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Abstract. Traditional refinement algorithms insert a Steiner point from a few possible choices at
each step. Our algorithm, on the contrary, defines regions from where a Steiner point can be selected
and thus inserts a Steiner point among an infinite number of choices. Our algorithm significantly
extends existing generalized algorithms by increasing the number and the size of these regions. The
lower bound for newly created angles can be as high as 26.56° with grading guarantees. This corrects
a rather optimistic bound we had in a previous publication [12].
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1. Introduction. Delaunay refinement algorithms can be categorized into two
families of algorithms: truly Delaunay and constrained Delaunay refinement algo-
rithms. The former produce meshes which are truly Delaunay by repeatedly splitting
the constrained segments until they appear in the mesh. The latter produce meshes
which are as Delaunay as possible, i.e., they preserve most (but not all) of the nice
properties of truly Delaunay triangulations [9, 22]. The advantage of constrained De-
launay refinement algorithms is that they produce meshes with fewer elements and
guarantee better bounds on the minimum angles and grading. For these reasons, we
chose to develop a constrained Delaunay refinement algorithm.

Traditional Delaunay refinement algorithms [8, 9, 14, 17, 21, 23] improve the
quality of the mesh by inserting additional points into the mesh: the so-called Steiner
points. Specifically, they insert the circumcenter of a bad triangle and the midpoint
of an encroached segment.

There is no universal rule, however, for where the Steiner points should be in-
serted. In the literature, there are methods that insert points other than circumcenters
and midpoints. For example, in [25], a bad triangle is split with its offcenter instead
of its circumcenter producing a smaller mesh in practice. Similarly, in [11], a bad
triangle is split by inserting a point chosen among a total number of four candidate
points. Our goal is to develop an algorithm that allows for customizable point inser-
tion strategies. This flexibility could also help to remove slivers in three dimensions
deterministically, as opposed to randomized algorithms [10, 16]. In this paper, we
show that there is an infinite number of Steiner points that can be chosen to split
a triangle or a segment. The points that can be selected as Steiner points form se-
lection regions. When a bad triangle is considered for splitting, the selection region
is a two-dimensional region called selection disk. (Sometimes, we refer to selection
disks as selection circles). Similarly, when a segment is considered for splitting, the
selection region is a one-dimensional region called selection interval.
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Our group has already devised three generalized Delaunay refinement algorithms [5,
7, 12]. The algorithm in [5] (called Semi-Generalized Refinement algorithm) deploys
only selection disks, i.e., selection intervals are not used. Rather, each encroached
segment is traditionally split at its midpoint. The algorithm in [7] (called General-
ized Refinement algorithm) extends the Semi-Generalized Refinement algorithm by
introducing the selection intervals. When the encroached segment to be split, how-
ever, forms an acute input angle, the selection interval is not defined; the Generalized
Refinement algorithm traditionally splits such segments at their midpoint. In this
paper, we extend the Generalized Refinement algorithm by introducing the selection
interval of segments forming acute input angles.

The generalized Delaunay refinement method we introduced in [12] already offers
significant extensions to the selection regions. However, it contains an imprecision:
the achieved bound is not 30° as we claimed. In this paper, we correct that mistake
and we show that the algorithm produces graded meshes with a lower bound of 26.56°.

Some of the applications of selection regions are discussed in our previous work.
Specifically, our work in [4, 7] describes how the selection circles can be utilized
in order to decrease the size of the mesh. In addition, our work in [6] shows how
selection regions can incorporate many different point placement strategies performed
in parallel.

As proved theoretically in [24] and shown practically in [13], mesh quality strongly
affects the convergence speed and the solution accuracy of the finite element solver:
the larger the minimum angle of the mesh is, the lower the condition number of the
linear system becomes which yields a faster and a more robust solution.

Both the Semi-Generalized [5] and the Generalized Refinement algorithm [7] are
proved to terminate with a lower angle bound as high as 20.7°. In this paper, we
improve the quality of the mesh proving termination with a lower angle bound as
high as 26.56°.

