
 

 

An ITK Implementation of Physics-based 
Non-rigid Registration Method  

Release 0.00 

 

  Yixun Liu1,2, Andriy Kot1, Fotis Drakopoulos1, Andriy Fedorov1,3  Andinet Enquobahrie4,          

                                                                             Olivier Clatz5 and Nikos Chrisochoides1 

July 13, 2012 

       1
CRTC Lab and Computer Science, Old Dominion University 

      2
Radiology and Imaging Science, National Institutes of Health 

             3
Brigham And Women’s Hospital Harvard Medical School 

                                                                                                                                   4
Kitware Inc 

              5
Asclepios Research Laboratory at INRIA Sophia Antipolis 

Abstract 

 

As part of the ITK v4 project efforts, we have developed ITK filters for physics-based non-rigid registration (PBNRR), which 

satisfies the following requirements: account for tissue properties in the registration, improve accuracy compared to rigid 

registration, and reduce execution time using GPU and multi-core accelerators. The implementation has three main components: 

(1) Feature Point Selection, (2) Block Matching (mapped to both multi-core and GPU processors), and (3) a Robust Finite 

Element Solver. The use of multi-core and GPU accelerators in ITK v4 provides substantial performance improvements.  For 

example, in average for the non-rigid registration of brain MRIs, the performance of the Block Matching filter is about 12 times 

faster when 12 hyperthreaded multi-cores are used and about 540 times faster when the Quadro 6000 with 448 threads is used in 

Dell Workstation. 
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1 Introduction 

A clinically practical non-rigid registration method should take the following factors into account:  speed, 

robustness and accuracy. The registration should be done within a short time to provide timely responses 

to the surgeons. The registration results should not be susceptible to image intensity inhomogeneity and 

artifacts. Moreover, the registration results should realistically reflect the physical deformation of the 

tissue. 

In this paper, we present an ITK implementation of a physics-based non-rigid registration method [1]. 

This method relies on:  

1. a sparse displacement field and a Finite Element biomechanical model to estimate the entire 

deformation field. The unknown deformation field is represented by a parameterized piece-wise 

linear polynomials, whose parameters are estimated by approximating the scattered 

displacements, essentially a scattered data approximation approach.  

2. The sparse registration points are obtained by locating the centers of small image blocks with rich 

structural information, a typical feature point selection approach.  

3. The displacement associated with the registration point is obtained by comparing the block 

surrounding the registration point with the blocks located in a predefined window, i.e., block 

matching.  

The Physics Based Non-Rigid Registration (PBNRR) filter in ITK, 

itk::fem::PhysicsBasedNonRigidRegistrationMethod, is implemented by connecting the following three ITK 

filters into one pipeline: itk::fem::FEMScatteredDataPointSetToImageFilter, itk::MaskFeaturePointSelection, and 
itk::BlockMatchingImageFilter. 

The sparse displacement field is characterized by sparsity and outliers, which compromises the accuracy 

of the estimation of the entire deformation field. To deal with sparsity of the deformation filed, the 

parameter estimation is regularized by a biomechanical model, which is capable of describing the 

physical deformation based on quite few data, i.e., the boundary condition. To make the estimation robust 

again outliers, the parameter are estimated as a Least Trimmed Squares (LTS) regression [5]. More 

specifically, at each iteration estimate parameters first without any outliers, then identify the points with 

larger error as outliers, finally remove outliers from the data and re-estimate the parameters.  To reduce 

the approximation error, the entire deformation field is estimated by an iterative method that gradually 

shifts from an approximation problem (minimizing the sum of a regularization term and a data error term) 

towards an interpolation problem (least square minimization of the data error term).   

Among the three filters or steps in the PBNRR filter, block matching is the most computationally 

intensive, about 30% of the total execution time for an average case of non-rigid registration of pre-

operative and intra-operative brain MRIs (see Table 2). The block matching algorithm [1], for each block, 

loops over its search window to calculate the cross-correlation. In ITK implementation, we parallelized 

the Block Matching based on our previous work [2, 3] within ITK multithreading/GPU framework to 

make full use of multi-core and GPU processors available to even average computing platforms like 

desktops and laptops. 

In this paper, we first describe the principle of the physics-based non-rigid registration method. Users are 

referred to [1, 2, 3] for more details about the sequential and parallel algorithms. Then, we present its ITK 

implementation covering three independent filters and one main filter which puts together all three filters. 
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Finally, we evaluate our implementation using 5 public datasets [12] on the registration of the pre-

operative MRI and the intra-operative MRI.    

2 Physics-Based Non-Rigid Registration Method  

The physics-based non-rigid registration method is based on the following three steps: feature point 

selection, block matching, and robust finite element solver. Feature point selection identifies the small 

image blocks with rich structure information (see [1]), block matching estimates the displacements of 

these block to produce a sparse displacement filed, and the robust solver iteratively approximates the 

scattered data while rejecting outliers to produce an entire deformation field.  

