
High Quality Real-Time Image-to-Mesh Conversion for

Finite Element Simulations

Panagiotis A. Foteinosa,b, Nikos P. Chrisochoidesb

aDepartment of Computer Science, College of William & Mary, Williamsburg, 23185,
Virginia, USA

bDepartment of Computer Science, Old Dominion University, Norfolk, 23569, Virginia,
USA

Abstract

In this paper, we present a parallel Image-to-Mesh Conversion (I2M) algo-
rithm with quality and fidelity guarantees achieved by dynamic point inser-
tions and removals. Starting directly from an image, its implementation is
capable of recovering the isosurface and meshing the volume with tetrahe-
dra of good shape. Our tightly-coupled shared-memory parallel speculative
execution paradigm employs carefully designed contention managers, load
balancing, synchronization and optimizations schemes. These techniques are
shown to boost not only the parallel but also the single-threaded efficiency
of our code. Specifically, our single-threaded performance is faster than both
CGAL and TetGen, the state of the art sequential open source meshing
tools we are aware of. The effectiveness of our method is demonstrated on
Blacklight, the Pittsburgh Supercomputing Center’s cache-coherent NUMA
machine. We observe a more than 82% strong scaling efficiency for up to
64 cores, and a more than 82% weak scaling efficiency for up to 144 cores,
reaching a rate of more than 14.3 million elements per second. This is the
fastest 3D Delaunay mesh generation and refinement algorithm, to the best
of our knowledge.

Keywords: parallel Delaunay mesh refinement; scalability; quality; fidelity;
shared-memory

Email addresses: pfot@cs.wm.edu (Panagiotis A. Foteinos), nikos@cs.odu.edu
(Nikos P. Chrisochoides)

Preprint submitted to Elsevier October 17, 2013

1. Introduction

Image-to-mesh (I2M) conversion enables patient-specific Finite Element
(FE) modeling in image guided diagnosis and therapy [1, 2]. This has sig-
nificant implications in many areas, such as imaged-guided therapy, develop-
ment of advanced patient-specific blood flow simulations for the prevention
and treatment of stroke, patient-specific interactive surgery simulation for
training young clinicians, and study of bio-mechanical properties of collagen
nano-straws of patients with chest wall deformities, to name just a few.

In this paper, we present a 3D Delaunay parallel Image-to-Mesh conver-
sion algorithm (abbreviated as PI2M) that (a) recovers the isosurface of the
biological object with geometric and topological guarantees and (b) meshes
the underlying volume with tetrahedra of high quality. These two charac-
teristics render our method suitable for subsequent FE analysis, since the
robustness and accuracy of the solver rely on the quality of the mesh [3–5].

PI2M recovers the tissues’ boundaries and generates quality meshes through
a sequence of dynamic insertion and deletion of points which is computed
on the fly and in parallel during the course of refinement. To the best of
our knowledge, none of the parallel Delaunay refinement algorithms sup-
port point removals. Point removal, however, offers new and rich refinement
schemes which are shown in the sequential meshing literature [6, 7] to be
very effective in practice.

Our implementation employs low level locking mechanisms, carefully de-
signed contention managers, and well-suited load balancing schemes that not
only boost the parallel performance, but they exhibit very little overhead: our
single threaded performance is more than 10 times faster than our previous
sequential prototype [7, 8] and it is faster than CGAL [9] and TetGen [10], the
state of the art optimized sequential open source meshing tools. Specifically,
PI2M is consistently 40% faster than CGAL. We also compare PI2M with
TetGen [10] and show that PI2M is faster on generating large meshes (i.e.,
meshes consisting of more than 900, 000 tetrahedra) by 35%. Considering the
fact that both CGAL and TetGen perform insertions via the Bowyer-Watson
kernel [11, 12], as is the case of PI2M, such a comparison is quite insightful.

Parallel Delaunay refinement is a highly irregular and data-intensive ap-
plication and as such, it is very dynamic in terms of resource management.
Implementing an efficient parallel Delaunay refinement would help the com-
munity gain insight into a whole family of problems characterized by unpre-
dictable communication patterns [13]. We test and show the effectiveness

2

of PI2M on the cc-NUMA architecture. Demonstrating the performance of
mesh refinement on cc-NUMA architectures illuminates the characteristic
challenges of irregular applications on the many-core chips featuring dozens
of cores. But even the biggest distributed-memory machines consist of groups
of cores that, from our application’s point of view and supporting software,
can be treated as cc-NUMA. The efficient utilization of such deep architec-
tures can be achieved by employing a tightly-coupled approach inside each
group (i.e., the ideas of this paper), and by being less explorative in the other
layers, as we stated in more detail in [14].

Specifically, we used the Pittsburgh Supercomputing Center’s Blacklight,
employing BoostC++ threads. Although the ideas of this paper could be pro-
grammed using the more general MPI programming model, we chose threads,
since the maintenance of threads is typically faster in shared-memory ma-
chines [15].

Experimental evaluation shows a more than 82% strong scaling efficiency
for up to 64 cores, and a more than 82% weak scaling efficiency for up to
144 cores, reaching a rate of more than 14.3 million elements per second.
We are not aware of any 3D parallel Delaunay refinement method achieving
such a performance, on either distributed or shared-memory architectures.
However, for a higher core count, our method exhibits considerable perfor-
mance degradation. We argue that this deterioration is not because of load
imbalance or high thread contention, but because of the intensive and hop-
wise slower communication traffic involved in increased problem sizes, large
memories, and cache coherency protocols. This problem could be potentially
alleviated by using hybrid approaches to explore network hierarchies [14, 16].
However, this is outside the scope of the paper. Our goal is to develop the
most efficient and scalable method on a moderate number (∼ 100) of cores.
Our long term goal is to increase scalability by exploiting concurrency at
different levels [14].

In summary, the method we present (PI2M):

• Exhibits the best single-threaded performance, to the best of our knowl-
edge.

• Supports parallel Delaunay insertions and removals; past methods in-
cluding ours dealt only with point insertions, a much easier task.

• Conforms to user-specified quality, and most importantly, to the newly
added and novel, for parallel mesh generation, fidelity constraints.

3

• Recovers and meshes the isosurface with topological and geometric
guarantees from the beginning of mesh refinement, and thus exploits
parallelism earlier (see Figure 6).

• Fills the volume of the underlying biological object with millions of
high-quality tetrahedra within seconds, achieving an unprecedented
rate of 14.3 million elements per second.

Section 2 presents the related work. Section 3 covers the background and
briefly describes the Sequential Delaunay Refinement for Smooth Surfaces.
Section 4 outlines the basic building blocks of our parallel implementation.
Section 5 presents the Contention Managers. Section 6 presents the strong
and weak scaling results together with load balancing improvements. Sec-
tion 7 is dedicated to single-threaded evaluation. Section 8 summarizes our
findings and concludes the paper.

2. Related Work

Volume mesh generation methods can be divided into two categories:
PLC-based and Isosurface-based. The PLC-based methods assume that the
surface ∂O of the object O is given as a Piecewise Linear Complex (PLC)
which contains linear segments and polygonal facets in 3 dimensions [10, 17–
20]. The challenge of this method is that the success of meshing depends
on the quality of the given PLC: if the PLC forms very small angles, then
termination might be compromised [17, 21]. In Computed Aided Design
(CAD) applications [5, 17, 21, 22], the surface is usually given as a PLC. In
biomedical Computer Aided Simulations (CAS), however, there is no reason
to use this approach, since it would add the additional small input angle
limitation.

The Isosurface-based methods assume that O is known through a func-
tion f : R3 → R, such that points in different regions of interest evaluate
f differently. This assumption covers a wide range of inputs used in model-
ing and simulation, such as parametric surfaces/volumes [23], level-sets and
segmented multi-labeled images [24–26]. Of course, these type of functions
can also represent PLCs [24], a fact that makes the Isosurface-based method
a general approach. Isosurface-based methods ought to recover and mesh
both the isosurface ∂O and the volume. This method does not suffer from
any small input angle artifacts introduced by the initial conversion to PLCs,
since ∂O is recovered and meshed during refinement.

4

In this paper, we present a parallel high quality Delaunay Image-to-Mesh
Conversion (PI2M) Isosurface-based algorithm which, starting from a multi-
labeled segmented image, recovers the isosurface(s) ∂O of the object(s)O and
meshes the volume simultaneously. Our method is able to produce millions of
high-quality elements within seconds respecting at the same time the exterior
and interior boundaries of tissues. As far as we know, PI2M is the first
parallel Isosurface-based finite element mesh generation method.

In the parallel mesh generation literature, only PLC-based methods have
been considered. That is, either O is given as an initial mesh [27–30] or ∂O
is already represented as a polyhedral domain [31–34]. We, on the contrary,
mesh both the volume and the isosurface directly from an image and not from
a polyhedral domain. This flexibility offers great control over the trade-off
between quality and fidelity: parts of the isosurface of high curvature can
be meshed with more elements of better quality. Moreover, our method is
able to satisfy both surface and volume custom element densities, as dictated
by the user-specified size functions. This is not the case of algorithms that
treat the surface voxels as the PLC of the domain [20, 35, 36], since the size
of the elements is determined by the voxel spacing, a fact that offers little
control over the mesh density. In the future, we also plan to incorporate in
our parallel framework the computational intensive smoothing of the mesh
boundary for CFD applications, e.g. lung modeling [37–39].

In our previous work [40], we implemented a parallel Triangulator able
to support fully dynamic insertions and removals. Our parallel Triangula-
tor, however, has one major limitation: as is the case with all Triangula-
tors [40–43], it tessellates only the convex hull of a set of points, and it is
not concerned with any quality or fidelity constraints imposed by the input
geometry and the user. Also, in parallel triangulation literature [41–43], the
pointset, whose convex hull is to be constructed, is static and given before
the algorithm starts. In this paper, we extend our previous work [40], such
that the discovery of the dynamically changing set of points, which are being
inserted or removed in order to satisfy the quality and fidelity constraints, is
performed in parallel as well: a very dynamic process that increases parallel
complexity even more. This is neither incremental nor a trivial extension.

There is extensive previous work on parallel mesh generation, including
various techniques, such as: Delaunay, Octree, or Advancing Front meshing.
Parallel mesh generation/refinement should not be confused with parallel
triangulation [40–43]. Triangulation tessellates the convex hull of a given,
static set of points. Mesh generation focuses on element quality and the

5

conformity to the tissues’ boundary, which necessitates the parallel insertion
or removal of points which are gradually and concurrently discovered through
refinement.

One of the main differences between our method and previous work is that
in the literature the surface of the domain is either given as a polyhedron,
or the extraction of the polyhedron is done sequentially, or refinement starts
from an initial background octree. As explained in this Section above, our
method constructs the polyhedral representation of the object’s surface from
scratch, and therefore, it adds extra functionality. This surface recovery is
also performed in parallel, together with the volume meshing, thus taking
advantage of another degree of parallelism.

Given an initial mesh, de Cougny and Shephard [27] dynamically repar-
tition the domain such that every processor has equal work. They also de-
scribe “vertex snapping”, a method that can be used for the representation
of curved boundaries, but they give no guarantees about the achieved fidelity
(both geometrically and topologically).

In our past work [33], we implemented a tightly-coupled method like
ours. However, in this paper, we take extra care to greatly reduce the num-
ber of rollbacks (see Section 5), and thus achieve scalability for a higher
core count. In [44] and [34], our group devised a partially-coupled and a
decoupled method for distributed-memory systems based on Medial Axis de-
composition. However, Medial Axis decomposition for general 3D domains
is a challenging problem and still open. In contrast, the method presented
in this paper does not rely on any domain decomposition, and as such, it
is flexible enough to be extended to arbitrary dimensions, a goal that is left
for future work. In [45], our group presented a method which allows for
safe insertion of points independently without synchronization. Although
the method in [45] improves data locality and decreases communication, it
exhibits little scalability on more than 8 cores because the initial bootstrap-
ping, needed as a pre-processing step, is performed sequentially and not in
parallel.

Kadow [32] starts from a polygonal surface (PSLG) and offers tightly
coupled refinement schemes in 2D only. In our case, the polyhedral repre-
sentation of the object’s surface is performed in parallel, which adds extra
functionality and available parallelism. Galtier and George [31] compute a
smooth separator and distribute the subdomains to distinct processors. How-
ever, the separators they create might not be Delaunay-admissible and thus
they need to restart the process from the beginning. Weatherill et al. [46]

6

subdivide the domain into decoupled blocks. Each block then is meshed with
considerably less communication and synchronization. Nevertheless, the gen-
erated mesh is not Delaunay, a property that is critical to applications like
large scale electro-magnetics [47].