Hudson [15] developed a theoretical framework for both two and three dimensions
which shows that one can split elements at points other than their circumcenters.
He, however, derives a rather weak angle bound in two dimensions: his algorithm
guarantees that the lower bound for the angles is 20.7° (we guarantee that the lower
bound for the angles is 26.56°). Furthermore, his framework suffers from a severe
restriction: the input cannot form acute angles. As it will become obvious in Section 3,
the input of our algorithm can have acute angles as small as 60°.

To our knowledge, among the truly Delaunay refinement algorithms guaranteeing
good grading, the algorithm presented by Miller, Pav, and Walkington [18] comes
with the highest lower angle bound (26.45°). As far as constrained Delaunay refine-
ment techniques are concerned, Chew [9] describes a constrained Delaunay refine-
ment algorithm with a 30° lower angle bound, but with no proof of good grading.
Shewchuk [23] shows that Chew’s algorithm [9] offers good grading for a worse angle
bound (i.e., 26.56° instead of 30°) and with input angles more than 60°. Rand [20]
shows that Chew’s algorithm generates well-graded meshes with an angle bound as
high as 28.60°, but without emphasis on small (smaller than 90°) input angles. In this
paper, we show that Chew’s algorithm produces well-graded elements with a 26.56°
angle bound and with input angles larger than 60°.

In summary, the contributions of this paper are the following:

e It extends the flexibility offered by the existing generalized algorithms [5, 7,
15]: our algorithm presented here increases the number and size of regions
from where Steiner points can be chosen, and



e It corrects an imprecision of our previous publication [12].

The rest of the paper is organized as follows. In Section 2, we shortly describe
the traditional Delaunay refinement algorithms. In Section 3, we define the selection
regions and give the pseudocode of our algorithm. In Section 4, we prove important
lemmas and theorems needed for the proof of termination and good grading. The proof
of good grading is presented in Section 5 and the proof of termination in Section 6.
Finally, Section 7 experimentally evaluates our algorithm, and Section 8 concludes
the paper.

2. Delaunay Refinement Background. The input domain € to be meshed
is usually described as a Planar Straight Line Graph (PSLG) [21, 23]. A PSLG X is
a set of input vertices and segments. The input segments are constrained, i.e., they
have to appear in the final mesh, possibly as a union of smaller subsegments. We
shall refer to an input segment as simply a segment. The input vertices should also
be preserved in the final mesh. For brevity, we call both the segments and the input
vertices features.

Let p;, p; be two vertices in the mesh. We denote the mesh edge that connects p;
with p; as e (p;, p;) regardless of whether it is an input segment or not. The Euclidean
distance between these points is denoted as ||p; — p;||.

We use the circumradius-to-shortest-edge ratio p of a triangle to measure its qual-
ity. If the circumradius-to-shortest-edge ratio of a triangle ¢ is equal to or larger than
a specified upper bound p, then ¢ is said to be a poor or skinny triangle. Mesh re-
finement algorithms split poor triangles, until the circumradius-to-shortest-edge ratio
of all the triangles in the mesh is less than p. This upper bound sets a lower bound
for the angles in the mesh, since the circumradius-to-shortest-edge ratio of a triangle
with shortest edge [, circumradius 7, and smallest angle A is p = 7 = 5= [19, 23].

Therefore, when the refinement terminates, it is guaranteed that all the angles in the
1

mesh are larger than arcsin %" For brevity, we denote this angle lower bound as 6:
0 = arcsin % Clearly, 6 can only be an acute angle.

A triangle ¢ is said to satisfy the constrained Delaunay property, if there is no
vertex that lies strictly inside ¢’s circumscribed circle (circumcircle) and is visible
from the interior of ¢ [9, 23]. Two vertices p;,p; are visible to each other, if the
line connecting p; with p; does not intersect (at exactly one point) the interior of any
constrained segment. See Figure 2.1(left) and Figure 2.1(middle). At any time during
the refinement process, all the triangles in the mesh have to satisfy the constrained
Delaunay property.