2.1 Feature point selection 

The relevance of a displacement estimated with a block matching algorithm depends on the existence of 

highly discriminative structures within a block. The block variance is used to measure its relevance and 

only select a fraction of all potential blocks based on a predefined fraction. To avoid redundancy by the 

overlapping of blocks (i.e., eliminate blocks which are too “close to each other), a parameter of prohibited 

connectivity is used. Three connectivity patterns are supported in the ITK implementation: 6-connectivity, 

18-connectivity, and 26-connectivity (see Section 3.1).   

To address the aperture problem [6, 7], the structural tensor of the block is calculated. The structural 

tensor reflects the distribution of the edge detections within the block, which will be incorporated into the 

Finite Element solver to make the estimated node displacement to favor the reduction of the deviation 

along the direction orthogonal to the edge direction. To avoid finding false correspondence (e.g., the 

tumor resection cavity), the block selection utilizes a mask image when necessary to exclude certain 

portions of the image while searching for the feature points (e.g., in the case of tumor resection).  

2.2 Block matching 

Block Matching is a well-known technique widely used in motion coding, image processing and 

compression [8, 9, 10]. Block Matching is based on the assumption that a complex non-rigid 

transformation can be approximated by point-wise translations of small image regions. Considering a 

block B(Ok) in a floating image centered in Ok and a predefined search window Wk in a reference image, 

the Block Matching algorithm consists in finding the position Om in Wk that maximizes a similarity 

measure M, which can be: mean square difference of intensity (MSD), mutual information (MI), and 

normalized cross correlation (NCC).  

 ))](),(([maxarg ik
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We use NCC as the similarity measurement; however future implementation can include MSD or other 

similarity measures pertinent to the application of the PBNRR filter. Figure 1 illustrates the procedures of 

block matching. Note that the block can be specified in both floating and reference images depending on 

the application. For each block detected by feature point selection, we use Block Matching to calculate 

the displacement of the block. The location of the block that maximizes the similarity is obtained by 

exhaustive search. By assembling the individual displacement vectors one can create a sparse 
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displacement field D, which will be used by the solver to estimate the unknown displacement vector 

associated with the mesh nodes. 

 

Figure 1. Block matching. For a small block in the floating image, find its corresponding block in a 

predefined search window in the reference or fixed image, then the displacement associated with the 

block can be calculated. The block can be specified in both floating and reference images depending on 

the application. 

2.3 Finite element solver 

Finite element solver is used to find the unknown displacement vector associated with the mesh nodes. 

The energy function is defined as,        

 )()( DHUSDHUKUUW TT   (1) 

The first regularization term describes the stain energy of a linear elastic biomechanical model, and the 

second term describes the error between the simulated displacements and the real displacements, i.e., D. 

 controls the balance of these two terms. U is the unknown node displacement vector with a size of n3 . 

n is the number of nodes of the mesh. K is the mesh stiffness matrix of size nn 33  . The building of K  

has been well documented in [4].  H is the linear interpolation matrix of size np 33  , where p  is the 

number of the registration points. S is the matching stiffness matrix of size pp 33  . S is an extension to 

the classical diagonal stiffness matrix, taking into account the matching confidence and the local structure 

distribution [1], whose 3 × 3 sub-matrix kS corresponding to registration point k  is defined as:                                                                        

 
kkk Tc

p

n
S   (2) 

where kT is tensor structure of the block surrounding the registration point, which allows us to only 

consider the matching direction collinear to the orientation of the intensity gradient in the block.  

The equation (1) can be solved by                                                       
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leading to the linear system                                                 

 SDHUSHHK TT  ][  (4) 

The above approximation formulation performs well in the presence of outliers but suffers from a 

systematic error. Alternatively, solving the exact interpolation problem based on noisy data is not 

adequate. The robust solver can take advantage of both approximation and interpolation to iteratively 

estimate the deformation from the approximation to the interpolation while rejecting outliers. The gradual 

convergence to the interpolation solution is achieved through the use of an external force F added to the 

approximation formulation of Equation (4), which balances the internal mesh stress:                                                    

 FSDHUSHHK TT  ][  (5) 

This force F is computed at each iteration i  to balance the mesh internal force
iKU , which leads to 

the iterative scheme:                                                  
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3 ITK Implementation 

The ITK implementation of the physics-based non-rigid registration method contains three filters: 

MaskFeaturePointSelection, BlockMatchingImageFilter, and FEMScatteredDataPointSetToImageFilter, which 

correspond to the above mentioned three components: feature point selection, block matching and robust 

finite element solver, respectively. These three filters can be used independently or connected together to 

perform non-rigid registration. Block Matching is parallelized using ITK v4 multithreading/GPU 

framework, for both multi-core and GPU, to accelerate the computation and gain some speedup. The 

robust solver is enhanced to allow the accommodation of different geometry elements in dealing with 

linear elastic problems by simply providing appropriate mesh. To implement non-rigid registration and 

achieve ease-of-use the three filters are combined into a single registration filter, 
PhysicsBasedNonRigidRegistrationMethod.  