Tu et al. [29] describe a parallel octree method that interacts with the
solver in parallel and efficiently, but the fidelity and conformity of the meshes
to complex multi-material junctions/interfaces (one of this paper’s goals) was
not their main focus. The work of Zhou et al. [48], and the Forest-of-octrees
method of Burstedde et al. [28] offer techniques for fair and efficient data
migration and partitioning in parallel. In our application, however, we show
that the main bottleneck that hampers scalability is not load imbalance (see
Subsection 6.1), but the rollbacks (see Section 5) and the memory pressure in
the switches (see Section 6.3). Load balancing and data migration is also used
by Okusanya and Peraire [49] to distribute bad elements across processors,
but the performance reported is rather low, as the speedup achieved on 8
cores is shown to be less than 2.4.

Ito et al. [30] start from an initial mesh and Löhner [50] from a PLC for
subsequent parallel mesh generation in advancing front fashion. It should be
noted, however, that advancing front methods guarantee neither termination
nor good quality meshes.

Oliker and Biswas [51] employ three different architectures to test the
applicability of 2D adaptive mesh refinement. They conclude that unstruc-
tured mesh refinement is not suitable for cc-NUMA architectures: irregular
communication patterns and lack of data locality deteriorate performance
sometimes even on just 4 cores. In this paper, we show that this becomes
a problem on a much higher core count (more than 144 cores); i.e., with
this work, we push the envelop even further. Clearly, this approach has its
own limitations, but a highly scalable and efficient NUMA implementation
combined with the decoupled and partially coupled approaches we developed
in the past can allow us to explore concurrency levels in the order of at least
108 to 1010 [14].

3. Background: Delaunay Refinement for Smooth Surfaces

Sequential Delaunay Refinement for smooth surfaces is presented in detail
in the literature [23, 25] and in our previous work [7, 8]. In this Section, we
briefly outline the main concepts.

7

(a) (b) (c)

Figure 1: (a) The virual box is meshed into 6 tetrahedra. It
encloses the volumetric object. (b) During refinement, the final
mesh is gradually being carved according to the Rules. (c) At the
end, the set of the tetrahedra whose circumcenter lies inside O is
the geometrically and topologically correct mesh M.

As is usually the case in the literature [24, 25, 52], we assume that the sur-
face of the object ∂O to be meshed is a closed smooth 2-manifold. To prove
that the boundary ∂M of the final mesh M is geometrically and topologi-
cally equivalent with ∂O, we make use of the sample theory [52]. Omitting
the details, it can be proved [52, 53] that the Delaunay triangulation of a
dense pointset lying precisely on the isosurface ∂O contains (as a subset)
the correct mesh M. That mesh consists of the tetrahedra t whose circum-
center c (t) lies inside O. Formally, the sample theorem could be stated as
follows [53–55]:

Theorem 1. Let V be samples of ∂O. If for any point p ∈ ∂O, there is a
sample v ∈ V such that |v − p| ≤ δ, then the boundary triangles of D|O (V)
is a topologically correct representation of ∂O. Also, the 2-sided Hausdorff
distance between the mesh and ∂O is O(δ2).

Typical values for δ are usually fractions of the local feature size of ∂O.
See [23, 53–55] for well defined δ parameters. In our application, δ values
equal to multiples of the voxel size is sufficient.

Therefore, one of the goals of the refinement is to sample the isosurface
densely enough. To achieve that, our algorithm first constructs a virtual

8

box which encloses O. The box is then triangulated into 6 tetrahedra, as
shown in Figure 1. This is the only sequential part of our method. Next,
it dynamically computes new points to be inserted into or removed from
the mesh maintaining the Delaunay property. This process continues, until
certain fidelity and quality criteria are met. Specifically, the vertices removed
or inserted are divided into 3 groups: isosurface vertices, circumcenters, and
surface-centers.

The isosurface vertices will eventually form the sampling of the surface
so that Theorem 1 holds together with its theoretical guarantees about the
fidelity of the mesh boundary. Let c (t) be the circumcenter of a tetrahedron
t. In order to guarantee termination, our algorithm inserts the isosurface
vertex which is the closest to c (t). In the sequel, we shall refer to the Closest
IsoSurface vertex of a point p as p̂ ∈ ∂O. The isosurface vertices (like the
circumcenters) are computed during the refinement dynamically with the
help of a parallel Euclidean Distance Transformation (EDT) presented and
implemented in [56]. Specifically, the EDT returns the surface voxel q which
is closest to p. A surface-voxel is a voxel that lies inside the foreground and
has at least one neighbor of different label. Then, we traverse the ray −→pq
on small intervals and we compute p̂ ∈ ∂O by interpolating the positions of
different labels [57]. The density of the inserted isosurface vertices is defined
by the user by a parameter δ > 0. A low value for δ implies a denser sampling
of the surface, and therefore, according to Theorem 1, a better approximation
of ∂O.

The circumcenter c (t) of a tetrahedron t is inserted when t has low quality
(in terms of its radius-edge ratio [17]) or because its circumradius r(t) is larger
than a user-defined size function sf (·). Circumcenters might also be chosen
to be removed, when they lie close to an isosurface vertex, because in this
case termination is compromised.

Consider a facet f of a tetrahedron. The Voronoi edge V (f) of f is
the segment connecting the circumcenters of the two tetrahedra that contain
f . The intersection V (f) ∩ ∂O is called a surface-center and is denoted
by csurf (f). During refinement, surface-centers are computed similarly to
the isosurfaces (i.e., by traversing V (f) on small intervals and interpolating
positions of different labels) and inserted into the mesh to improve the planar
angles of the boundary mesh triangles [22] and to ensure that the vertices of
the boundary mesh triangles lie precisely on the isosurface [23].

In summary, tetrahedra and faces are refined according to the following
Refinement Rules :

9

• R1: Let t be a tetrahedron whose circumball intersects ∂O. Compute
the closest isosurface point z = ˆc (t). If z is at a distance not closer
than δ to any other isosurface vertex, then z is inserted.

• R2: Let t be a tetrahedron whose circumball intersects ∂O. If its
radius r(t) is larger than 2 · δ, then c (t) is inserted.

• R3: Let f be a facet whose Voronoi edge V (f) intersects ∂O at csurf (f).
If either its smallest planar angle is less than 30◦ or a vertex of f is not
an isosurface vertex, then csurf (f) is inserted.

• R4: Let t be a tetrahedron whose circumcenter lies inside O. If its
radius-edge ratio is larger than 2, then c (t) is inserted.

• R5: Let t be a tetrahedron whose circumcenter lies inside O. If its
radius r(t) is larger than sf (c (t)), then c (t) is inserted.

• R6: Let t be incident to an isosurface vertex z. All the already inserted
circumcenters closer than 2δ to z are deleted.

Rules R1 and R2 are responsible for creating the appropriate dense sam-
ple so that the boundary triangles of the resulting mesh satisfies Theorem 1
and thus the fidelity guarantees. R3 and R4 deal with the quality guar-
antees, while R5 imposes the size constraints of the users. R6 is needed
so termination can be guaranteed. See [7, 8, 23] for more details. When
none of the above rules applies, then refinement is complete. In our previous
work [7, 8], we prove that termination is guaranteed, the radius-edge ratio of
all elements in the mesh is less than 2, and the planar angles of the boundary
mesh triangles is less than 30◦.

4. Parallel Delaunay Refinement for Smooth Surfaces

As explained in Section 3, before the mesh generation starts, the Eu-
clidean Distance Transform (EDT) of the image is needed for the on-the-fly
computation of the appropriate iso-surface vertices. For this pre-processing
step, we make use of the publicly available parallel Maurer filter presented
and implemented by Staubs et al. [56]. It can be shown [56, 58] that this
parallel EDT scales linearly with the respect to the number of threads.

The rest of this section describes the main aspects of our parallel code.
Algorithm 1 illustrates the basic building blocks of our multi-threaded mesh-
generation design. Note that our tightly-coupled parallelization does not

10

1 Algorithm: GenerateMesh(I, δ, ρ̄, sf (·), tid)

Input : I is the image containing O,
δ is the parameter that determines the density of the surface sampling,
ρ̄ (≥ 2) is the target radius-edge ratio,
sf (·) is the size function,
tid is the unique identifier of the thread.

Output: A Delaunay mesh M that is guaranteed to (a) approximate ∂O in a correct topological way with

Hausdorff distance within O(δ2), (b) be composed of elements with radius-edge ratio less than ρ̄ and
(c) have boundary facets with planar angles larger than 30◦.

2 if tid == 0 then /* If it is the main thread */

/* At this moment, both the mesh and all PELs are empty. */

3 Insert the 8 vertices of a box which contains O;
4 PEL0 = PEL0 ∪ NewElements;

5 end
6 while PELtid 6= ∅ do
7 t =PELtid → next();
8 if locking t’s vertices is not successful then
9 Unlock related vertices; Invoke Contention Manager; continue;

10 end
11 if t is an intersecting tetrahedron then

12 Compute z = ˆc (t); /* potential R1 element */

13 if there is an iso-surface vertex closer than δ to z then
14 if r(t) ≥ 2δ then
15 Compute z = c (t); /* R2 element */

16 end

17 end

18 else
19 if t is adjacent to a restricted facet f , such that ρ (f) ≥ 1 or f ’s vertices do not lie on ∂O then
20 Compute z = csurf (f); /* R3 applies. */

21 else
22 if c (t) lies inside O and either ρ (t) ≥ ρ̄ or r(t) ≥ sf (c (t)) then
23 Compute z = c (t); /* R4 or R5 apply. */

24 else
25 PELtid = PELtid − t; /* t is not a poor element */

26 Unlock all the related vertices; continue;

27 end

28 end

29 end
30 if z is a isosurface vertex then
31 Prepare to delete all the free vertices that are closer than 2δ to z.
32 end
33 if locking the vertices for the operation is not successful then
34 Rollback; Unlock related vertices; Invoke Contention Manager; continue;
35 end
36 Insert z and delete the vertices (if any); Unlock all the related vertices;
37 if BeggingList 6= ∅ then
38 other tid = BeggingList→first();
39 PELother id = PELother id ∪ NewElements; /* Give work to begging Thread other id */

40 Wake Thread other id; /* Notify Thread other id that it can check its PEL again */

41 BeggingList = BeggingList - {other id};
42 end

43 end
44 if BeggingList→size() != #Threads -1 then /* If I am NOT the last Thread to ask for work */

45 BeggingList→push at end(tid);
46 Wait;
47 continue ; /* Now some other thread gave Thread tid work, so PELtid is not empty any more */

48 else /* The mesh is ready, all PELs are empty */

49 Let the final mesh M be equal to the set of the tetrahedra whose circumcenter lies inside O;
50 end

Algorithm 1: The parallel mesh generation algorithm. It is executed by each thread.

11

alter the fidelity (Theorem 1) and the quality guarantees described in the
previous section.

4.1. Poor Element List (PEL)

Each thread Ti maintains its own Poor Element List (PEL) PELi. PELi

contains the tetrahedra that violate the Refinement Rules and need to be
refined by thread Ti accordingly.

4.2. Operation

An operation that refines an element can be either an insertion of a point
p or the removal of a vertex p. In the case of insertion, the cavity C (p) needs
to be found and re-triangulated according to the well known Bowyer-Watson
kernel [11, 12]. Specifically, C (p) consists of the elements whose circumsphere
contains p. These elements are deleted (because they violate the Delaunay
property) and p is connected to the vertices of the boundary of C (p). In the
case of a removal, the ball B (p) needs to be re-triangulated. As explained
in [59], this is a more challenging operation than insertion, because the re-
triangulation of the ball in degenerate cases is not unique which implies the
creation of illegal elements, i.e., elements that cannot be connected with
the corresponding elements outside the ball. We overcome this difficulty by
computing a local Delaunay triangulation DB(p) (or DB for brevity) of the
vertices incident to p, such that the vertices inserted earlier in the shared
triangulation are inserted into DB first. In order to avoid races associated
with writing, reading, and deleting vertices/cells from a PEL or the shared
mesh, any vertex touched during the operation of cavity expansion, or ball
filling needs to be locked. We utilize GCC’s atomic built-in functions for this
goal, since they perform faster than the conventional pthread try locks. In-
deed, replacing pthread locks (our first implementation) with GCC’s atomic
built-ins (current implementation) decreased the execution time by 3.6% on
1 core and by 4.2% on 12 cores.