Cavity [14] of a point p is defined to be the set C (p) of triangles ¢; in the mesh,
such that the circumcircle of every ¢; in C (p) includes the point p, and p is visible from
the interior of ¢; (see Figure 2.1(right)). We denote OC (p) to be the set of boundary
edges of the cavity, i.e., the edges which are incident upon only one triangle in C (p).
For our analysis, we use the Bowyer-Watson (B-W) point insertion algorithm [3, 26],
which can be written shortly as in Algorithm 1. Note that this definition of a cavity
implies that if p is inserted into the mesh, then all the triangles in C (p) do not satisfy
the constrained Delaunay property and must be deleted. After the deletion of these
triangles, the cavity has to be re-triangulated, such that all the newly formed triangles
respect the constrained Delaunay property.

As mentioned above, refinement algorithms repeatedly split skinny triangles, un-
til the ratio of all the triangles in the mesh is less than the upper bound p. Tra-
ditionally, a skinny triangle ¢ is deleted by inserting its circumcenter p (using the
Bower-Watson point insertion algorithm). We will show, however, that there is a
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Fic. 2.1. (Left) Triangle t; satisfies the constrained Delaunay property: although p is inside the
circumcircle, it is not visible from the interior of t; because of the constrained segment s.(Middle)
Triangle t; does not respect the constrained Delaunay property: p lies inside the circumcircle and is
visible from the interior of t;. (Right) The cavity C (p) of p includes only the triangle t;. Although
p lies inside t;’s circumcircle, t; does not belong to C (p), since p is not visible from the interior of
t;. Notice that t; respects the constrained Delaunay property, but t; does not; therefore, t; must be
deleted.

Algorithm 1: The Bowyer-Watson point insertion procedure.

1 Algorithm: BowyerWatson(V, T, p)
Input : V is the set of vertices.
T is the set of triangles.
p is the Steiner point to be inserted.
Output: V and T after the insertion of p.
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whole two-dimensional space inside the circumcircle of ¢ where a Steiner point p can
be chosen from.

Even though the Steiner point p of a skinny triangle ¢; is always inserted inside ¢;’s
circumcircle, ¢; may not belong to C (p). This can happen when p is not visible from
the interior of ¢;; that is, when ¢; and p lie on opposite sides of a constrained segment.
See Figure 2.1(right) for an illustration: in such a case, the insertion of p fails to remove
the skinny triangle ¢; from the mesh. To deal with these circumstances and to prevent
the insertion of Steiner points outside the domain, Delaunay refinement algorithms
obey special encroachment rules [9, 23]. We define encroachment as follows:

DEFINITION 2.1. (Encroachment of a constrained segment) A segment s is said
to be encroached upon by a skinny triangle t, if p; is not visible from the interior of
t due to s, i.e., the line connecting p; and any point in the interior of t intersects
the interior of s. If more than one segment lies between t and p;, encroached is the
segment closest to t.

See Figure 2.2 for an illustration.

If a skinny triangle t encroaches upon a segment s, then its Steiner point is rejected
from the mesh. In addition, all the free vertices (i.e., vertices that neither are input
vertices nor lie on segments) which lie inside the diametral circle of s and are visible
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Fic. 2.2. A skinny triangle t and its Steiner point p; when (Left) t encroaches upon segment
s, and when (Middle) it does not. (Right) Does t encroach upon s or not? No matter where p; is,
this case illustrated in this subfigure cannot happen, since t did not satisfy the constrained Delaunay
property before the insertion of p;. Indeed, p. lies inside t’s circumcircle and is visible from the
interior of t, because the line connecting p,, with any point in the interior of t does not intersect the
interior of s but one of its endpoints.

from the interior of s are deleted. (The diametral circle of a segment is the circle with
diameter that segment.) Then, a new Steiner point is inserted on s. Traditionally,
the midpoint of s is inserted, but we will show that there is a whole one-dimensional
space inside s where a Steiner point can be chosen from.