3.1 Feature point selection 

MaskFeaturePointSelectionFilter (see Figure 2 for chart flow and Figure 3 for inheritance diagram) generates 

a list of feature points selected from a masked input image. It takes an Image and a mask Image as inputs 

and generates a PointSet of feature points as output. The feature points are physical centers of a small 

image blocks with higher variance. Optionally, a structure tensor is computed and stored as a pixel value 

for each feature point. The following optional parameters can be set: 

 NonConnectivity: defines connectivity pattern (VERTEX_CONNECTIVITY, 

EDGE_CONNECTIVITY or FACE_CONNECTIVITY) to a feature point. The default is 

VERTEX_CONNECTIVITY;  

 BlockRadius:  radius measured in voxels over which the variance is computed, its default value is 

1;   
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 SelectFraction – fraction of points to select out of total eligible points, default is 0.05. 

 

 

Figure 2. Flow chart of feature point selection 

After the filter is created and inputs are set using SetInput and SetMaskImage, the calculation is triggered 

by calling Update method. After the Update, the method GetOutput returns a PointSet that contains 

coordinates of feature points as Point values and (optionally) structure tensors as Pixel values.  

 

Figure 3. Inheritance diagram of feature point selection 
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The following is the normal usage of the filter: 

const unsigned int ImageDimension = 3;  

typedef unsigned char                                            InputPixelType; 

typedef itk::Matrix< double, 3, 3 >                              PointSetPixelType; 

typedef itk::Image< InputPixelType,  ImageDimension >            InputImageType; 

typedef itk::PointSet< PointSetPixelType, 3 >                    PointSetType; 

typedef itk::MaskFeaturePointSelectionFilter< InputImageType, 

InputImageType, PointSetType >                                   FilterType; 

typedef FilterType::PointType                                    PointType; 

 

FilterType::Pointer filter = FilterType::New(); 

filter->SetInput( imageReader->GetOutput() ); 

filete->SetMaskImage( maskReader->GetOutput() ); 

filter->SetSelectFraction( 0.01 ); 

itk::Size< ImageDimension > BlockRadious; 

BlockRadious.Fill(1); 

filter->SetBlockRadius(BlockRadious); 

filter->ComputeStructureTensorsOn(); 

 

try 

  { 

  filter->Update(); 

  } 

catch ( itk::ExceptionObject &err ) 

  { 

  std::cerr << err << std::endl; 

  return EXIT_FAILURE; 

  } 

 

PointSetType::Pointer output = filter->GetOutput(); 

3.2 Block matching 

BlockMatchingImageFilter (see Figure 4 and Figure 5 (left) for chart flow and Figure 5 (right) for inheritance 

diagram) computes displacements of given points from one image to another. It takes fixed and moving 

Images as well as a PointSet of feature points as inputs. Pixel values of input point set, i.e., the structural 

tensors are not used in this filter. The feature points are expected to lie at least SearchRadius + 

BlockRadius voxels from the image boundary. This is usually achieved by using an appropriate mask 

during selection of feature points. The default output (0) is a PointSet with displacement vector stored as 

the pixel value. Additional output (1) is a PointSet containing similarities, i.e., the NCC value. The 

number of points in the output PointSet is equal to the number of points in the input PointSet.  

The following optional parameters can be set:  

 BlockRadius: radius over which variance is computed, default is 1. 

 SearchRadius: radius of the search window, default is 3. 
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Figure 4. Flow chart of block matching. 

After the filter is created and inputs are set using SetFixedImage, SetMovingImage and SetFeaturePoints, 

the calculation is triggered by calling Update method. After update the method GetDisplacements returns 

a PointSet that contains coordinates of feature points as Point values and displacement vectors as Pixel 

values, GetSimilarities returns a PointSet that contains coordinates of feature points as Point values and 

similarity values as Pixel values. 
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Figure 5. Left: flow chart of computing displacement component in Block Matching. Right: Inheritance 

diagram of Block Matching. 

The following is the normal usage of the filter: 

typedef unsigned  char                                      InputPixelType; 

typedef itk::Image< InputPixelType,  3 >                    InputImageType; 

typedef itk::BlockMatchingImageFilter< InputImageType >     BMFilterType; 

 

BMFilterType::Pointer BMFilter = BMFilterType::New(); 

BMFilter->SetFixedImage( fixedImageReader->GetOutput() ); 

BMFilter->SetMovingImage( movingImageReader->GetOutput() );  

BMFilter->SetFeaturePoints( featureSelectionFilter->GetOutput() ); 

BMFilter->SetBlockRadius( blockRadius ); 

BMFilter->SetSearchRadius( searchRadius ); 

 

try 

  { 

  BMFilter->Update(); 

  } 

catch ( itk::ExceptionObject &err ) 

  { 

  std::cerr << err << std::endl;  
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  return EXIT_FAILURE; 

  }                                    

                                           

BMFilterType::DisplacementsType::Pointer displacements = BMFilter->GetDisplacements(); 

BMFilterType::SimilaritiesType::Pointer similarities = BMFilter->GetSimilarities(); 

After Feature point selection and Block Matching, three point sets are available: feature point set with the 

structure tensor as the pixel value, block matching point set with the displacement as the pixel value, and 

the confidence point set with the similarity value as the pixel value. These three point sets will be used by 

the FEMScatteredDataPointSetToImageFilter to perform approximation and compute the displacement field 

everywhere.  