In the case a vertex is already locked by another thread, then we have a
rollback : the operation is stopped and the changes are discarded [33]. When
a rollback occurs, the thread moves on to the next bad element in its PEL.

4.3. Update new and deleted cells

After a thread Ti completes an operation, new cells are created and some
cells are invalidated. The new cells are those that re-triangulate the cavity
(in case of an insertion) or the ball (in case of a removal) of a point p and the

12

invalidated cells are those that used to form the cavity or the ball of p right
before the operation. Ti determines whether a newly created element violates
a rule. If it does, then Ti pushes it back to PELi (or to another thread’s PEL,
see below) for future refinement. Also, Ti removes the invalidated elements
from the PEL they have been residing in so far, which might be the PEL of
another thread. To decrease the synchronization involved for the concurrent
access to the PELs, if the invalidated cell c resides in another thread Tj’s
PELj, then Ti removes c from PELj only if Tj belongs to the same socket
with Ti. Otherwise, Ti raises cell c’s invalidation flag, so that Tj can remove
it when Tj examines c.

As Line 49 of Algorithm 1 shows, the final mesh M reported consists
of the subset of tetrahedra whose circumcenter lies inside the object O. To
expedite the process of finding those elements, each thread maintains a linked
list of those elements on the fly, i.e., from the beginning of mesh generation
and refinement. Thus, collecting those elements at the end costs constant
time O(#Threads). These linked lists are updated similarly to the update
of the Poor Element Lists (PELs) described in the previous paragraph.

4.4. Load Balancer

Right after the triangulation of the virtual box and the sequential cre-
ation of the first 6 tetrahedra, only the main thread might have a non-empty
PEL. Clearly, Load Balancing is a fundamental aspect of our implementa-
tion. Our base (not optimized) Load Balancer is the classic Random Work
Stealing (RHW) [60] technique, since it best fits our implementation design.
In Section 6.1, we implement an optimized work stealing balancer that takes
advantage of the NUMA architecture and achieves an excellent performance.

If the poor element list PELi of a thread Ti is empty of elements, Ti
“pushes back” its ID to the Begging List, a global array that tracks down
threads without work. Then, Ti is busy-waiting and can be awaken by a
thread Tj right after Tj gives some work to Ti. A running thread Tj, every
time it completes an operation (i.e., a Delaunay insertion or a Delaunay
removal), it gathers the newly created elements and places the ones that
are poor to the PEL of the first thread Ti found in the begging list. The
classification of whether or not a newly created cell is poor or not is done by
Tj. Tj also removes Ti from the Begging List.

To decrease unnecessary communication, a thread is not allowed to give
work to threads, if it does not have enough poor elements in its PEL. Hence,
each thread Ti maintains a counter that keeps track of all the poor and valid

13

cells that reside in PELi. Ti is forbidden to give work to a thread, if the
counter is less than a threshold. We set that threshold equal to 5, since it
yielded the best results. When Ti invalidates an element c or when it makes a
poor element c not to be poor anymore, it decreases accordingly the counter
of the thread that contains c in its PEL. Similarly, when Ti gives extra poor
elements to a thread, Ti increases the counter of the corresponding thread.

4.5. Contention Manager (CM)

In order to eliminate livelocks caused by repeated rollbacks, threads talk
to a Contention Manager (CM). Its purpose is to pause on run-time the execu-
tion of some threads making sure that at least one will do useful work so that
system throughput can never get stuck [61]. See Section 5 for approaches able
to greatly reduce the number of rollbacks and yield a considerable speedup,
even in the absence of enough parallelism. Contention managers avoid energy
waste because of rollbacks and reduce dynamic power consumption, by throt-
tling the number of threads that contend, thereby providing an opportunity
for the runtime system to place some cores in deep low power states.

5. Contention Manager

The goal of the Contention Manager (CM) is to reduce the number of
rollbacks and guarantee the absence of livelocks, if possible [61, 62].

We implemented and compared four contention techniques: the Aggres-
sive Contention Manager (Aggressive-CM) [61], the Random Contention
Manager (Random-CM), the Global Contention Manager (Global-CM), and
the Local Contention Manager (Local-CM).

The Aggressive-CM and Random-CM are non-blocking schemes. As is
usually the case for non-blocking schemes [33, 61–64], we do not prove absence
of livelocks for these techniques. Nevertheless, they are useful for comparison
purposes as Aggressive-CM is the simplest to implement, and Random-CM
has already been presented in the mesh generation literature [33, 63, 64].

The Global-CM is a blocking scheme and we prove that does not in-
troduce any deadlock. (Blocking schemes are guaranteed not to introduce
livelocks [65]).

The last one, Local-CM, is semi-blocking, that is, it has both blocking and
non-blocking parts. Because of its (partial) non-blocking nature, we found it
difficult to prove starvation-freedom [62, 66], but we could guarantee absence
of deadlocks and livelocks. It should be noted, however, that we have never

14

experience any thread starvation when using Local-CM: all threads in all
case studies are making progress concurrently for about the same period of
time.

Note that none of the earlier Transactional Memory techniques [61, 62]
and the Random Contention Managers presented in the past [33, 63, 64]
solve the livelock problem. In this section, we show that if livelocks are not
provably eliminated in our application, then termination is compromised on
high core counts.

For the next of this Section assume that (without loss of generality) each
thread always finds elements to refine in its Poor Element List (PEL). This
assumption simplifies the presentation of this Section, since it hides several
details that are mainly related to Load Balancing. The interaction between
the Load Balancing and the Contention Manager techniques does not inval-
idate the proofs of this Section.

5.1. Aggressive-CM

The Aggressive-CM is a brute-force technique, since there is no special
treatment. Threads greedily attempt to apply the operation, and in case
of a rollback, they just discard the changes, and move on to the next poor
element to refine (if there is any). The purpose of this technique is to show
that reducing the number of rollbacks is not just a matter of performance,
but a matter of correctness. Indeed, experimental evaluation (see Section 5.5)
shows that Aggressive-CM very often suffers from livelocks.

5.2. Random-CM

Random-CM has already been presented (with minor differences) in the
literature [33, 63, 64, 67] and worked fairly well, i.e, no livelocks were observed
in practice. This scheme lets “randomness” choose the execution scenario
that would eliminate livelocks. We implement this technique as well to show
that our application needs considerably more elaborate CMs. Indeed, recall
that in our case, there is no much parallelism in the beginning of refinement
and therefore, there is no much randomness that can be used to break the
livelock.

Each thread Ti counts the number of consecutive rollbacks ri. If ri exceeds
a specified upper value r+, then Ti sleeps for a random time interval ti. If
the consecutive rollbacks break because an operation was successfully finished
then ri is reset to 0. The time interval ti is in milliseconds and is a randomly
generated number between 1 and r+. The value of r+ is set to 5. Other values

15

yielded similar results. Note that lower values for r+ do not necessarily imply
faster executions. A low r+ decreases the number of rollbacks much more,
but increases the number of times that a contented thread goes to sleep
(for ti milliseconds). On the other hand, a high r+ increases the number of
rollbacks, but randomness is given more chance to avoid livelocks; that is,
a contented thread has now more chances to find other elements to refine
before it goes to sleep (for ti milliseconds).

Random-CM cannot guarantee the absence of livelocks. As noted in [65],
this randomness can rarely lead to livelocks, but it should be rejected as it
is not a valid solution. We also experimentally verified that livelocks are not
that rare (see Section 5.5).

5.3. Global-CM

Global-CM maintains a global Contention List (CL). If a thread Ti en-
counters a rollback, then it writes its id in CL and it busy waits (i.e., it
blocks). Threads waiting in CL are potentially awaken (in FIFO order) by
threads that have made a lot of progress, or in other words, by threads that
have not recently encountered many rollbacks. Therefore, each thread Ti
computes its “progress” by counting how many consecutive successful oper-
ations si have been performed without an interruption by a rollback. If si
exceeds a upper value s+, then Ti awakes the first thread in CL, if any. The
value for s+ is set to 10. Experimentally, we found that this value yielded
the best results.

Global-CM can never create livelocks, because it is a blocking mechanism
as opposed to random-CM which does not block any thread. Nevertheless,
the system might end up to a deadlock, because of the interaction with the
Load Balancing’s Begging List BL (see the Load Balancer in Section 4).

Therefore, at any time, the number of active threads needs to be tracked
down, that is, the number of threads that do not busy wait in either the CL
or the Begging List. A thread is forbidden to enter CL and busy wait, if
it sees that there is only one (i.e., itself) active thread; instead, it skips CL
and attempts to refine the next element in its Poor Element List. Similarly,
a thread about to enter the Begging List (because it has no work to do)
checks whether or not it is the only active thread at this moment, in which
case, it awakes a thread from the CL, before it starts idling for extra work.
In this simple way, the absence of livelocks and deadlocks are guaranteed,
since threads always block in case of a rollback and there will always be
at least one active thread. The disadvantage of this method is that there is

16

global communication and synchronization: the CL, and the number of active
threads are global structures/variables that are accessed by all threads.

5.4. Local-CM

The local Contention Manager (local-CM) distributes the previously global
Contention List (CL) across threads. The Contention List CLi of a thread
Ti contains the ids of threads that encountered a rollback because of Ti (i.e,
they attempted to acquire a vertex already acquired by Ti) and now they
busy wait. As above, if Ti is doing a lot of progress, i.e., the number of
consecutive successful operations exceed s+, then Ti awakes one thread from
its local CLi.

Extra care should be taken, however, to guarantee not only the absence of
livelocks, but also, the absence of deadlocks. It is possible that T1 encounters
a rollback because of T2 (and we symbolize this relationship by writing T1 →
T2), and T2 encounters a rollback because of T1 (i.e., T2 → T1): both threads
write their ids to the other thread’s CL, and no one else can wake them up.
Clearly, this dependency cycle (T1 → T2 → T1) leads T1 and T2 to a deadlock,
because under no circumstances these threads will ever be awaken again.

To solve these issues, each thread is now equipped with two extra vari-
ables: conflicting id and busy wait. See Figure 2 for a detailed pseudo-code
of local-CM.

The algorithm in Figure 2c is called by a Ti every time it does not fin-
ish the operation successfully (i.e., it encounters a rollback). Suppose Ti
attempts to acquire a vertex already locked by Tj (Ti → Tj). In this case,
Ti does not complete the operation, but rather, it rollbacks by disregard-
ing the so far changes, unlocking all the associated vertices, and finally
executing the Rollback Occurred function, with conflicting id equal to j.
In other words, the conflicting id variables represent dependencies among
threads: Ti → Tj ⇔ Ti.conflicting id = j.

For example, if Ti encounters a rollback because of Tj and Tj encoun-
ters a rollback because of Tk, then the dependency path from Ti is Ti →
Tj → Tk, which corresponds to the following values: Ti.conflicting id =
j, Tj.conflicting id = k, Tk.conflicting id = −1 (where -1 denotes the absence
of dependency).

Lines 4-14 of Rollback Occurred decide whether or not Ti should block
(via busy-waiting). Ti is not allowed to block if Tconflicting id has already de-
cided to block (Lines 6-10). Threads communicate their decision to block
by setting their busy wait flags to true. If Tconflicting id.busy wait has already

17

1 Algorithm: Initialization(T,i)

Input : T is the array of threads,
i (≥ 0) is the id of the running

thread Ti.

/* s tracks down the progress of

Ti. It counts the number of

consecutive operations that

finished successfully without

rollback. */

2 T[i].s = 0;

/* conflicting id establishes

dependencies. If conflicting id

is not a negative number that

means Ti rollbacks because it

attempted to acquire a vertex

already owned by Tconflicting id.

*/

3 T[i].conflicting id = -1;

/* busy wait implements the busy

waiting. */

4 T[i].busy wait = false;

(a) It is called by each thread, before
refinement starts.

1 Algorithm:
Rollback Not Occurred(T,i)

Input : T is the array of threads,
i (≥ 0) is the id of the running

thread Ti which completed an operation
successfully, i.e., without rollbacks.

2 T[i].s++;

3 if T[i].s ≤ s+ then
/* Ti does not awake any thread

yet. */

4 return;

5 end

6 T[i].mutex.lock();
7 j = T[i].CL.pop front();
8 T[i].mutex.unlock();

/* Flip Tj’s flag, so it can be

awaken. */

9 T[j].busy wait = false;

(b) Ti completed the operation.

