to 1.

Input
Embedded Spheres Torus Brain Stomach Skeleton Colon Knee atlas Head-neck atlas

achieved
radius-edge ratio 1.41 1.30 1.86 1.34 2.63 1.40 2.34 2.71
achieved planar
boundary angles

(degrees) 30.0 30.0 16.5 30.0 20.3 22.6 30.0 10.6
#Vertices 7, 099 1, 684 3, 973 3, 447 42, 603 4, 834 81, 753 35, 755

#Boundary facets 3, 682 1, 450 2, 554 2, 866 54, 340 5, 980 53, 186 60, 674
#Elements 37, 718 7, 937 20, 271 16, 442 173, 858 19, 524 430, 827 127, 684

shortest mesh edge (mm) 0.56 1.42 2.63 3.67 0.01 3.19 0.26 0.15
achieved dihedral angles

(degrees) 11.87− 161.30 14.3− 159.3 11.3− 161.5 11.0− 163.8 10.0− 165.7 12.0− 160.5 2.1− 176.1 6.5− 169.8
Time (secs) 1.0 0.2 0.6 0.5 10.0 1.0 13.7 8.8

As mentioned in Section 7.1, in all the following experiments, λ is set to
12 times the voxel size (i.e., length of the image spacing). Recall that λ is
used so that we can compute an approximation of lfs∂Ω (p), for p ∈ ∂Ω.

For all the experiments, we set ρ̄t to
√√

3 + 2 and ρ̄f to 1, and there-
fore (from Theorem 2) termination is certain, all the output tetrahedra are

guaranteed to have radius-edge ratio less than
√√

3 + 2, and all the bound-
ary facets are guaranteed to have planar angles larger than 30◦. Recall that
quality is not affected by any value of δ. Although these parameters imply
infinite grading constants (Theorem 3), grading is much better in practice,
an observation that is also reported in [27] and demonstrated in this Section
as well.

The first set of experiments demonstrates the use of custom size functions.
Note that the use of any size function alters neither the quality nor the
fidelity guarantees, since it is incorporated in Theorem 2 (see Section 4) and
Theorem 4 (see Section 6).
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Table 2: Information about the input images.

Image Resolution Spacing (mm3) Tissues

Single Sphere 416× 416× 416 0.04× 0.04× 0.04 1
Embedded Spheres 634× 416× 416 0.04× 0.04× 0.04 3

Torus 147× 147× 67 0.25× 0.25× 0.25 1
Brain 316× 316× 188 0.93× 0.93× 1.5 1

Stomach 140× 186× 86 0.96× 0.96× 2.4 1
Skeleton 359× 265× 218 0.96× 0.96× 2.4 1
Colon 296× 167× 117 0.96× 0.96× 1.8 1

Knee atlas 413× 400× 116 0.27× 0.27× 1 49
Head-neck atlas 241× 216× 228 0.97× 0.97× 1.4 60

We synthetically created the image of a sphere of radius 10mm and center
(0, 0, 0). See Table 2 for information about this image. We ran our algorithm
on the sphere image three times, each of which with a different size function:
sf1 (·) , sf2 (·) , and sf3 (·). sf1 (·) restricts the radii of the elements to be smaller
than 5mm, while sf2 (·) restricts the radii of the elements to be smaller than
1mm. sf3 (·) is a non-uniform size function. Specifically, it behaves as sf1 (·)
for z ≥ 0 and as sf2 (·) for the other part of the sphere.

Figure 7 depicts the results. In all these three experiments, the achieved

radius-edge ratio is less than
√√

3 + 2, and the planar angles are larger
than 30◦, as theory dictates. Moreover, the dihedral angles of the output
tetrahedra are between 12.9◦ and 155.8◦.

Observe that although parameters δ and λ (the ones directly responsible
for the sampling density) are fixed for all three runs, the sample density
varies. In fact, small size functions (i.e., size functions that take low values)
make the boundary vertices denser (compare Figure 7a and Figure 7b for
example). Figure 7c shows better exactly that: the surface is sampled more
where the size function takes low values, and less otherwise. This indirect
effect is expected and it is due to R3. Because of a small size function,
more free vertices are inserter close to the surface. This, in turn, is likely to
invalidate more restricted facets; that is, more restricted facets will not have
their vertices on the surface, and thus, R3 is triggered dictating the insertion
of more feature vertices to protect the restricted facets.