The following definitions of the local feature size, insertion radius, and parent
play a central role in the analysis in [21, 23], and we use them for our analysis in the
generalized form, too.

DEFINITION 2.2 (Local feature size [21, 23]). The local feature size function
Ifs (p) for a given point p is equal to the radius of the smallest disk centered at p that
intersects two non-incident features of the PSLG.

Ifs (p) satisfies the Lipschitz condition:

LEMMA 2.3 (Lemma 1 in [21], Lemma 2 in [23]). Given any PSLG and any two
points p; and p;, the following inequality holds:

Ifs (p:) <1fs (pj) + llpi — psll (2.1)

DEFINITION 2.4 (Insertion radius). The insertion radius R (p) of point p is the
distance from p to its nearest visible vertex, immediately after p is inserted. If p is
an input vertex, then R (p) is the Euclidean distance between p and the nearest input
vertex visible from p.

REMARK 1. Assume that p; and py, are mutually visible vertices inserted into the
mesh, and that p; was inserted after p,, (or both p; and p,, are input vertices), then
R(p1) < ||pi — pml|- Indeed, if pm was the closest visible vertex from p; at the time
pi was inserted into the mesh (in the case of input vertices, assume that they were
inserted simultaneously), then R (p;) = ||pi — pm|| by the definition of the insertion
radius; otherwise, R (p;) < ||pi — pm|-

REMARK 2. As shown in [23], if p is an input vertex, then R (p) > lfs (p). Indeed,
the (closed) disk with center p and radius R (p) intersects two non-incident features:
the input vertexr p and p’s closest visible vertez.

Below, we define the parent of a Steiner point:
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Fia. 2.3. Different cases of parenthood as defined in Definition 2.5. t is a skinny triangle,
pi,p; are Steiner points, and s,s’ are (constrained) segments. Point p; is inserted after pj. (Left)
t does not encroach upon s, and therefore its Steiner point p; is not rejected. The parent p; of p; is
the most recently inserted vertex of t’s shortest edge. (Middle) t encroaches upon s and its Steiner
point p; is rejected. Instead, the Steiner point p; is inserted on s. Since the diametral circle of s is
empty of non-free vertices, the parent of p; is the most recently inserted vertex of t’s shortest edge.
(Right) t encroaches upon s, and therefore its Steiner point p; is rejected. Instead, the Steiner
point p; is inserted on s. Since the diametral circle of s contains a non-free vertez, lying on the
constrained segment s', the parent p; of p; is this non-free vertex.

Di Di

F1G. 2.4. The constrained segment § is shown with the dashed line. (Left) Rule-2 applies (i.e.,
pi is not rejected), as in Figure 2.3(left), but now § obstructs visibility between p; and p;. (Right)

Rule-8 applies (i.e., t encroaches upon s), as in Figure 2.3(middle), but now § obstructs visibility
between p; and p;.

DEFINITION 2.5 (Parent of a Steiner point). The parent p; of point p; is the
vertex defined by the following four rules:
Rule-1. If p; is either an input vertex or a rejected vertex, then it has no parent.
Rule-2. If p; is inserted inside the circumcircle of a poor quality triangle t, p; is the
most recently inserted vertex of the shortest edge of t. See Figure 2.3(left).
Rule-3. If p; is inserted on a segment s, encroached upon by a skinny triangle t, and
no non-free vertex visible from p; lies inside the diametral circle of s, then
Di is the most recently inserted vertex of the shortest edge of the encroaching
triangle. See Figure 2.3(middle).
Rule-4. If p; is inserted on a segment s, encroached upon by a skinny triangle t, and
at least one non-free vertex visible from p; lies inside the diametral circle of
s, then p; is the closest-to-p; such a non-free vertex. See Figure 2.3(right).