1 Algorithm: Rollback Occurred(T, i,
conflicting id)

Input : T is the array of threads,
i (≥ 0) is the id of the running

thread Ti which attempted to acquire a
vertex already locked by the thread
Tconflicting id.

/* The number of consecutive

successful operations is reset to

0. */

2 T[i].s = 0;

3 T[i].conflicting id = conflicting id;

4 T[min(i,conflicting id)].mutex.lock();
5 T[max(i,conflicting id)].mutex.lock();
6 if T[conflicting id].busy wait then

/* Tconflicting id is very likely to be

busy waiting; to avoid cyclic

dependencies, Ti is forbidden

to busy wait. */

7 T[i].conflicting id = -1;
8 T[max(i,conflicting id)].mutex.unlock();
9 T[min(i,conflicting id)].mutex.unlock();

10 return;

11 end
/* Tconflicting id is not busy waiting;

atomically, Ti will. */

12 T[i].busy wait = true;
13 T[max(i,conflicting id)].mutex.unlock();
14 T[min(i,conflicting id)].mutex.unlock();

/* Ti writes its id in Tconflicting id’s

Contention List (CL). */

15 T[conflicting id].mutex.lock();
16 T[conflicting id].CL.push back(i);
17 T[conflicting id].mutex.unlock();

18 while T[i].busy wait do
/* Ti is busy waiting until thread

Tconflicting id wakes it up. */

19 end
20 T[i].conflicting id = -1;

(c) Ti did not complete the operation be-
cause it encountered a rollback.

Figure 2: Pseudocode elaborating on the implementation of the
Local Contention Manager (Local-CM).

18

T1

T2

T4

T3

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

Time Step 1

T1

T2

T4

T3

conflicting thread=2

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=2

busy wait=false

CL={}

Time Step 2

T1

T2

T4

T3

conflicting thread=2

busy wait=true

CL={}

conflicting thread=-1

busy wait=false

CL={4, 1}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=2

busy wait=true

CL={}

Time Step 3

T1

T2

T4

T3

conflicting thread=2

busy wait=true

CL={}

conflicting thread=-1

busy wait=false

CL={1}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

Time Step 4

T1

T2

T4

T3

conflicting thread=2

busy wait=true

CL={}

conflicting thread=3

busy wait=false

CL={1}

conflicting thread=4

busy wait=false

CL={}

conflicting thread=2

busy wait=false

CL={}

Time Step 5

T1

T2

T4

T3

conflicting thread=2

busy wait=true

CL={}

conflicting thread=3

busy wait=true

CL={1, 4}

conflicting thread=-1

busy wait=false

CL={2}

conflicting thread=2

busy wait=true

CL={}

Time Step 6

Figure 3: Illustration of the local Contention Manager (local-CM).
Six Time Steps demonstrate the interaction among four threads.
The contents of their Contention List (CL), the value of the con-
flicting thread variable, and the value of the busy wait flag are
shown.

been set to true, it is imperative that Ti is not allowed to block, because it
might be the case that the dependency of Ti forms a cycle. By not letting
Ti to block, the dependency cycle “breaks”. Otherwise, Ti writes its id to
CLconflicting id (Lines 15-17) and loops around its busy wait flag (Line 18).

The algorithm in Figure 2b is called by a Ti every time it completes an
operation, i.e., every time Ti does not encounter a rollback. If Ti has done
a lot of progress (Lines 2-5 of Rollback Not Occurred), then it awakes a
thread Tj from its Contention List CLi by setting Tj’s busy wait flag to false.
Therefore, Tj escapes from the loop of Line 18 in Rollback Occurred and is
free to attempt the next operation.

Figure 3 illustrates possible execution scenarios for local-CM during six

19

Time Steps. Below, we describe in detail what might happen in each step:

• Time Step 1: All four threads are making progress without any roll-
backs.

• Time Step 2: T1 and T4 attempted to acquire a vertex already
owned by T2. Both T1 and T4 call the code of Figure 2c. Their
conflicting id variables represent those exact dependencies (Line 3 of
Rollback Occurred).

• Time Step 3: T1 and T4 set their busy wait flag to true (Line 12 of
Rollback Occurred), they write their ids to CL2 (Lines 15-17), and
they block via a busy wait (Line 18).

• Time Step 4: T2 has done lots of progress and executes the Lines 6-9
of Rollback Not Occurred, awaking in this way T4.

• Time Step 5: A dependency cycle is formed: T2 → T3 → T4 → T2.
Lines 4-14 of Rollback Occurred will determine which threads block
and which ones do not. Note that the mutex locking of Lines 4-5 cannot
be executed at the same time by these 3 threads. Only one thread can
enter its critical section (Lines 6-14) at a time.

• Time Step 6: Here it is shown that T4 executed its critical section
first, T2 executed its critical section second, and T3 was last. Therefore,
T4 and T2 block, since the condition in Line 6 was false: their conflicting
threads at that time had not set their busy wait to true. The last thread
T3 realized that its conflicting thread T4 has already decided to block,
and therefore, T3 returns at Line 10, without blocking.

Note that in Time Step 6, T2 blocks without awaking the threads in its
CL, and that is why both CL2 and CL3 are not empty. It might be tempting
to instruct a thread Ti to awake all the threads in CLi, when Ti is about to
block. This could clearly expedite things. Nevertheless, such an approach
could easily cause a livelock as shown in Figure 4.

Local-CM is substantially more complex than global-CM, and the deadlock-
free/livelock-free guarantees are not very intuitive. The rest of this Subsec-
tion is devoted to prove that local-CM indeed can never introduce deadlocks
or livelocks.

The following two Remarks follow directly from the definition of deadlock
and livelock [65].

20

T1

T2

T3

conflicting thread=2

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

Time Step 1

T1

T2

T3

conflicting thread=2

busy wait=true

CL={}

conflicting thread=-1

busy wait=false

CL={1}

conflicting thread=-1

busy wait=false

CL={}

Time Step 2

T1

T2

T3

conflicting thread=2

busy wait=true

CL={}

conflicting thread=3

busy wait=false

CL={1}

conflicting thread=-1

busy wait=false

CL={}

Time Step 3

T1

T2

T3

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=3

busy wait=true

CL={}

conflicting thread=-1

busy wait=false

CL={2}

Time Step 4

T1

T2

T3

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=3

busy wait=true

CL={}

conflicting thread=1

busy wait=false

CL={2}

Time Step 5

T1

T2

T3

conflicting thread=-1

busy wait=false

CL={3}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=1

busy wait=true

CL={}

Time Step 6

T1

T2

T3

conflicting thread=2

busy wait=false

CL={3}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=1

busy wait=true

CL={}

Time Step 7

T1

T2

T3

conflicting thread=2

busy wait=true

CL={}

conflicting thread=-1

busy wait=false

CL={}

conflicting thread=-1

busy wait=false

CL={}

Time Step 8

Figure 4: A thread about to busy-wait on another thread’s Con-
tention List (CL) should not awake the threads already in its own
CL. Otherwise, a livelock might happen, as illustrated in this Fig-
ure. Time Step 8 leads the system to the same situation of Time
Step 1: this can be taking place for an undefined period of time
with none of the threads making progress.

Remark 1. If a deadlock arises, then there has to be a dependency cycle
where all the participant threads block. Only then these blocked threads will
never be awaken again.

Remark 2. If a livelock arises, then there has to be a dependency cycle where
all the participant threads are not blocked. Since all the participant threads
break the cycle without making any progress, this “cycle breaking” might be
happening indefinitely without completing any operations. In the only case
where the rest threads of the system are blocked waiting on these participant
threads’ Contention Lists (or all the system’s threads participate in such a
cycle), then system-wide progress is indefinitely postponed.

21

The next Lemmas prove that in a dependency cycle, at least one thread
will block and at least one thread will not block. This is enough to prove
absence of deadlocks and livelocks.

Lemma 1 (Absence of deadlocks). In a dependency cycle at least one thread
will not block.

Proof. For the sake of contradiction, assume that the threads Ti1 , Ti2 , . . . , Tin
participate in a cycle, that is, Ti1 → Ti2 → · · · → Tin → Ti1 , such that all
threads block. This means that all threads evaluated Line 6 of Figure 2c to
false. Therefore, since Ti1 ’s conflicting id is Ti2 , right before Ti1 decides to
block (Line 12), Ti2 ’s busy wait flag was false. The same argument applies
for all the pairs of consecutive threads: {Ti2 , Ti3}, {Ti3 , Ti4}, . . . , {Tin , Ti1}.
But Tin could not have evaluated Line 6 to false, because, by our assump-
tion, Ti1 had already decided to block and Ti1 .busy wait had been already set
to true when Tin acquired Ti1 ’s mutex. A contradiction: Tin returns from
Rollback Occurred without blocking.

Lemma 2 (Absence of livelocks). In a dependency cycle at least one thread
will block.

Proof. For the sake of contradiction, assume that the threads Ti1 , Ti2 , . . . , Tin
participate in a cycle, that is, Ti1 → Ti2 → · · · → Tin → Ti1 , such that
all threads do not block. This means that all threads evaluated Line 6 of
Figure 2c to true. Consider for example Ti1 . When Ti1 acquired Ti2 ’s mutex,
it evaluated Line 6 to true. That means that Ti2 had already acquired and
released its mutex having executed Line 12: a contradiction because Ti2
blocks.

5.5. Comparison

For this case study, we evaluated each CM on the CT abdominal atlas
of IRCAD Laparoscopic Center (http://www.ircad.fr/) using 128 and 256
Blacklight cores (see Table 2 for its specification). The final mesh consists of
about 150×106 tetrahedra. The single-threaded execution time on Blacklight
was 1,080 seconds. See Table 1.

There are three direct sources of wasted cycles in our algorithm, and all
of them are shown in Table 1:

22

http://www.ircad.fr/

Table 1: Comparison among Contention Managers (CM). A 150
Million element mesh is generated.

(a) 128 cores

Aggressive-CM Random-CM Global-CM Local-CM
time (secs) n/a 64.2 23.7 19.3
rollbacks n/a 2.48251× 107 728, 087 680, 338

contention
overhead (secs)

n/a 4330.9 1081.4 545.80

load balance
overhead (secs)

n/a 872.48 134.62 126.22

rollback
overhead (secs)

n/a 516.81 3.0 2.9

total overhead
(secs)

n/a 5720.9 1219.6 675.11

speedup n/a 16.8 45.6 56.0
livelock yes no not possible not possible
deadlock not possible not possible not possible not possible

(b) 256 cores

Aggressive-CM Random-CM Global-CM Local-CM
time (secs) n/a n/a 22.3 14.1
rollbackss n/a n/a 882, 768 1.71197×106

contention
overhead (secs)

n/a n/a 3095.9 1377.1

load balance
overhead (secs)

n/a n/a 285.44 239.98

rollback
overhead (secs)

n/a n/a 3.6 7.6

total overhead
(secs)

n/a n/a 3385.1 1624.9

speedup n/a n/a 48.4 76.6
livelock yes yes not possible not possible
deadlock not possible not possible not possible not possible

• contention overhead time: it is the total time that threads spent
busy-waiting on a Contention List (or busy-waiting for a random num-
ber of seconds as is the case of Random-CM) and accessing the Con-
tention List (in case of Global-CM),

23

• load balance overhead time: it is the total time that threads spent
busy-waiting on the Begging List waiting for more work to arrive (see
Section 4) and accessing the Begging List, and

• rollback overhead time: it is the total time that threads had spent
for the partial completion of an operation right before they decided
that they had to discard the changes and roll back.

Observe that Aggressive-CM was stuck in a livelock on both 128 and 256
cores. We know for sure that these were livelocks because we found out that
no tetrahedron was refined, i.e., no thread actually made any progress, in the
time period of an hour.

Random-CM terminated successfully on 128 cores, but it was very slow
compared to Global-CM and Local-CM. Indeed, Random-CM exhibits a large
number of rollbacks that directly increases both the contention overhead
and the rollback overhead. Also, since threads’ progress is much slower,
threads wait for extra work for much longer, a fact that also increases the
load balance overhead considerably. As we have already explained above,
Random-CM does not eliminate livelocks, and this is manifested on the 256
core experiment, where a livelock did occur.