The next set of experiments shows the output of our method on difficult
geometries both manifold and non manifold. Although the fidelity guarantees
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(a) embedded spheres

(b) torus

Figure 8: The final meshes produced by our algorithm for the embedded
spheres and the torus. The first mesh of each row illustrates the whole mesh
and the second a cross-section of it.

about the topology of the output mesh are proved only for manifold domains,
in this Section we show that our method behaves fairly well for non-manifold
cases (see Figure 11 for example) as well.

The first couple of images are the embedded spheres and a torus we syn-
thetically created. The third is an MRI brain image obtained from Huashan
Hospital2. The next three images are CT segmented scans of a skeleton,
a colon, and a stomach, obtained from IRCAD Laparoscopic Center3. The
last two images are the MRI knee atlas [43] and the CT head-neck [44] atlas
obtained from the Surgical Planning Laboratory of Brigham and Women’s

2Huashan Hospital, 12 Wulumuqi Zhong Lu, Shanghai, China.
3http://www.ircad.fr/
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(a) brain

(b) stomach

Figure 9: The final meshes produced by our algorithm for the brain and the
stomach.

Hospital4. Information about the input images is shown in Table 2. Fig-
ure 8, Figure 9, Figure 10, and Figure 11 show the meshes produced by our
algorithm on these input images.

Table 1a reports some statistics for the meshes generated by our algo-
rithm. The observed largest radius-edge ratio in all the meshes is no more

than
√√

3 + 2 and the observed planar angles of the boundary facets in all
meshes is no smaller than 30◦ corroborating in this way the theory.

Also, for the meshes of Figure 8, Figure 9, Figure 10, and Figure 11, notice
that: (a) the interior of the object (i.e. the part away from the surface) is
meshed with fewer and bigger elements (volume grading), and (b) in most
cases, more and smaller boundary triangles mesh parts of the surface close
to the medial axis (surface grading). Graded meshes greatly reduce the total

4http://www.spl.harvard.edu/
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(a) skeleton

(b) colon

Figure 10: The final meshes produced by our algorithm for the skeleton and
the colon.
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(a) knee atlas

(b) head-neck atlas

Figure 11: The final meshes produced by our algorithm for the multi-tissue
knee and head-neck atlases.

number of elements, representing, at the same time, difficult geometries (i.e.,
geometries with high curvature and/or non-manifold parts) accurately.

For comparison, Table 1b shows the meshes generated by CGAL [32], the
state of the art mesh generation tool we are aware of, able to operate directly
on images as well. We set the quality parameters to the same values with the
ones used in our algorithm. Note, however, that CGAL does not offer surface
grading according to the local feature size. Nevertheless, we were able to set
an upper limit on the radii of all the tetrahedra, so that the resulting meshes
have similar number of elements to the meshes produced by our algorithm.

Indeed, observe that both Table 1a and Table 1b report similar mesh
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sizes on the same input image, with one exception: the mesh size on the
Embedded Spheres generated by CGAL is more than 4 times larger than the
one generated by our method. The reason for this mismatch is the fact that
CGAL found it difficult to recover the red ball (see Figure 8a) with a small
number of elements. We had to considerably increase the size of the whole
mesh so that CGAL could represent both connected components.

Table 1a and Table 1b suggest that the quality achieved by our method is
comparable to CGAL’s. The execution time of our method is much higher,
but this is expected since the surface grading offered by our algorithm neces-
sitates the computation of the poles and the maintenance of a second mesh,
slowing down the overall meshing time. Improving the speed of our algorithm
is outside the scope of this paper and is left for future work.

9. Conclusions

In this paper, we presented a 3D Delaunay refinement image-to-mesh
conversion algorithm that operates directly on segmented images. It is able
to create an appropriate sample set on the object’s surface, and to mesh the
volume and the surface at the same time. This flexibility (besides the fact
that it solves three distinct problems, that is, sampling, surface recovery, and
volume meshing) results in a generally lower number of vertices than in the
case where the surface is meshed without considering the rules of quality.
For instance, the insertion of points that improve the quality might help the
density requirement at the same time.

Apart from the fidelity guarantees we give (namely, that the mesh bound-
ary is a good geometric and topological approximation of the object’s sur-
face), our algorithm provably achieves very low radius-edge ratio without
sacrificing fidelity. The planar angles of the boundary facets are also guar-
anteed to be larger than 30◦. Moreover, by slightly relaxing the quality
guarantees, our algorithm provably exhibits good grading.

Experimental evaluation on various images shows that the final meshes
are free of slivers and exhibit both volume and (in most cases) surface grading,
a fact that greatly reduces the size of the mesh making the subsequent FEM
analysis [40, 41, 45] faster. Lastly, demonstration of the use of custom size
functions shows that our algorithm allows for additional flexibility to meet
user-defined mesh density.
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