FiG. 2.5. The separator of an encroached (constrained) segment s. A skinny triangle t en-
croaches upon the constrained segment s (because t and its Steiner point p; lie on opposite sides of
s). The edge e (pmpr) ts the separator of s. Intuitively, the separator of s is the edge of t which
s would fall on, if we moved s towards t. The right figure illustrates the special case where the
encroached segment coincides with its separator.

LEMMA 2.6. The parent p; (if one exists) of a point p; is visible from p;.

Proof. Let p; be a vertex and p; be its parent. For the sake of contradiction,
assume that p; is not visible from p; due to a segment 3, i.e., the line connecting p;
and p; intersects the interior of 5. We will investigate what that means for each rule
of Definition 2.5.

Rule-1 does not apply, since we have assumed that p; does have a parent in this
lemma. This also implies that p; is neither an input nor a rejected vertex.

If Rule-2 applies, then consider Figure 2.4(left): the skinny triangle ¢ must en-
croach upon §. But that means that p; should have been rejected from the mesh: a
contradiction.

If Rule-3 applies, then consider Figure 2.4(right): the skinny triangle ¢ does not
encroach upon s but upon §: a contradiction.

Finally, if Rule-4 applies, p; and p; are visible to each other by definition: a
contradiction. O

Notice that a rejected point does not have a parent according to our definition
(Rule-1), while it does in the traditional approaches. This change is not necessary,
but it considerably simplifies the proofs in the next sections.

Also, observe that the parent of a Steiner point p; inserted on an encroached, con-
strained segment s might lie outside the diametral circle of s (see Figure 2.3(middle)
for an illustration). This is different from the traditional approaches where the parent
of p; is always inside or on the diametral circle of the encroached segment. This mod-
ification of the parent definition is crucial, since the diametral circle of an encroached
segment might not contain any traditional parent candidates at all in our generalized
algorithm. For our analysis, it is useful to know whether the parent of p; is strictly
inside the diametral circle of s or not; we, therefore, classify the parent as either an
external or a non-external parent according to the following definition:

DEFINITION 2.7 (External parent). Assume that p; is a Steiner point inserted
on an encroached segment s. If its parent p; lies on or outside the diametral circle of
s, then we say that p; is an external parent. Conversely, if p; lies strictly inside the
diametral circle of s, then we say that p; is a non-external parent.
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Fic. 3.1. The three kinds of selection regions. Big dots denote non-free vertices lying on
(constrained) segments, while small dots denote free vertices. Point ¢ is not a part of the mesh; it
is rather an auxiliary point that denotes the center of the selection regions. Point p; is a Steiner
point inserted into the mesh. Point p; is a Steiner point rejected from the mesh. (Left) Selection
circle (shaded) for the skinny triangle Apgpipm with the shortest edge e (pypm). Also illustrates case
(1) from Table 4.1. (Middle) Type-B selection interval (bold) for an encroached segment e (pupw).
Also tllustrates case (2) from Table 4.1. The constrained segment e (pupv) is encroached since the
skinny triangle Apypipm and its Steiner point p; lie on opposite sides. The Steiner point p; is
rejected, and the diametral circle is emptied of vertices which are free and visible from the interior
of e(pupov); in this example, only the free verter pm is deleted. Another Steiner point p; in the
Type-B selection interval of e (pupv) is inserted instead. The parent p; of the vertex p; may be
an external vertex (as depicted), i.e., a verter outside the diametral circle of e (pupv). (Right)
Type-C selection interval (bold) for an encroached segment e (pupv). Also illustrates case (4) from
Table 4.1. The Steiner point p; has been inserted in the Type-C selection interval. The parent p; is
a non-external vertex which lies on a segment incident to e (pupv). The input angle formed by the
segments e (pupwv), e (Pupw) is denoted with «.

For example, the point p; is an external parent in Figure 2.3(middle), but it is a
non-external parent in Figure 2.3(right).