On both 128 and 256 cores, Local-CM performed better. Indeed, observe
that the total overhead time is approximately twice as small as Global-CM’s
overhead time. This is mainly due to the little contention overhead achieved
by Local-CM. Since Global-CM maintains a global Contention List, a thread
Ti waits for more time before it gets awaken from another thread for two rea-
sons: (a) because there are more threads in front of Ti that need to be awaken
first, and (b) because the Contention List and the number of active threads
are accessed by all threads which causes longer communication latencies.

Although Local-CM is the fastest scheme, observe that it introduces
higher number of rollbacks on 256 cores than Global-CM. This also justi-
fies the increased rollback overhead (see Table 1b). In other words, fewer
rollbacks do not always imply faster executions, a fact that renders the opti-
mization of our application a challenging task. This result can be explained
by the following observation: the number of rollbacks (and subsequently, the
rollback overhead) and the contention overhead constitute a tradeoff. The
more a thread waits in a Contention List, the more its contention overhead
is, but the fewer the rollbacks it encounters are, since it does not attempt to
perform any operation. Conversely, the less a thread waits in a Contention
List, the less its contention overhead is, but since it is given more chances

24

Table 2: The specifications of the cc-NUMA machines we used.

Model
cores per

socket
sockets per

blade
blades

memory
per socket

max hops

Blacklight Intel Xeon X7560 8 2 128 64GB 5
CRTC Intel Xeon X5690 6 2 1 48GB 0

to apply an operation, it might encounter more rollbacks. Nevertheless, Ta-
ble 1 suggests that Local-CM does a very good job balancing this tradeoff
on runtime.

Although there are other elaborate and hybrid contention techniques [61,
62], none of them guarantees the absence of livelocks. Therefore, we chose
Local-CM because of its efficiency and correctness.

6. Performance

In this Section, we describe a load balancing optimization and present
the strong and weak scaling performance on Blacklight. See Table 2 for its
specifications.

6.1. Hierarchical Work Stealing (HWS)

In order to further decrease the communication overhead associated with
remote memory accesses, we implemented a Hierarchical Work Stealing scheme
(HWS) by taking advantage of the cc-NUMA architecture.

We re-organized the Begging List into three levels: BL1, BL2, and BL3.
Threads of a single socket that run out of work place themselves into the
first level begging list BL1 which is shared among threads of a single socket.
If the thread realizes that all the other socket threads wait on BL1, it skips
BL1, and places itself to BL2, which is shared among threads of a single
blade. Similarly, if the thread realizes that BL2 already accommodates a
thread from the other socket in its blade, it asks work by placing itself
into the last level begging list BL3. When a thread completes an opera-
tion and is about to send extra work to an idle thread, it gives priority to
BL1 threads first, then to BL2, and lastly to BL3 threads. In other words,
BL1 is shared among the threads of a single socket and is able to accom-
modate up to number of threads per socket− 1 idle threads (in Blacklight,
that is 7 threads). BL2 is shared among the sockets of a single blade and is
able to accommodate up to number of sockets per blade−1 idle threads (in
Blacklight, that is 1 thread). Lastly, BL3 is shared among all the allocated

25

1 16 32 64 128 144 160 176
0

50

100

150

200

Number of cores

S
p

e
e

d
−

u
p

ideal

RWS

HWS

(a)

1 16 32 64 128 144 160 176
0

2

4

6

8

10
x 10

6

Number of cores

N
u
m

b
e
r

o
f
in

te
r−

b
la

d
e
 a

c
c
e
s
s
e
s

RWS

HWS

(b)

16 32 64 128 144 160 176
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of cores

O
v
e
rh

e
a
d
 S

e
c
o
n
d
s
 p

e
r

T
h
re

a
d

Contention Overhead Seconds per Thread
Load Balance Overhead Seconds per Thread
Rollback Overhead Seconds per Thread

(c)

Figure 5: Strong scaling performance achieved by the classic
Random Work Stealing (RWS) and Hierarchical Work Stealing
(HWS). (a)-(b) Comparison between RWS and HWS on speed-
up (time1

time#Threads
) and on the number of inter-blade accesses. (c)

Breakdown of the overhead time for HWS.

blades and can accommodate at most one thread per blade. In this way, an
idle thread Ti tends to take work first from threads inside its socket. If there
is none, Ti takes work from a thread of the other socket inside its blade, if
any. Finally, if all the other threads inside Ti’s blade are idling for extra
work, Ti places its id to BL3, asking work from a thread of another blade.

6.2. Strong Scaling Results

Figure 5 shows the strong scaling experiment demonstrating both the
Random Work Stealing (RWS) load balance and the Hierarchical Work Steal-
ing (HWS). The input image we used is the CT abdominal atlas obtained
from IRCAD Laparoscopic Center. Information about this input image is

26

Table 3: Information about the three input images used for the
scaling results of Section 6 and the single-threaded performace
comparison of Section 7.

voxels spacing (mm3) tissues download from
abdominal atlas 512× 512× 219 0.96× 0.96× 2.4 23 http://www.ircad.fr/softwares/3Dircadb/3Dircadb2/3Dircadb2.2.zip

knee atlas 512× 512× 119 0.27× 0.27× 1 49 http://www.spl.harvard.edu/publications/item/view/1953
head-neck atlas 255× 255× 229 0.97× 0.97× 1.4 60 http://www.spl.harvard.edu/publications/item/view/2271

shown in Table 3. The final mesh generated consists of 124 × 106 elements.
On a single Blacklight core, the execution time was 1100 seconds.

Observe that the speed-up of RWS deteriorates by a lot for more than 64
cores (see the green line in Figure 5a). In contrast, HWS manages to achieve
a (slight) improvement even on 176 cores. This could be attributed to the
fact that the number of inter-blade (i.e., remote) accesses are greatly reduced
by HWS (see Figure 5b), since begging threads are more likely to get poor
elements created by threads of their own socket and blade first. Clearly, this
reduces the communication involved when a thread reads memory residing
in a remote memory bank. Indeed, on 176 cores, 98.9% of all the number
of times threads asked for work, they received it from a thread of their own
blade, yielding a 28.8% reduction in inter-blade accesses, as Figure 5b shows.

Figure 5c shows the breakdown of the overhead time per thread for HWS
across runs. Note that since this is a strong scaling case study, the ideal
behavior is a linear increase of the height of the bars with the respect to the
number of threads. Observe, however, that the overhead time per thread is
always below the overhead time measured on 16 threads. This means that
Local-CM and the Hierarchical Work Stealing method (HWS) are able to
serve threads fast and tolerate congestion efficiently on runtime.

6.3. Weak Scaling Results

In this section, we present the weak scaling performance of PI2M on
two inputs, the information of which is presented in Table 3. The first is
the same CT abdominal atlas already used in the previous strong scaling
Section. The second input image is the knee atlas obtained from Brigham &
Women’s Hospital Surgical Planning Laboratory [68]. Other inputs exhibit
very similar results on comparable mesh sizes.

We measure the number of tetrahedra created per second across the runs.
Specifically, let us define with Elements (n) and Time (n), the number of
elements created and the time elapsed, when n threads are employed. Then,

27

http://www.ircad.fr/softwares/3Dircadb/3Dircadb2/3Dircadb2.2.zip
http://www.spl.harvard.edu/publications/item/view/1953
http://www.spl.harvard.edu/publications/item/view/2271

Table 4: Weak scaling performance. Across runs, the number of
elements per thread remains approximately constant.

(a) abdominal atlas

#Threads 1 16 32 64 128 144 160 176

#Elements 1.07E+07 1.72E+08 3.49E+08 7.44E+08 1.32E+09 1.51E+09 1.67E+09 1.85E+09

Time
(secs)

90.37 80.03 87.50 99.23 93.00 103.26 150.03 181.10

Elements
per second

1.18E+05 2.15E+06 3.99E+06 7.50E+06 1.42E+07 1.46E+07 1.11E+07 1.02E+07

Speedup 1.00 18.19 33.71 63.33 119.56 123.67 94.10 86.36

Efficiency 1.00 1.14 1.05 0.99 0.93 0.86 0.59 0.49

Overhead
secs per
thread

0.90 1.60 2.41 2.98 4.42 4.76 8.74 10.55

(b) knee-atlas

#Threads 1 16 32 64 128 144 160 176

#Elements 1.06E+07 1.66E+08 3.70E+08 8.06E+08 1.31E+09 1.58E+09 1.70E+09 1.91E+09

Time
(secs)

87.26 80.67 98.36 110.72 97.79 110.00 167.08 190.00

Elements
per second

1.22E+05 2.05E+06 3.76E+06 7.28E+06 1.34E+07 1.43E+07 1.02E+07 1.01E+07

Speedup 1.00 16.89 30.92 59.90 110.61 117.92 83.77 82.81

Efficiency 1.00 1.06 0.97 0.94 0.86 0.82 0.52 0.47

Overhead
secs per
thread

0.87 1.46 2.77 3.41 5.47 6.58 8.90 11.07

the speedup is defined as Elements(n)×Time(1)
Time(n)×Elements(1)

. With n threads, a perfect speedup

would be equal to n [69].
We can directly control the size of the problem (i.e., the number of gen-

erated tetrahedra) via the parameter δ (see Section 3). This parameter sets
an upper limit on the volume of the tetrahedra generated. With a simple
volume argument, we can show that a decrease of δ by a factor of x results
in an x3 times increase of the mesh size, approximately.

See Table 4. Each reported Time is computed as the average among three
runs. Although the standard deviation for up to 128 cores is practically zero
on both inputs, the same does not apply for higher core counts. Indeed, the
standard deviation on the 144-, 160-, and 176-core executions is about 10, 15,
and 29 seconds respectively, for both inputs. We attribute this behavior to
the fact that in those experiments, the network switches responsible for the

28

cache coherency were close to the root of the fat-tree topology and therefore,
they were shared among many more users, affecting in this way the timings
of our application considerably. (Note that the increased bandwidth of the
upper level switches does not alleviate this problem, since the bottleneck of
our application is latency.) This conjecture agrees with the fact that the
the maximum number of hops on the experiments for up to 128 cores was 3,
while for 144, 160 and 176 cores, this number became 5.

Nevertheless, observe the excellent speedups for up to 128 threads. On
144 cores, we achieve an unprecedented efficiency of more than 82%, and a
rate of more than 14.3 Million Elements per second for both inputs. It is
worth mentioning that CGAL [9], the fastest sequential publicly available
Isosurface-based mesh generation tool, on the same CT abdominal (http://
www.ircad.fr/softwares/3Dircadb/3Dircadb2/3Dircadb2.2.zip) image input,
is 81% slower than our single-threaded performance. Indeed, CGAL took
548.21 seconds to generate a similarly-sized mesh (1.00×107 tetrahedra) with
comparable quality and fidelity to ours (see Section 7 for a more thorough
comparison case study). Thus, compared to CGAL, the speedup we achieve
on 144 cores is 751.25.

Observe, however, that our performance deteriorates beyond this core
count. We claim that the main reason of this degradation is not the overhead
cycles spent on rollbacks, contention lists, and begging lists (see Section 5.5),
but the congested network responsible for the communication. Below, we
support our claim.