3.3 Scattered data approximation  

The class itk::fem::RobustSolver implements the solver presented in [1]. 

FEMScatteredDataPointSetToImageFilter is a wrapper of RobustSolver. FEMScatteredDataPointSetToImageFilter 

is used to facilitate the use of RobustSolver by converting natural inputs such as mesh and feature points 

into specific FEMObject, providing built-in 2D and 3D rectilinear meshes, invoking RobustSolver to resolve 

the solution to produce a deformed FEMObject, and converting the deformed FEMObject into a deformation 

field.  RobustSolver takes a FEMObject as input, then iteratively approximates the data (displacement) 

associated with the feature points while rejecting outliers, and finally outputs a deformed FEMObject. 

3.3.1 FEMScatteredDataPointSetToImageFilter 

Figure 6 shows the flow chart and the inheritance diagram of this filter, respectively. 

FEMScatteredDataPointSetToImageFilter provides a built-in 2D quadrilateral and 3D hexahedron mesh if the 

input mesh is not available. Otherwise, just simply passes the input mesh to the converter. The natural 

inputs of the RobustSolver are mesh and point sets including mandatory feature points and optional 

confidence and tensor. itk FEM library requires a FEMObject as input. 

FEMScatteredDataPointSetToImageFilter converts the mesh and point sets into a FEMObject, which is 

undertaken by a member function: 

InitializeFEMObject(FEMObjectType * femObject) 

{ 

  this->InitializeMaterials(femObject); 

  this->InitializeNodes(femObject); 

  this->InitializeElements(femObject); 

  this->InitializeLoads(femObject); 

 

  // produce DOF 

  femObject->FinalizeMesh(); 

} 

The material properties of the biomechanical model such as Young modulus and Poisson’s ratio are 

specified in InitializeMaterials.  InitializeNodes and InitializeElements are used to store the nodes and the 

elements of the mesh into containers of the FEMObject. The displacement associated with the feature 

points are stored as loads in the FEMObject by InitializeLoads, in which the correspondence and tensor will 

be stored, too, if they are provided by users. After initialization, FinalizeMesh should be invoked to 
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produce Degree of Freedoms (DoF) for the building of stiffness matrix K. After converting to FEMObject, 

RobustSolver is invoked to construct linear system of equations described by equation (6), resolve U of the 

linear system, and output a deformed FEMObject, which is used by DeformationFieldGenerator to produce 

a deformation field. The following codes show its typical usage. 

 
const unsigned int ParametricDimension = 2; 

const unsigned int DataDimension = 2;  

typedef      short                                             PixelType; 

typedef      double                                            RealType; 

typedef itk::Image<PixelType, ParametricDimension>             ImageType; 

typedef itk::Vector<RealType, DataDimension>                   VectorType; 

typedef itk::Matrix<RealType, DataDimension, DataDimension>    MatrixType; 

typedef itk::Image<VectorType, ParametricDimension>            DeformationFieldType; 

typedef itk::PointSet <VectorType, ParametricDimension>        PointSetType;  

typedef itk::PointSet <MatrixType, ParametricDimension>        TensorPointSetType;  

typedef itk::PointSet <RealType, ParametricDimension>          ConfidencePointSetType;   

typedef itk::Mesh< VectorType, ParametricDimension>            MeshType;  

typedef itk::FEMScatteredDataPointSetToImageFilter 

<PointSetType, MeshType, DeformationFieldType, 

ConfidencePointSetType, TensorPointSetType>                    FilterType;  

 

FilterType::Pointer filter = FilterType::New(); 

PointSetType::Pointer featurePoints = PointSetType::New(); // feature points 

associated with displacement 

 

MeshType::Pointer mesh = MeshType::New(); // 2D triangle/rectilinear or 3D 

tetrahedral/hexahedral mesh 

 

ConfidencePointSetType::Pointer confidence = ConfidencePointSetType::New(); 

TensorPointSetType::Pointer tensor = TensorPointSetType::New();  

 

filter->SetInput(featurePoints); 

filter->SetConfidencePointSet(confidence); //optional 

filter->SetTensorPointSet(tensor); //optional 

filter->SetMesh(mesh); // optional 

 

filter->Updata();  

 

DeformationFieldType::Pointer field = filter->GetOutput(); 
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Figure 6. The flow chart (left) and the inheritance diagram (right) of 

FEMScatteredDataPointSetToImageFilter. FEMScatteredDataPointSetToImageFilter takes mesh, feature points, 

confidence and structural tensor as inputs. Converter first converts these inputs into a FEMObject, and then 

invokes RobustSolver to produce a deformed FEMObject. This deformed Object is converted into the 

deformation filed by DeformationFildGenerator.  

3.3.2 RobustSolver 

Given a 2- or 3-D scattered and noisy point set, in which each point is associated with a 2-D or 3-D 

displacement, RobustSolver is able to approximate the data while rejecting outliers, advance toward 

interpolation, and finally output a deformed FEMObject.  The flow chart and inheritance diagram are 

described in Figure 7 and Figure 8, respectively. 