REMARK 3. Ifp is inserted on a segment s encroached upon by a skinny triangle
t, and p is an external parent, then p is the most recently inserted vertex of t’s shortest
edge. Indeed, if Rule-3 did not apply, then Rule-4 would, i.e., p would lie inside the
diametral circle of s: a contradiction.

Next, we define the separator of an encroached segment:

DEFINITION 2.8 (Separator of an encroached, constrained segment). Let ¢ en-
croach upon a segment s. The separator of s is the unique edge of t that lies between
s and the interior of t.

Notice that the separator of an encroached segment always exists and is unique. See

Figure 2.5 for a couple of examples.
The density [23] of a vertex p, denoted as D (p), is defined as:

Ifs (p)
D (p) = . 2.2
") = F (22)
Refinement algorithms are proved to produce well-graded triangles by showing that
the density of all mesh vertices is less than a constant.

3. Generalized Delaunay Refinement Algorithm. In the following sections,
we will show that our Generalized Constrained Delaunay Refinement (GCDR) algo-
rithm guarantees termination and good grading for a circumradius-to-shortest-edge
ratio upper bound p arbitrarily close to é This value for p corresponds to an angle
lower bound of § = arcsin % = 26.565 degrees.
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DEFINITION 3.1 (Selection circle). For a skinny triangle with circumcenter c,
shortest edge length I, circumradius r, and circumradius-to-shortest-edge ratio p =
r/fl > p> é, the selection circle is the circle with center ¢ and radius r(1 — d2),
where 05 1s a constant parameter chosen such that

ﬁ <6 <1 (3.1)

2p
See Figure 3.1(left) for an illustration.

REMARK 4. If 05 = 1, then the selection circle shrinks to the circumcenter point.

DEFINITION 3.2 (Type-B selection interval). If s is an encroached segment with
center c, then the Type-B selection interval of s is the subsegment of s with center c
and length |s|(1 — 81), where 61 is a constant parameter chosen such that

V5

Y2 <5 <1 2
2552_61_ ’ (32)

and |s| is the length of s.  See Figure 3.1(middle) for an illustration.

REMARK 5. If 01 = 1, then the Type-B selection interval shrinks to the center
point.

REMARK 6. If p = \/Tg’ then both 62 and §1 can only be equal to 1; therefore,
both the selection circles of skinny triangles and the Type-B selection intervals of
encroached segments shrink to the respective center points.

REMARK 7. If §; = ﬁ, then 81 can only be equal to 1; therefore, the Type-B

2p
selection intervals of encroached segments shrink to the center points.
REMARK 8. If §; = ﬁ, then 0o can only be equal to 1; therefore, the selection

2p
circles shrink to the circumcenters.

DEFINITION 3.3 (Type-C selection interval). If s is a segment with center c,
then the Type-C selection interval of s is the subsegment of s with center ¢ and length
|s|(1 — p), where p is a constant parameter chosen such that

2cos apmin < p <1, (3.3)

and amin 18 the minimum input angle in the PSLG. Clearly, amin cannot be smaller
than 60°.  See Figure 3.1(right) for an illustration.

REMARK 9. If u = 1, then the Type-C selection interval shrinks to the center
point. In our previous Generalized algorithms [5, 7], the Type-C selection interval is
always the center point.

REMARK 10. If amin is equal to 60°, then pu can only be equal to 1, and therefore
the Type-C selection interval of the corresponding segment shrinks to its center point.

REMARK 11. If 61 = 6o = p = 1, then our GCDR algorithm is identical to
Chew’s second algorithm, as described in [23].

Algorithm 2 presents the GCDR algorithm. For brevity, let us classify the non-
rejected Steiner points, inserted by the GCDR algorithm, into three categories:
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Algorithm 2: The Generalized Constrained Delaunay Refinement algorithm.