First of all, notice that the total overhead time per thread increases. Since
this is a weak scaling case study, the best that can happen is a constant num-
ber of overhead seconds per thread. But this is not happening. The reason
is that in the beginning of refinement, the mesh is practically empty: only
the six tetrahedra needed to fill the virtual box are present (see Figure 1).
Therefore, during the early stages of refinement, the problem does not be-
have as a weak scaling case study, but as a strong scaling one: more threads,
but in fact the same size, which renders our application a very challenging
problem. See Figure 6 for an illustration of the 176-core experiment of Ta-
ble 4a. X-axis shows the wall-time clock of the execution. The Y-axis shows
the total number of seconds that threads have spent on useless computation
(i.e., rollback, contention, and load balance overhead, see Section 5.5) so
far, cumulatively. The more straight the lines are, the more useful work the
threads perform. Rapidly growing lines imply lack of parallelism and intense
contention. Observe that in the first 14 seconds of refinement (Phase1), there

29

http://www.ircad.fr/ softwares/3Dircadb/3Dircadb2/3Dircadb2.2.zip
http://www.ircad.fr/ softwares/3Dircadb/3Dircadb2/3Dircadb2.2.zip

Execution Time (secs)

C
u
m

u
la

ti
v
e
 o

v
e
rh

e
a
d
 b

y
 a

ll
th

re
a
d
s

d
u
ri
n
g
 e

x
e
c
u
ti
o
n
 (

s
e
c
s
)

0 14 27 40 53 66 79 93 106 119 132 145 158 172
0

665
775

1930
cumulative contention overhead by all threads

cumulative load balance overhead by all threads

cumulative rollback overhead by all threads

≈ 73%

efficiency ≈ 100% efficiency ≈ 91% efficiency

P
h
a
se

1
Phase2 Phase3

Figure 6: Overhead time breakdown with respect to the wall time
for the experiment on 176 cores of Table 4a. A pair (x, y) tells
us that up to the xth second of execution, threads have not been
doing useful work so far for y seconds all together.

is high contention and severe load imbalance. Nevertheless, even in this case,
176×14−665

176×14
≈ 73% of the time, all 176 threads were doing useful work, i.e.,

the threads were working on their full capacity.
However, this overhead time increase cannot explain the performance

deterioration. See for example the numbers on 176 threads of Table 4a. 176
threads run for 181.10s each, and, on average, they do useless work for 10.55s
each. In other words, if there were no rollbacks, no contention list overhead,
and no load balancing overhead, the execution time would have to be 181.10s-
10.55s =170.55s. 170.55s, however, is far from the ideal 90.37s (that the
first column with 1 thread shows) by 170.55s-90.37=80.18s. Therefore, while
rollbacks, contention management, and load balancing introduce a merely
10.55s overhead, the real bottleneck is the 80.18s overhead spent on memory
(often remote) loads/stores. Indeed, since the problem size increases linearly
with respect to the number of threads, either the communication traffic per
network switch increases across runs, or it goes through a higher number of
hops (each of which adds a 2,000 cycle latency penalty [70]), or both. It

30

Table 5: Hyper-threaded execution of the case study shown in
Table 4a. The columns of the Speedup, TLB misses, LLC misses,
and Resource stall cycles reported here are relative to the non
hyper-threaded execution of Table 4a on the same number of cores.

#Cores
(2 threads per core) 1 16 32 64 128 144 160 176

#Elements 1.07E+07 1.72E+08 3.49E+08 7.44E+08 1.32E+09 1.51E+09 1.67E+09 1.85E+09

Time (secs) 58.03 55.98 61.57 67.28 240.36 342.91 436.72 480.83

Elements per
second

1.84E+05 3.08E+06 5.67E+06 1.11E+07 5.48E+06 4.41E+06 3.83E+06 3.85E+06

Speedup 1.56 1.43 1.42 1.47 0.39 0.30 0.34 0.38

Overhead secs
per thread

1.16 2.55 3.64 4.55 39.60 111.18 91.85 143.37

TLB misses
increase per

thread
-13.20% -16.79% -18.21% -16.63% -22.68% -28.87% -34.38% -34.49%

LLC misses
increase per

thread
81.72% -39.72% -34.81% -46.63% -67.71% -58.01% -72.98% -63.08%

Resource stall
cycles increase

per thread
-46.73% -50.24% -47.94% -48.12% -38.38% -37.18% -49.44% -43.26%

seems that after 144 cores, this pressure on the switches slows performance
down. A hybrid approach [14] able to scale for larger network hierarchies is
left for future work.

6.3.1. Hyper-threading

Table 5 shows the performance achieved by the hyper-threaded version
of our code. For this case study, we used the same input and parameters as
the ones used in the experiment shown in Table 4a. The only difference is
that now there are twice as many threads as there were in Table 4a.

Since the hardware threads share the TLB, the cache hierarchy, and the
pipeline, we report the impact of hyper-threading on TLB misses, Last Level
Cache (LLC) misses, and Resource stall cycles. Specifically, we report the
increase of those counters relatively to the non hyper-threaded experiment of
Table 4a. The reported Speedup is also relative to the non hyper-threaded
experiment.

The last three rows of Table 5 suggest that the hyper-threaded version
utilized the core resources more efficiently. Surprisingly enough, the TLB and
LLC misses actually decrease (notice the negative sign in front of the percent-
ages) when two hardware threads are launched per core. Also, as expected,

31

the pipeline in the hyper-threaded version is busier executing micro-ops, as
the decrease of resource stall cycles suggest.

Although hyper-threading achieves a better utilization of the TLB, LLC,
and pipeline, there is a considerable slowdown after 64 cores (i.e., 128 hard-
ware threads). Observe that hyper-threading expedited the execution for up
to 64 cores. Indeed, the hyper-threaded version is 47% faster on 64 cores
compared to the non hyper-threaded version. Beyond this point, however,
there is a considerable slowdown. This slowdown cannot be explained by
merely the increase in the number of overhead seconds.

See for example the overhead secs per thread on 176 cores in Table 5. It
is indeed 13 times higher than its non hyper-threaded counterpart; this is,
however, expected because the size of the problem is the same but now we use
twice as many hardware threads as before. If we subtract the overhead time of
the hyper-threaded version on 176 cores, we get that for 480.83s−143.37s =
337.46s, all hardware threads were doing useful work. But this is still way
longer than the 181.10s− 10.55s = 170.55s useful seconds of the non hyper-
threaded execution (see Table 4a).

We attribute this behavior to the increased communication traffic caused
not by the increased problem size (as was mostly the case in the non hyper-
threaded version), but by the increased number of “senders” and “receivers”.
That is, even though the problem size is the same, the hyper-threaded version
utilizes more threads. This means that at a given moment, there will be more
packages (originated by the more than before threads) in the switches waiting
to be routed than before. This phenomenon increases the communication
latency. It seems that the network cannot handle this pressure for more than
64 cores, or equivalently, 128 hardware threads. Note that this agrees with
the fact that in the non hyper-threaded version, the slowdown occurred on
more than 128 cores, which is again 128 threads (see Table 4).

7. Single-threaded evaluation

Although PI2M introduces extra overhead due to locking, synchroniza-
tion, contention management bookkeeping (see Section 5), and hierarchi-
cal load balance (see Section 6.1), in this Section we show that the single-
threaded performance of our method (PI2M) is better than the performance
of CGAL [9] and TetGen [10], the state-of-the-art sequential open source
mesh generation tools. Moreover, PI2M has comparable quality with CGAL
and much better quality than TetGen. PI2M, CGAL, and TetGen are very

32

robust Delaunay methods, since they all use exact predicates. Specifically,
PI2M adopts the exact predicates as implemented in CGAL [9, 71].

It should be mentioned that although CGAL is able to operate directly
on segmented multi-tissue images (i.e., it is an Isosurface-based method),
TetGen is a PLC-based method (see Section 2). That is, TetGen’s inputs
are triangulated domains that separate the different tissues. For this reason,
we pass to TetGen the triangulated iso-surfaces as recovered by our method,
and then let TetGen to fill the underlying volume.

We ran PI2M, CGAL, and TetGen on two different multi-tissue 3D input
images obtained from Brigham & Women’s Hospital Surgical Planning Lab-
oratory (http://www.spl.harvard.edu/). The first is the MR knee-atlas [68]
used in the previous Section and the second is a CT head-neck atlas [72].
Information about these two inputs is displayed in Table 3. The resulting
output meshes generated by our method PI2M are illustrated in Figure 7. We
should emphasize that we do not perform any smoothing as a post-processing
step, since smoothing tends to deteriorate quality. In fact, in our previous
work [73, 74], we show that quality is of great importance in the speed and
accuracy of certain applications, such as non-rigid brain registration, and
it should not be compromised. Nevertheless, mesh boundary smoothing is
desirable for CFD simulations, such as respiratory airway modeling [37–39].
The extension of our framework to support the computationally expensive
step of volume-conserving smoothing [37] and scale invariance [38] in parallel
is left for future work.

For fair comparison, we also show the resulting output meshes generated
by CGAL and TetGen in Figure 8 and Figure 9, respectively. A close in-
vestigation of the meshes generated by TetGen (Figure 9) reveals that there
are fewer labels than the labels recovered by PI2M and CGAL. In other
words, the labels of TetGen do not correspond to the same labels of PI2M or
CGAL. This is attributable to the way TetGen groups elements together [10]
for visualization purposes. As mentioned earlier, the input PLC for TetGen
is the set of the triangulated isosurfaces as recovered by PI2M. This PLC
divides the domain into the subdomains that constitute the different tissues.
In order for the elements of a subdomain A to be colored by a different la-
bel than the elements of a subdomain B, the user needs to specify two seed
points pA and pB, such that pA lies strictly in the interior of A and pB lies
strictly in the interior of B. A straightforward (perhaps not the best) way to
compute these seeds is to traverse the input image and to assign a seed point
per tissue. The unfortunate discrepancy with such an approach is that seeds

33

http://www.spl.harvard.edu/

(a) The 439,458 element mesh generated for the MR knee atlas.

(b) The 993,583 element mesh generated for the CT head-neck atlas.

Figure 7: Output meshes generated by PI2M on the MR knee atlas
and on the CT head-neck atlas.

34

(a) The 436,749 element mesh generated for the MR knee atlas.

(b) The 991,509 element mesh generated for the CT head-neck atlas.

Figure 8: Output meshes generated by CGAL on the MR knee
atlas and on the CT head-neck atlas.

35

(a) The 434,095 element mesh generated for the MR knee atlas.

(b) The 990,446 element mesh generated for the CT head-neck atlas.

Figure 9: Output meshes generated by TetGen on the MR knee
atlas and on the CT head-neck atlas.

36

Table 6: Statistics regarding the single-threaded performance and
the quality/fidelity achieved by PI2M and CGAL. PI2M includes
the extra overhead introduced by synchronization, contention man-
agement, and load balancing to support the (potential) presence of
other threads.

knee atlas head-neck atlas
PI2M CGAL TetGen PI2M CGAL TetGen

#tetrahedra / seconds 67,609 40,069 98,658 96,464 29,077 61,903
time 6.5 secs 10.9 secs 4.4 secs 10.3 secs 34.1 secs 16.0 secs

#tetrahedra 439,458 436,749 434,095 993,583 991,509 990,446
max radius-edge ratio 2 4.4 18.6 2 11.2 93.4

smallest boundary planar angle 17.4◦ 24.6◦ 18.0◦ 15.8◦ 2.4◦ 15.3◦

(min, max) dihedral angles (4.6◦, 170.1◦) (2.5◦, 176.3◦) (2.9◦, 173.0◦) (4.5◦, 170.2◦) (4.1◦, 173.9◦) (0.4◦, 172.0◦)
Hausdorff distance 10.7 mm 10.3 mm - 15.3 mm 15.2 mm -

might not lie in the intended PLC subdomains, simply because the recovered
isosurfaces (that form the PLC) represent the actual tissue geometry within
a tolerance (see Theorem 1). This problem affects only the visualization of
TetGen meshes and it becomes more acute in our case, because there are
many tissues that have very little volume, a reality that renders the com-
putation of the appropriate seed points less accurate and robust in general.
This fact alters the coloring of the TetGen meshes and this is the reason
TetGen coloring does not completely agree with the coloring of the meshes
generated by PI2M and CGAL.

Table 6 shows timings and quality statistics for PI2M, CGAL, and Tet-
Gen. We used CRTC (see Table 2 for its specifications) for this case study.
The timings reported account for everything but for disk IO operations. The
execution time reported for PI2M incorporates the 1.9 seconds and 1.2 sec-
onds time interval needed for the computation of the Euclidean distance
transform (see Section 3) for the knee atlas and the head-neck atlas, respec-
tively.

We set the sizing parameters of CGAL and TetGen to values that pro-
duced meshes of similar size to ours, since generally, meshes with more el-
ements exhibit better quality and fidelity. We access the achieved quality
of these methods in terms of radius-edge ratio and dihedral angles. Those
metrics are of great important to us, because they are shown to improve the
speed and robustness of medical application solvers dealing with isotropic
materials [3, 4, 73–75]. Ideally, the radius-edge ratio should be low, the
minimum dihedral angle should be large, and the maximum dihedral angle
should be low. We also report the smallest boundary planar angles. This

37

measures the quality of the mesh boundary. Large smallest boundary planar
angles imply better boundary quality.

PI2M, CGAL, and TetGen allow users to specify the target radius-edge
ratio. Apart from TetGen, these methods also allow users to specify the
target boundary planar angles. We set the corresponding parameters ac-
cordingly, so that the maximum radius-edge ratio is 2 (for PI2M, CGAL,
and TetGen), and the smallest boundary planar angle is more than 30◦ (for
PI2M and CGAL only, since TetGen does not give this parameter).