RobustSolver also takes into account two optional point sets: the confidence and structural tensor. 

Confidence point set describes our confidence for each feature point using a value between 0 and 1 (0: not 

trustful, 1: completely trustful), which will make the solver behavior like a weighted Least Square. Tensor 

point set describes the distribution of the edge direction within a small block surrounding the feature 

point, which is used to avoid the aperture problem [6, 7]. The following codes show the typical usage of 

the RobustSolver. 

 
typedef itk::fem::FEMObject<2>     FEMObjectType; 

 

FEMObjectType::Pointer underformedFEMObject = FEMObjectType::New(); 

 

// initialize underformedFEMObject  here or use FEMScatteredDataPointSetToImageFilter, 

which will undertake the initialization. 

 

typedef itk::fem::RobustSolver<2>    FEMSolverType; 

 

FEMSolverType::Pointer solver = FEMSolverType::New(); 
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solver->SetInput(underformedFEMObject); 

 

solver->Update( ); 

 

FEMObjectType::Pointer deformedFEMObject = solver->GetOutput( ); 

 

 

 

Figure 7. The flow chart of RobustSolver. RobustSolver includes two parts: outlier rejection and 

approximation to interpolation. Outlier rejection proceeds as a LTS regression [5]: resolve U first, then 

detect outliers, remove outliers and resolve U again. The F is used to reset the strain energy to enable the 

mesh to be deformed further. The difference between the two parts is there is no outlier rejection in the 

approximation to interpolation part. 
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Figure 8. The inheritance diagram of RobustSolver. RobustSolver supports both VNL solver and Itpack 

solver to resolve the linear system of equations. Compared to VNL solver, Itpacks runs faster, which is 

the default LS solver in RobustSolver.   

3.4 Main registration filter 

PhysicsBasedNonRigidRegistrationMethod is the filter, which connects the MaskFeaturePointSelection, 

BlockMatchingImageFilter, and FEMScatteredDataPointSetToImageFilter into one pipeline to perform non-rigid 

registration as shown in the following codes: 

 
template <class TFixedImage, class TMovingImage, class TMaskImage, class TMesh, class 

TDeformationField> 

void 

PhysicsBasedNonRigidRegistrationMethod<TFixedImage, TMovingImage, TMaskImage, TMesh, 

TDeformationField> 

::GenerateData() 

{ 

  // feature selection 

  this->m_FeatureSelectionFilter->SetInput( this->GetMovingImage() ); 

  this->m_FeatureSelectionFilter->SetMaskImage( this->GetMaskImage() ); 

  this->m_FeatureSelectionFilter->SetSelectFraction( this->m_SelectFraction ); 

  this->m_FeatureSelectionFilter->SetNonConnectivity( this->m_NonConnectivity ); 

  this->m_FeatureSelectionFilter->SetBlockRadius( this->m_BlockRadius ); 

 

  // block matching 

  this->m_BlockMatchingFilter->SetFixedImage( this->GetFixedImage() ); 

  this->m_BlockMatchingFilter->SetMovingImage( this->GetMovingImage() ); 

  this->m_BlockMatchingFilter->SetBlockRadius( this->m_BlockRadius ); 

  this->m_BlockMatchingFilter->SetSearchRadius( this->m_SearchRadius ); 

 

  // assembly and solver 

  typename BlockMatchingFilterType::DisplacementsType * displacements =  

  this->m_BlockMatchingFilter->GetDisplacements(); 

 

  this->m_FEMFilter->SetInput( displacements ); 

  this->m_FEMFilter->SetMesh( const_cast< MeshType * >( this->GetMesh() ) ); 

 

  const FixedImageType * fixedImage = this->GetFixedImage(); 
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  this->m_FEMFilter->SetSpacing( fixedImage->GetSpacing() ); 

  this->m_FEMFilter->SetOrigin( fixedImage->GetOrigin() ); 

  this->m_FEMFilter->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() ); 

 

  typename FEMFilterType::FEMSolverType * femSolver =  

  this->m_FEMFilter->GetFEMSolver(); 

 

  femSolver->SetApproximationSteps( this->m_ApproximationSteps ); 

  femSolver->SetOutlierRejectionSteps( this->m_OutlierRejectionSteps ); 

 

  this->m_FEMFilter->Update(); 

} 

The output of the PhysicsBasedNonRigidRegistrationMethod is a deformation filed. 

The following codes shows how to use the PhysicsBasedNonRigidRegistrationMethod: 

Command : ./PBNRR   FixedImage  MovingImage  MaskImage  Mesh  WarpedImage     

Test Case Code: 
int itkPhysicsBasedNonRigidRegistrationMethodTest(int argc, char *argv[] ) 

{ 

  if ( argc < 6) 

    { 

    std::cerr << "Five arguments are required :"<< std::endl; 

    std::cerr <<" FixedImage, MovingImage, MaskImage, Mesh, WarpedImage" << std::endl; 

    return EXIT_FAILURE; 

} 

 

  enum { FIXED_IMG = 1, MOVING_IMG, MASK_IMG, MESH, WARPED_IMG ,CANNY_VALID }; 