1 Algorithm: GeneralizedDelaunayRefinement (X, p, d2, 01, 1, F4 O, FQ,
Fc O, M)
Input : X is the input PSLG.

p is the upper bound on circumradius-to-shortest-edge ratio, p > ‘/75

0 is the parameter which defines selection circles for skinny
triangles, \2/—/55 <y < 1.

01 is the parameter which defines Type-B selection intervals of
encroached segments, 2/3% <4 <1.

1 is the parameter which defines Type-C selection intervals of
encroached segments, 2 cos api, < p < 1, where oy is the
minimum input angle present in X.

Fr0, Fg(Q), and Fo () are user-defined functions which return
specific Steiner points within selection circles and selection
intervals, respectively.

M = (V,T) is an initial constrained Delaunay triangulation of X
where V' is the set of vertices and T is the set of triangles.

Output: A constrained Delaunay mesh M whose triangles have

circumradius-to-shortest-edge ratio less than p.

2 Let SkinnyTriangles be the set of triangles in 7" whose
circumradius-to-shortest-edge ratio is larger than or equal to p;
3 while SkinnyTriangles # 0 do

4 Pick ¢t € SkinnyTriangles;

5 p< Fa(M, s, t); /* p is of Type-A */

6 if t encroaches upon a segment s then /* p is rejected */

7 Delete the free vertices inside the diametral circle of s;

8 if there is a mon-free vertex which lies strictly inside the diametral
circle of s and is visible from the interior of s then

9 p Fc(M, u, s); /* p is of Type-C */

10 else

11 p < Fg(M, 61, 8); /* p is of Type-B */

12 end

13 end

14 BowyerWatson(V, T', p) ; /* insert p into the mesh */

15 Update SkinnyTriangles;

16 end

e If a point p; is inserted inside the selection circle of skinny triangle, then p;
is called a Type-A point.

e If a point p; is inserted on an encroached segment s, and there is no non-
free vertex strictly inside the diametral circle of s and visible from p;, then
p; is called a Type-B point. Type-B points are only inserted in the Type-B
selection interval of encroached segments.

e If a point p; is inserted on an encroached segment s, and there is at least
one non-free vertex strictly inside the diametral circle of s and visible from
pi, then p; is called a Type-C point. Type-C points are only inserted in the
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Type-C selection interval of encroached segments.

For example, the vertex p; in Figure 3.1(left), Figure 3.1(middle), and Fig-
ure 3.1(right) is a Type-A, Type-B, and a Type-C point respectively.

Notice that the parent of Type-B and Type-C points is not the same as in our
previous Generalized Refinement algorithm presented in [7]: the parent p of a Type-C
point p is now a non-free vertex strictly inside the diametral circle of an encroached
segment s, regardless of whether p lies on a segment incident to s or not. This change
is not necessary, but it further simplifies the proofs of the sections followed.

The analysis below assumes that all angles in the input PSLG are not less than
60°. (Input angles less than 60 degrees can be removed via postprocessing tech-
niques [9] or via concentric circular shell splitting [21, 23], but without guarantee of
good grading.)

4. Point Spacing Theorem. The main result of this section is Theorem 4.6
which establishes the relation between the insertion radius of a point and that of its
parent or the local feature size. In particular, in both cases, the insertion radius is
bounded from below and, therefore, the lengths of the edges created by the GCDR
algorithm are bounded from below. This result allows us to prove in the following
sections the termination of the algorithm and the good grading of the meshes it
produces.

First, we prove Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5 that establish important re-
lations used in the proof of Theorem 4.6 as well as in the proof of good grading in
Section 5. Lemmas 4.1, 4.2, and 4.3 bound the insertion radius of a Steiner point
from below in terms of the size of the two-dimensional and one-dimensional selection
region, respectively. Lemma 4.4 relates the length of the encroached segment with the
length of the circumradius of the encroaching triangle. Finally, Lemma 4.5 determines
which of the edges of a skinny triangle can be the shortest.