Fidelity measures how well the mesh boundary represents the iso-surfaces.
We access the fidelity achieved by these methods in terms of the symmet-
ric (double-sided) Hausdorff distance. A low Hausdorff distance implies a
good representation. Notice that we do not report the Hausdorff distance for
TetGen, since the triangular mesh that represents the iso-surfaces is given
to it as an input. For the input images we used for Table 6, the Hausdorff
distances achieved by both PI2M and CGAL are far from ideal. This hap-
pens because the values chosen for the sizing parameters at this comparison
did not recover isolated clusters of voxels which seem to be artifacts of the
segmentation anyway. Nevertheless, Theorem 1 guarantees (both in theory
and in practice) that if the sample is very dense, then the Hasdorff distance
approaches to zero. The goal of this Section is not to generate meshes of high
fidelity, but to demonstrate the effectiveness of PI2M by comparing PI2M
with the state of the art open source meshers.

We access the speed of the methods above by comparing the rate of
generated tetrahedra per second. Note that since our method not only inserts
but also removes points from the mesh (thus reducing the number of mesh
elements), a perhaps fairer way to access speed is to compare the rate of
performed operations per second. Nevertheless, we do not report this metric
for two reasons. First, a high rate of operations does not always imply a
high rate of generated tetrahedra. The later, however, is the only thing
that matters, since comparing the quality/fidelity achieved by meshes of
very different mesh sizes makes no sense. Second, the number of removals
performed by PI2M accounts for only 2% over the total number of operations.
Thus, the rate of generated tetrahedra is very close the rate of operations
per second; indeed, we experimentally found out that those two rates are
practically the same.

Observe that the PI2M and CGAL generate meshes of similar dihedral
angles, and fidelity, but our method is much faster. Indeed, the rate of the
single-threaded PI2M is 68.7% higher than CGAL on the knee atlas and more

38

than 3 times higher on the head-neck atlas. Also note that both PI2M and
CGAL prove that the smallest boundary planar angles are more than 30◦

and that radius-edge ratio is less than 2 [7]. Due to numerical errors, how-
ever, these bounds might be smaller in practice than what theory suggests.
Nevertheless, observe that PI2M yields much better boundary planar angles
and radius-edge ratio than CGAL on the head-neck atlas.

TetGen is faster than PI2M only on the knee atlas by a couple of sec-
onds. For larger meshes (as is the case with the head-neck atlas), TetGen is
slower. Indeed, for small meshes, the computation of the Euclidean Distance
Transform (EDT) accounts for a considerable percentage over the total exe-
cution time, a fact that slows down the overall execution time by a lot. For
example, the actual meshing time on the knee atlas was just 4.6 secs, very
close to TetGen’s time and rate. Another notable observation is that our
method generates meshes with much better dihedral angles and radius-edge
ratio than TetGen. The achieved boundary planar angles are similar simply
because the PLC that is given to TetGen was in fact the triangular boundary
mesh of PI2M.

8. Discussion, Conclusions, and Future Work

In this paper, we present PI2M: the first parallel Image-to-Mesh (PI2M)
Conversion Isosurface-based algorithm and its implementation. Starting di-
rectly from a multi-label segmented 3D image, it is able to recover and mesh
both the isosurface ∂O with geometric and topological guarantees (see The-
orem 1) and the underlying volume O with quality elements.

This work is different from parallel Triangulators [40–43], since parallel
mesh generation and refinement focuses on the quality of elements (tetra-
hedra and facets) and the conformal representation of the tissues’ bound-
aries/isosurfaces by computing on demand the appropriate points for inser-
tion or deletion. Parallel Triangulators tessellate only the convex hull of a
set of points.

Our tighly-coupled method greatly reduces the number of rollbacks and
scales up to a much higher core count, compared to the tightly-coupled
method our group developed in the past [33]. The data decomposition
method [45] does not support Delaunay removals, a technique that it is
shown to be effective in the sequential mesh generation literature [7, 8].
The extension of partially-coupled [44] and decoupled [34] methods to 3D
is a very difficult task, since Delaunay-admissible 3D medial decomposition

39

is an unsolved problem. On the contrary, our method does not rely on any
domain decomposition, and could be extended to arbitrary dimensions as
well. Indeed, we plan to extend PI2M to 4 dimensions and generate space-
time elements (needed for spatio-temporal simulations [76, 77]) in parallel,
thus, exploiting parallelism in the fourth dimension. As future work, we also
leave the mesh boundary smoothing required for CFD simulations, such as
respiratory airway modeling [37–39].

Our code is highly optimized through carefully designed contention man-
agers, and load balancers which take advantage of NUMA architectures.
Our Global Contention Manager (Global-CM) and Local Contention Man-
ager (Local-CM) provably eliminate deadlocks and livelocks. They achieve
a speedup even on 256 cores, when other traditional contention managers,
found in the mesh generation literature, fail to terminate. Local-CM also
reduced the number of overhead cycles by a factor of 2 compared to the
Global-CM on 256 cores, improving energy-efficiency by avoiding energy
waste because of rollbacks. Lastly, our Hierarchical Work Stealing load bal-
ancer (HWS) sped up the execution by a factor of 1.45 on 176 cores, as a
result of a 22.8% remote accesses reduction.

All in all, PI2M achieves a strong scaling efficiency of more than 82% on
64 cores. It also achieves a weak scaling efficiency of more than 82% on up
to 144 cores. We are not aware of any 3D parallel Delaunay mesh refinement
algorithm achieving such a performance.

It is worth noting that PI2M exhibits excellent single-threaded perfor-
mance. Despite the extra overhead associated with synchronization, con-
tention management, and load balancing, PI2M generates meshes 40% faster
than CGAL and with similar quality. Moreover, PI2M achieves better quality
than TetGen, and it is also faster than TetGen for large mesh sizes.

Recall that in our method, threads spend time idling on the contention
and load balancing lists. And this is necessary in our algorithm for cor-
rectness and performance efficiency. This fact offers great opportunities to
control the power consumption, or alternatively, to maximize the Elements

second×Watt

ratio. Since idling is not the time critical component in our algorithm, the
CPU frequency could be decreased during such an idling. Nevertheless, the
appropriate frequency drop, the amount of idling, and performance is a trade-
off, and its investigation is left as future work.

As already explained, for core counts higher than 144, weak scaling per-
formance deteriorates because communication traffic (per switch) is more
intense and passes through a larger number of hops. In the future, we plan

40

to increase scalability by employing a hierarchically layered (distributed and
shared memory) implementation design [14] and combine this tightly-coupled
method with the decoupled and partially coupled methods we developed in
the past, exploring in this way different levels of concurrency.

Acknowledgments

The authors are deeply grateful to PSC’s system group for its priceless
and prompt support. Special thanks to the reviewers for their constructive
suggestions and to Dimitris Nikolopoulos, Andrey Chernikov, and Andriy
Kot for their instructive comments and insightful discussions. This work is
supported in part by NSF grants: CCF-1139864, CCF-1136538, and CSI-
1136536 and by the John Simon Guggenheim Foundation and the Richard
T. Cheng Endowment.

References

[1] N. Archip, O. Clatz, A. Fedorov, A. Kot, S. Whalen, D. Kacher,
N. Chrisochoides, F. Jolesz, A. Golby, P. Black, S. K. Warfield, Non-rigid
alignment of preoperative MRI, fMRI, DT-MRI, with intra-operative
MRI for enchanced visualization and navigation in image-guided neuro-
surgery, Neuroimage 35 (2007) 609–624.

[2] Y. Liu, C. Yao, L. Zhou, N. Chrisochoides, A point based non-rigid
registration for tumor resection using iMRI, in: IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, IEEE Press,
2010, pp. 1217–1220.

[3] J. R. Shewchuk, What is a Good Linear Element? - Interpolation,
Conditioning, and Quality Measures, in: Proceedings of the 11th Inter-
national Meshing Roundtable, Sandia National Laboratories, 2002, pp.
115–126.

[4] O. Goksel, S. E. Salcudean, High-quality model generation for finite
element simulation of tissue deformation, in: 12th International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), MICCAI ’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp.
248–256.

41

[5] P.-L. George, H. Borouchaki, Delaunay triangulation and meshing, Ap-
plication to finite elements, HERMES, 1998.

[6] B. M. Klingner, J. R. Shewchuk, Aggressive tetrahedral mesh im-
provement, in: Proceedings of the International Meshing Roundtable,
Springer, 2007, pp. 3–23.

[7] P. Foteinos, A. Chernikov, N. Chrisochoides, Guaranteed Quality Tetra-
hedral Delaunay Meshing for Medical Images, in: Proceedings of the
7th International Symposium on Voronoi Diagrams in Science and En-
gineering, IEEE Computer Society, 2010, pp. 215–223.

[8] P. Foteinos, N. Chrisochoides, High-quality multi-tissue mesh gener-
ation for finite element analysis, in: Y. J. Zhang (Ed.), Image-Based
Geometric Modeling and Mesh Generation, volume 3 of Lecture Notes in
Computational Vision and Biomechanics, Springer Netherlands, 2013,
pp. 159–169.

[9] Cgal, Computational Geometry Algorithms Library, http://www.cgal.
org, v4.0.

[10] H. Si, TetGen, A Quality Tetrahedral Mesh Generator and a 3D Delau-
nay Triangulator, http://tetgen.berlios.de/, v1.4.3.

[11] A. Bowyer, Computing Dirichlet tesselations, Computer Journal 24
(1981) 162–166.

[12] D. F. Watson, Computing the n-dimensional Delaunay tesselation with
application to Voronoi polytopes, Computer Journal 24 (1981) 167–172.

[13] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubi-
atowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
K. Yelick, A view of the parallel computing landscape, Commun. ACM
52 (2009) 56–67.

[14] N. Chrisochoides, A. Chernikov, A. Fedorov, A. Kot, L. Linardakis,
P. Foteinos, Towards exascale parallel Delaunay mesh generation, in:
International Meshing Roundtable, 18, Springer Berlin Heidelberg, Salt
Lake City, Utah, 2009, pp. 319–336.

42

http://www.cgal.org
http://www.cgal.org
http://tetgen.berlios.de/

[15] R. A. Kendall, M. Sosonkina, W. D. Gropp, R. W. Numrich, T. Ster-
ling, Parallel programming models applicable to cluster computing and
beyond, in: A. Bruaset, A. Tveito (Eds.), Numerical Solution of Partial
Differential Equations on Parallel Computers, Springer, 2005, pp. 3–55.

[16] P. Foteinos, D. Feng, A. Chernikov, N. Chrisochoides, Multi-layered
unstructured mesh generation, in: Proceedings of the 27th international
ACM conference on International conference on supercomputing, ICS
’13, ACM, New York, NY, USA, 2013, pp. 471–472.

[17] J. R. Shewchuk, Tetrahedral mesh generation by Delaunay refinement,
in: Proceedings of the 14th ACM Symposium on Computational Geom-
etry, ACM, Minneapolis, MN, 1998, pp. 86–95.

[18] G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington, A Delaunay based
numerical method for three dimensions: generation, formulation, and
partition, in: Proceedings of the 27th Annu. ACM Sympos. Theory
Comput, ACM, 1995, pp. 683–692.

[19] A. Chernikov, N. Chrisochoides, Generalized insertion region guides for
Delaunay mesh refinement, SIAM Journal on Scientific Computing 34
(2012) A1333–A1350.

[20] A. Chernikov, N. Chrisochoides, Multitissue tetrahedral image-to-mesh
conversion with guaranteed quality and fidelity, SIAM Journal on Sci-
entific Computing 33 (2011) 3491–3508.

[21] H. Si, Constrained Delaunay tetrahedral mesh generation and refine-
ment, Finite Elements in Analysis and Design 46 (2010) 33–46.

[22] J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh
generation, Computational Geometry: Theory and Applications 22
(2002) 21–74.

[23] S. Oudot, L. Rineau, M. Yvinec, Meshing volumes bounded by smooth
surfaces, in: Proceedings of the International Meshing Roundtable,
Springer-Verlag, 2005, pp. 203–219.

[24] F. Labelle, J. R. Shewchuk, Isosurface stuffing: fast tetrahedral meshes
with good dihedral angles, ACM Transactions on Graphics 26 (2007)
57.1–57.10.

43

[25] J.-P. Pons, F. Ségonne, J.-D. Boissonnat, L. Rineau, M. Yvinec,
R. Keriven, High-Quality Consistent Meshing of Multi-label Datasets,
in: Information Processing in Medical Imaging, Springer Berlin Heidel-
berg, 2007, pp. 198–210.