 

  const unsigned int ImageDimension = 3; 

  typedef float                                         InputPixelType;            

  typedef itk::Image< InputPixelType, ImageDimension >  InputImageType; 

  typedef itk::Mesh< float, ImageDimension >            MeshType; 

  

  // read fixed image 

  typedef itk::ImageFileReader< InputImageType >        ImageReaderType; 

 

  ImageReaderType::Pointer readerFixed = ImageReaderType::New(); 

 

  readerFixed->SetFileName( argv[FIXED_IMG] ); 

 

  // read moving image 

  ImageReaderType::Pointer readerMoving = ImageReaderType::New(); 

  readerMoving->SetFileName( argv[MOVING_IMG] ); 

 

  // read mask image 

  ImageReaderType::Pointer readerMask = ImageReaderType::New(); 

  readerMask->SetFileName( argv[MASK_IMG] ); 

 

  // read mesh 

  typedef itk::VTKTetrahedralMeshReader< MeshType >   MeshReaderType; 

  MeshReaderType::Pointer readerMesh = MeshReaderType::New(); 

  readerMesh->SetFileName( argv[MESH] ); 

 

  // update the readers 
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  try 

    { 

    readerFixed->Update(); 

    readerMoving->Update(); 

    readerMask->Update(); 

    readerMesh->Update(); 

    } 

  catch( itk::ExceptionObject & e ) 

    { 

    std::cerr << "Error while reading inputs: " << std::endl; 

    std::cerr << e << std::endl; 

    return EXIT_FAILURE; 

} 

 

  // Create the NRR filter and set the input 

  PBNRRFilterType::Pointer filter = PBNRRFilterType::New(); 

 

  filter->SetFixedImage( readerFixed->GetOutput() ); 

  filter->SetMovingImage( readerMoving->GetOutput() ); 

  filter->SetMaskImage( readerMask->GetOutput() ); 

  filter->SetMesh( readerMesh->GetOutput() ); 

 

  itk::Size< ImageDimension > BlockRadious; 

  BlockRadious.Fill(1); 

  filter->SetBlockRadius(BlockRadious); 

 

  itk::Size< ImageDimension > SearchRadious; 

  SearchRadious.Fill(5); 

  filter->SetSearchRadius(SearchRadious); 

  filter->SetApproximationSteps(10); 

  filter->SetOutlierRejectionSteps(10); 

  filter->SetSelectFraction( 0.05 ); 

  std::cout << "Filter: " << filter << std::endl; 

 

  // Update the PBNRR filter 

  try 

    { 

    filter->Update(); 

    } 

  catch( itk::ExceptionObject & e ) 

    { 

    std::cerr << "Error during filter->Update(): " << e << std::endl; 

    return EXIT_FAILURE; 

} 

 

  // Create - Write ITK deformed image 

  InputImageType::Pointer deformedImage; 

  filter->CreateDeformedImage(deformedImage); 

   

  std::cout << "Save Deformed Image at  : " << argv[WARPED_IMG] << std::endl; 

  typedef itk::ImageFileWriter<InputImageType> WriterType; 

  typename WriterType::Pointer deformedImageWriter = WriterType::New(); 

  deformedImageWriter->SetFileName(argv[WARPED_IMG]); 

  deformedImageWriter->SetInput(deformedImage); 

  deformedImageWriter->Update();   

 

  return EXIT_SUCCESS; 

} 
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4 Experiments and Results 

We conducted experiments on the registration between preoperative MRI and the intra-operative MRI 

(iMRI). The five datasets come from public cases from SPL of Harvard medical school [12].  Table I lists 

the patient information including the gender, tumor location, and histopathology. 

Table 1. Patient information of five cases from SPL of Harvard medical school. 

Case# Gender Tumor location Histopathology 

1 F R occipital Anaplastic Oligodendroglioma WHO III/IV 

2 F L posterior temporal Glioblastoma WHO IV 

3  R frontal Oligodendroglioma WHO II/IV 

4  R occipital  

5 F R frontal Oligoastrocytoma WHO II/IV 

The MRI of the 5 public cases were acquired with a protocol: whole brain sagittal 3D-SPGR (slice 

thickness 1.3 mm, TE/TR=6/35 ms, FA=75
o
, FOV=24 cm, matrix=256 x 256) [11]. 

In Table 2 we show the qualitative results of the PBNRR filter for the 5 cases which run in a workstation 

equipped with an Intel® Core™ i7 CPU 260 @ 2.80 GHz with 8 GiB of RAM. 

As a measure of the registration accuracy we use the one directional Hausdorff Distance (HD) as it is 

implemented in the vtkHausdorffDistancePointSetFilter. The HD(1→2) before PBNRR  corresponds to 

the error between canny points in pre-operative MRI and intra-operative MRI while the HD(1→2) after 

PBNRR corresponds to the error between canny points in warped pre-operative MRI and intra-operative 

MRI.  The running time includes the time for the PBNRR filter and the time for creating and writing the 

warped pre-operative MRI, not including the time for generating the canny points and the calculation of 

the HD. 

Table 2. The quantitative results for the 5 cases  are obtained by running PBNRR filter  using 8 threads . 

The parameters for all cases are: Block radius : [1,1,1] , Window radius : [5,5,5], Selection fraction : 0.05, 

Rejection fraction : 0.25, Num of outlier rejection steps : 10 , Num of approximation steps : 10  

Case 
HD (1→2) 

before PBNRR  
(mm) 

HD (1→2) after 

PBNRR  (mm) 

 

HD (1→2) 

improvement 

Num 

Registration 
Points 

Num 

rejected 
Outliers 

Num 

nodes 

Num 

elements 

Running 

time (sec) 

1 25.980 20.099 0.226 69244 17310 8109 41646 57.64 

2 9.110 4.690 0.485 76821 19200 8843 45719 65.88 

3 9.433 5.385 0.429 68745 17180 7984 41081 54.26 

4 9.695 7.000 0.278 84445 21110 9512 49106 67.94 

5 6.708 4.123 0.385 68225 17050 7935 40789 54.92 

In table 3 we show the running time for each component of the PBNRR filter for the case 4. The 

experiment has run for different number of threads (1, 12, 24 and GPU Quadro 6000 with 448 cores).  



  18    

Latest version available at the Insight Journal link http://hdl.handle.net/10380/3382 

Distributed under Creative Commons Attribution License 

Table 3: Running time (sec) for PBNRR filter for case 4. The parameters are:  Block radius : [1,1,1], 

Window radious : [5,5,5], Selection fraction : 0.05, Rejection fraction : 0.25, Num of outlier rejection 

steps : 10 , Num of approximation steps : 10 , Young modulus = 694 Pa, Poisson’s ratio = 0.45. 

Component 

Num of Threads 

1 12 24 
GPU 

(Quadro 6000) 

Feature Selection 5.32 5.34 5.32 5.32 

Block Matching 20.42 2.63 1.71 0.38 

Solver 

Initialize FEM Object 0.39 0.43 0.44 0.44 

Initialize Matrices 1.54 1.54 1.54 1.54 

System Solution 13.00 13.15 13.08 13.09 

Copy Input to Output 15.78 15.82 15.47 15.47 

Produce Deformation Field 2.12 2.29 2.27 2.26 

Total Time for Solver 32.83 33.23 32.80 32.80 

Total Time for ITK v4 PBNRR filter 58.57 41.20 39.83 38.50 

Additional operation to Create and Write Deformed Image 11.01 11.39 11.36 11.37 

Total time for PBNRR and  Deforming Pre-op MRI  69.58 52.59 51.19 49.87 

In Figure 9 we present the quantitative results of the PBNRR filter for  the same 5 cases we used throught 

this evaluation.  To reproduce the results, users need to checkout the master branch and the patch with 

topic “A2D2PBNRR” if they use the version less than ITK4.3. 

5 Conclusion 

We present an ITK implementation of a physics-based non-rigid registration method. The three filters: 

MaskFeaturePointSelection, BlockMatchingImageFilter, and FEMScatteredDataPointSetToImageFilter can be used 

separately or combined together to do registration. MaskFeaturePointSelection identifies small blocks with 

rich structure information. BlockMatchingImageFilter is used to find the displacement associated with these 

blocks in order to produce a sparse deformation field, which is used by 

FEMScatteredDataPointSetToImageFilter to interpolate the entire deformation field.  For each block 

MaskFeaturePointSelection stores the structure tensor, and BlockMatchingImageFilter stores the confidence, 

i.e., the cross-correlation value. Both structure tensor and confidence are incorporated into the 

FEMScatteredDataPointSetToImageFilter to deal with aperture problem and weight the least square formula. 

To reduce the computational time of block matching, it is parallelized on multi-core and GPU, and the 

execution time is reduced from about 70 secs to 50 secs i.e., only 30% improvement since there are many 

other sequential parts in the PBNRR filter. The experiments on five brain MRI data demonstrate the 

effectiveness of the non-rigid registration method.  
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      pre-operative MRI                 intra-operative MRI           warped pre-operative MRI 

Figure 9. The Qualitative results for the 5 cases of the PBNRR filter. Each row corresponds to a different 

case, and each column from left to right: the pre-operative MRI , the intra-operative MRI and the warped 

pre-operative MRI. 
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6. Future work 

In the future we plan to provide a web-service for image-to-mesh conversion to generate over the 

WEB the mesh of the images. This service can maintain new functionality as we 

better understand the needs of the ITK community. However, for the near future we can help as 

many ITK users as we can with the finite element mesh generation of the images that might want 

to use in conjunction of this filter, since we strongly suggest users to provide an anatomically 

adapted mesh as input for the physics-based non-rigid registration although a default rectilinear 

mesh is provided inside. 

7. Acknowledgements 

This work is funded mainly by the ARRA funds for the ITK-v4 implementation with grant number: NLM 

A2D2 201000586P. In addition, this work is supported in part by NSF grants: CCF-1139864, CCF-

1136538, and CSI-1136536 and by the John Simon Guggenheim Foundation and the Richard T. Cheng 

Endowment. We would like to thank Luis Ibanez, Matt McCormick, and Arnaud Gelas for their help on 

ITK coding style. Also, we would like to thank the image-to-mesh conversion team at CRTC, especially 

Panos Foteinos for providing the Finite Element Meshes for the evaluation of the software and Dr. 