[26] D. Boltcheva, M. Yvinec, J.-D. Boissonnat, Mesh Generation from 3D
Multi-material Images, in: Medical Image Computing and Computer-
Assisted Intervention, Springer, 2009, pp. 283–290.

[27] H. L. D. Cougny, M. S. Shephard, Parallel refinement and coarsening
of tetrahedral meshes, International Journal for Numerical Methods in
Engineering 46 (1999) 1101–1125.

[28] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. War-
burton, L. Wilcox, Extreme-scale amr, in: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’10, IEEE Computer Society,
2010, pp. 1–12.

[29] T. Tu, D. R. O. Hallaron, O. Ghattas, Scalable parallel octree meshing
for terascale applications, in: Proceedings of the 2005 ACM/IEEE con-
ference on Supercomputing, SC ’05, IEEE Computer Society, 2005, pp.
4–.

[30] Y. Ito, A. Shih, A. Erukala, B. Soni, A. Chernikov, N. Chrisochoides,
K. Nakahashi, Parallel mesh generation using an advancing front
method, Mathematics and Computers in Simulation 75 (2007) 200–209.

[31] J. Galtier, P.-L. George, Prepartitioning as a way to mesh subdomains
in parallel, in: Special Symposium on Trends in Unstructured Mesh
Generation, ASME/ASCE/SES, 1997, pp. 107–122.

[32] C. M. J. Kadow, Parallel Delaunay Refinement Mesh Generation, 2004.
PhD Thesis, Carnegie Mellon University.

[33] D. Nave, N. Chrisochoides, P. Chew, Parallel Delaunay refinement for
restricted polyhedral domains, Computational Geometry: Theory and
Applications 28 (2004) 191–215.

44

[34] L. Linardakis, N. Chrisochoides, Graded Delaunay decoupling method
for parallel guaranteed quality planar mesh generation, SIAM Journal
on Scientific Computing 30 (2008) 1875–1891.

[35] U. Hartmann, F. Kruggel, A Fast Algorithm for Generating Large
Tetrahedral 3D Finite Element Meshes from Magnetic Resonance To-
mograms, in: Proceedings of the IEEE Workshop on Biomedical Image
Analysis, WBIA, IEEE Computer Society, Washington, DC, USA, 1998,
pp. 184–192.

[36] P. Hu, H. Chen, W. Wu, P.-A. Heng, Multi-tissue tetrahedral mesh
generation from medical images, in: International Conference on Bioin-
formatics and Biomedical Engineering (iCBBE), IEEE, 2010, pp. 1–4.

[37] A. Kuprat, A. Khamayseh, D. George, L. Larkey, Volume conserving
smoothing for piecewise linear curves, surfaces, and triple lines, Journal
of Computational Physics 172 (2001) 99–118.

[38] A. P. Kuprat, D. R. Einstein, An anisotropic scale-invariant unstruc-
tured mesh generator suitable for volumetric imaging data, J. Comput.
Phys. 228 (2009) 619–640.

[39] V. Dyedov, D. R. Einstein, X. Jiao, A. P. Kuprat, J. P. Carson, F. del
Pin, Variational generation of prismatic boundary-layer meshes for
biomedical computing, International Journal for Numerical Methods
in Engineering 79 (2009) 907–945.

[40] P. Foteinos, N. Chrisochoides, Dynamic parallel 3D Delaunay triangula-
tion, in: International Meshing Roundtable, Springer Berlin Heidelberg,
Paris, France, 2012, pp. 3–20.

[41] V. H. Batista, D. L. Millman, S. Pion, J. Singler, Parallel geometric al-
gorithms for multi-core computers, Computational Geometry 43 (2010)
663–677.

[42] D. K. Blandford, G. E. Blelloch, C. Kadow, Engineering a compact
parallel Delaunay algorithm in 3D, in: Proceedings of the 22nd Sym-
posium on Computational Geometry, SCG ’06, ACM, New York, NY,
USA, 2006, pp. 292–300.

45

[43] G. E. Blelloch, G. L. Miller, J. C. Hardwick, D. Talmor, Design and
implementation of a practical parallel Delaunay algorithm, Algorithmica
24 (1999) 243–269.

[44] A. Chernikov, N. Chrisochoides, Algorithm 872: Parallel 2D constrained
Delaunay mesh generation, ACM Transactions on Mathematical Soft-
ware 34 (2008) 6–25.

[45] A. N. Chernikov, N. P. Chrisochoides, Three-dimensional Delaunay
refinement for multi-core processors, in: Proceedings of the 22nd annual
international Conference on Supercomputing, ICS ’08, ACM, New York,
NY, USA, 2008, pp. 214–224.

[46] R. Said, N. Weatherill, K. Morgan, N. Verhoeven, Distributed parallel
Delaunay mesh generation, Computer Methods in Applied Mechanics
and Engineering 177 (1999) 109–125.

[47] P. Sewell, T. Benson, C. Christopoulos, D. W. P. Thomas, A. Vukovic,
J. Wykes, Transmission-line modeling (TLM) based upon unstructured
tetrahedral meshes, Microwave Theory and Techniques, IEEE Transac-
tions on 53 (2005) 1919–1928.

[48] M. Zhou, O. Sahni, T. Xie, M. S. Shephard, K. E. Jansen, Unstructured
mesh partition improvement for implicit finite element at extreme scale,
J. Supercomput. 59 (2012) 1218–1228.

[49] T. Okusanya, J. Peraire, 3D parallel unstructured mesh genera-
tion, 1997. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
48.7898.

[50] R. Löhner, A 2nd generation parallel advancing front grid generator,
in: X. Jiao, J.-C. Weill (Eds.), Proceedings of the 21st International
Meshing Roundtable, Springer Berlin Heidelberg, 2013, pp. 457–474.

[51] L. Oliker, R. Biswas, Parallelization of a dynamic unstructured algo-
rithm using three leading programming paradigms, IEEE Trans. Parallel
Distrib. Syst. 11 (2000) 931–940.

[52] N. Amenta, M. Bern, Surface reconstruction by Voronoi filtering, in:
SCG ’98: Proceedings of the fourteenth annual symposium on Compu-
tational geometry, ACM, New York, NY, USA, 1998, pp. 39–48.

46

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7898
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7898

[53] N. Amenta, S. Choi, R. K. Kolluri, The power crust, in: Proceedings
of the sixth ACM symposium on Solid modeling and applications, SMA
’01, ACM, New York, NY, USA, 2001, pp. 249–266.

[54] T. K. Dey, W. Zhao, Approximate medial axis as a voronoi subcomplex,
Computer-Aided Design 36 (2004) 195–202.

[55] J.-D. Boissonnat, S. Oudot, Provably good sampling and meshing of
surfaces, Graphical Models 67 (2005) 405–451.

[56] R. Staubs, A. Fedorov, L. Linardakis, B. Dunton, N. Chrisochoides,
Parallel n-dimensional exact signed euclidean distance transform, The
Insight Journal (2006).

[57] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D sur-
face construction algorithm, SIGGRAPH Computer Graphics 21 (1987)
163–169.

[58] C. R. Maurer, Q. Rensheng, V. Raghavan, A linear time algorithm for
computing exact euclidean distance transforms of binary images in arbi-
trary dimensions, IEEE Transactions on Pattern Analysis and Machine
Intelligence 25 (2003) 265 – 270.

[59] O. Devillers, M. Teillaud, Perturbations and vertex removal in a 3D
Delaunay triangulation, in: Proceedings of the 14th ACM-SIAM Sym-
posium on Discrete algorithms, SODA ’03, SIAM, 2003, pp. 313–319.

[60] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, Y. Zhou, Cilk: an efficient multithreaded runtime system, in:
Proceedings of the fifth ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP ’95, ACM, New York, NY,
USA, 1995, pp. 207–216.

[61] W. N. Scherer, III, M. L. Scott, Advanced contention management
for dynamic software transactional memory, in: Proceedings of the 24th

annual ACM symposium on Principles of distributed computing, PODC
’05, ACM, 2005, pp. 240–248.

[62] M. Herlihy, V. Luchangco, M. Moir, Obstruction-free synchronization:
Double-ended queues as an example, in: Proceedings of the 23rd In-
ternational Conference on Distributed Computing Systems, ICDCS ’03,
IEEE Computer Society, 2003, pp. 522–.

47

[63] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Wal-
ter, K. Bala, L. P. Chew, Scheduling strategies for optimistic parallel
execution of irregular programs, in: Proc. Symp. on Parallelism in al-
gorithms and architectures (SPAA), ACM, New York, NY, USA, 2008,
pp. 217–228.

[64] C. Antonopoulos, X. Ding, A. Chernikov, F. Blagojevic, D. Nikolopou-
los, N. Chrisochoides, Multigrain parallel Delaunay mesh generation:
Challenges and opportunities for multithreaded architectures, in: ACM
International Conference on Supercomputing, 19, ACM, 2005, pp. 367–
376.

[65] M. Ben-Ari, Principles of concurrent programming, Chapter 3, pages
30-43, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[66] M. Herlihy, J. E. B. Moss, Transactional memory: architectural support
for lock-free data structures, SIGARCH Comput. Archit. News 21 (1993)
289–300.

[67] D. Nave, P. Chew, N. Chrisochoides, Guaranteed-quality parallel Delau-
nay refinement for restricted polyhedral domains, in: ACM Symposium
on Computational Geometry (SoCG), ACM, 2002, pp. 135–144.

[68] J. Richolt, M. Jakab, R. Kikinis, SPL Knee Atlas (2011). Available at:
http://www.spl.harvard.edu/publications/item/view/1953.

[69] J. L. Gustafson, Reevaluating Amdahl’s law, Communications of the
ACM 31 (1988) 532–533.

[70] SGI UV 100/1000 system specifications, http://www.sgi.com/products/
servers/uv/specs.html, 2012. Available online.

[71] O. Devillers, S. Pion, Efficient exact geometric predicates for delaunay
triangulations, in: Proc. 5th Workshop Algorithm Eng. Exper., SIAM,
2003, pp. 37–44.

[72] M. Jakab, R. Kikinis, Head and neck atlas (2012). Available at: http:
//www.spl.harvard.edu/publications/item/view/2271.

[73] P. Foteinos, Y. Liu, A. Chernikov, N. Chrisochoides, An Evaluation
of Tetrahedral Mesh Generation for Non-Rigid Registration of Brain

48

http://www.spl.harvard.edu/publications/item/view/1953
http://www.sgi.com/products/servers/uv/specs.html
http://www.sgi.com/products/servers/uv/specs.html
http://www.spl.harvard.edu/publications/item/view/2271
http://www.spl.harvard.edu/publications/item/view/2271

MRI, in: Computational Biomechanics for Medicine V, 13th Interna-
tional Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) Workshop, Springer, 2010, pp. 126–137.

[74] A. Fedorov, N. Chrisochoides, Tetrahedral Mesh Generation for Non-
rigid Registration of Brain MRI: Analysis of the Requirements and Eval-
uation of Solutions, in: International Meshing Roundtable, Springer
Verlag, 2008, pp. 55–72.

[75] N. Chentanez, R. Alterovitz, D. Ritchie, L. Cho, K. K. Hauser, K. Gold-
berg, J. R. Shewchuk, J. F. O’Brien, Interactive simulation of surgical
needle insertion and steering, in: Proceedings of ACM SIGGRAPH
2009, pp. 88:1–10.

[76] M. Behr, Simplex space-time meshes in finite element simulations, Inter-
national Journal for Numerical Methods in Fluids 57 (2008) 1421–1434.

[77] T. C. S. Rendall, C. B. Allen, E. D. C. Power, Conservative unsteady
aerodynamic simulation of arbitrary boundary motion using structured
and unstructured meshes in time, International Journal for Numerical
Methods in Fluids 70 (2012) 1518–1542.

49

	Introduction
	Related Work
	Background: Delaunay Refinement for Smooth Surfaces
	Parallel Delaunay Refinement for Smooth Surfaces
	Poor Element List (PEL)
	Operation
	Update new and deleted cells
	Load Balancer
	Contention Manager (CM)

	Contention Manager
	Aggressive-CM
	Random-CM
	Global-CM
	Local-CM
	Comparison

	Performance
	Hierarchical Work Stealing (HWS)
	Strong Scaling Results
	Weak Scaling Results
	Hyper-threading

	Single-threaded evaluation
	Discussion, Conclusions, and Future Work