Michele Audette at ODU for bringing this opportunity to our attention while he was at Kitware. The staff 

of W&M at Grants Office have been extremely helpful with the transition of this grant from W&M to 

ODU. At last but not least Dr. Terry Yoo and his staff at NLM, for his constant support and 

understanding to accommodate us with all shorts of issues created due to our transition to ODU.  

 

References 

[1] O. Clatz, H. Delingette, I.-F. Talos, A. Golby, R. Kikinis, F. Jolesz, N. Ayache, and S. Warfield, "Robust non-

rigid registration to capture brain shift from intra-operative MRI", IEEE Trans. Med. Imag., 24(11);1417-27, 2005. 

[2] Nikos Chrisochoides, Andriy Fedorov, Andriy Kot, Neculai Archip, Peter Black, Olivier Clatz, Alexandra 

Golby, Ron Kikinis and Simon K. Warfield, “Toward Real-Time, Image Guided Neurosurgery Using Distributed 

and Grid Computing”,  IEEE/ACM International Conference for High Performance Computing, Networking, 

Storage and Analysis (Supercomputing), 2006. 

[3] Yixun Liu, Andriy Fedorov, Ron Kikinis and Nikos Chrisochoides, “Real-time Non-rigid Registration of 

Medical Images on a Cooperative Parallel Architecture”, IEEE International Conference on Bioinformatics & 

Biomedicine, pages 401 -- 404, November, 2009. 

[4] K. Bathe, “Finite Element Procedure”, Prentice-Hall, 1996. 

[5] P. J. Rousseeuw  and A. M. Leroy, “Robust regression and outlier detection”, John Wiley & Sons, Inc., New 

York, NY, USA, 1987. 

[6] S. Shimojo, G. H. Silverman, and K. Nakayama, “Occlusion and the solution to the aperture problem for 

motion”, Vision Research, 29, 619-626, 1989 

https://plus.google.com/115887914968385210015
http://www.cs.wm.edu/~nikos
http://www.cs.wm.edu/~fedorov/
http://www.cs.wm.edu/~kot
http://www.boston-neurosurg.org/faculty/black.html
http://www.clatz.com/
http://golbylab.bwh.harvard.edu/people_alex.html
http://golbylab.bwh.harvard.edu/people_alex.html
http://www.spl.harvard.edu/pages/People/kikinis
http://www.spl.harvard.edu/archive/spl-pre2007/pag
http://www.cs.wm.edu/~enjoywm/
http://www.cs.wm.edu/~fedorov/
http://www.spl.harvard.edu/pages/People/kikinis
http://www.cs.wm.edu/~nikos
http://crtc.wm.edu/html_output/details.php?&title=Real-time%20Non-rigid%20Registration%20of%20Medical%20Images%20on%20a%20Cooperative%20Parallel%20Architecture&paper_type=1&from=year
http://crtc.wm.edu/html_output/details.php?&title=Real-time%20Non-rigid%20Registration%20of%20Medical%20Images%20on%20a%20Cooperative%20Parallel%20Architecture&paper_type=1&from=year
http://www.ittc.ku.edu/bioinformatics/BIBM09/home.php
http://www.ittc.ku.edu/bioinformatics/BIBM09/home.php


  21    

Latest version available at the Insight Journal link http://hdl.handle.net/10380/3382 

Distributed under Creative Commons Attribution License 

[7] T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature, vol. 317, pp. 314–

319, Oct. 1985. 

[8] M. Bierling, Displacement estimation by hierarchical block matching, Proc. SPIE Vis. Comm. and Image Proc. 

1001 (1988) 942951.  

[9] X. Yuan, X. Shen, Block matching algorithm based on particle swarm optimization for motion estimation, in: 

ICESS '08: Proceedings of the 2008 International Conference on Embedded Software and Systems, IEEE Computer 

Society, Washington, DC, USA, 2008, pp. 191-195. 

[10] M. Stefano, T. Federico, S. L. Di, P. Marco, Efficient and optimal block matching for motion estimation, in: 

ICIAP '07: Proceedings of the 14th International Conference on Image Analysis and Processing, IEEE Computer 

Society, Washington, DC, USA, 2007, pp. 705-710. 

[11] N. Archip, O. Clatz, A. Fedorov, A. Kot, S. Whalen, D. Kacher, N. Chrisochoides, F. Jolesz, A. Golby, P. 

Black, and S. K. Warfield, “Non-rigid alignment of preoperative MRI, fMRI, DT-MRI, with intraoperative MRI for 

enchanced visualization and navigation in image guided neurosurgery,” Neuroimage, vol. 35(2), pp. 609–624, 2007. 

[12] I.-F. Talos and N. Archip, “Volumetric non-rigid registration for MRI guided brain tumor surgery,” 08 2007. 

 

 

 

 


	Introduction
	PhysicsNRR
	ITKImplementation
	Experiments
	Conclusion
	Futurework
	Ack