LEMMA 4.1. If a Steiner point p; is of Type-A, then
R (pi) = 0ar, (4.1)

where r is the circumradius of the corresponding skinny triangle.

Proof. Consider Figure 3.1(left). By the way we defined Type-A Steiner points
(see section 3), p; is actually inserted into the mesh; therefore, there is no segment
that lies between p; and the skinny triangle t = Apgpipm (i-e., t does not encroach
upon any segment). By the constrained Delaunay property, ¢’s circumcircle does not
contain vertices visible from ¢’s interior. Since p; and ¢ lie on the same side of any
constrained segment, there is no vertex inside the circumcircle which is visible from
pi. Therefore, the donut between the boundary of the circumcircle and the boundary
of the selection circle cannot contain points visible from p;. Thus, the distance from
p; to the closest mesh vertex visible from p; has to be greater than or equal to the
width of the donut. This implies that the insertion radius of p; has to be greater than
or equal to the width of the donut which is equal to dor. O

LEMMA 4.2. If a Steiner point p;, inserted on an encroached segment s, is of
Type-B, and p; is either a Type-A point or a non-free external parent, then
e there are no non-free vertices inside the diametral circle of s that are visible
from p;, and
e the following inequality holds:

R(pl) Z (51—. (42)
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b1 = Ppi .

DL = Pi
— Pk \ —— )t
p e P
“ D / /

Fic. 4.1. The shaded circle represents the selection circle of the skinny triangle t. Point c is the
center of the selection circles. (Left) Segment s does not intersect the selection circle, but t cannot
encroach upon s. (Middle) Segment s does not intersect the selection circle, t encroaches upon s,
but p; is not an external parent, since it lies strictly inside the diametral circle of s. (Right) If s

intersects the selection circle, then its length is minimized when it is tangent to the selection circle.
The radius of t’s circumcircle is denoted as .

Proof. For the first part, for the sake of contradiction, assume that the diametral
circle of s is not empty of non-free vertices visible from p;. Let p; be the closest-to-
pi, non-free vertex which is inside the diametral circle of s and visible from p;. By
Definition 2.5 (Rule-4), p; is the parent of p;. However, p; is neither a Type-A point
(since it is a non-free vertex) nor an external parent (since it lies inside the diametral
circle of s): a contradiction.

For the second part, recall that all the free vertices which are inside the diametral
circle of s = e (pyupy) (see Figure 3.1(middle)) and visible from the interior of s are
deleted. Also, from the first part above, there are no non-free vertices which lie inside
the diametral circle of s and are visible from p;. Therefore, one of the endpoints of s
—say the endpoint p, —is the vertex closest to p; among the vertices that are visible
from p;. This means that R(p;) = ||pi — pv||, and from the definition of the Type-B

selection interval, R (p;) > 51%. O

LEMMA 4.3. If p;, inserted on an encroached segment s, is of Type-C, then
o if p; is the closest vertex to p;, the following equality holds:

R (pi) = llpi — pill; (4.3)

or
e if one of the endpoints of s is closest to p;, the following inequality holds:
R(p) > ul2. (14)
-2

Proof. Cousider Figure 3.1(right). By the way we defined a Type-C point, there

is at least one non-free vertex strictly inside the diametral circle of s = e (pupy)
and visible from the interior of s (i.e., visible from p;). Therefore, by Definition 2.5
(Rule-4), p; is the closest-to-p;, non-free vertex visible from the interior of s. Recall,
however, that all the free vertices which are inside the diametral circle of s and visible
from the interior of s are deleted. Therefore, there are two scenarios: either p; or one
of the endpoints of s is the closest vertex to p;. In the first case, equation (4.3) holds
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Fi1G. 4.2. The skinny triangle t = Apgpipm where e (pmpr) is the separator of the encroached
segment. Since e (pmpyr) is tangent to the selection circle at the point p;, angle ¢ takes its minimum
value. Without loss of generality, t is an isosceles triangle with e (pmpy) being the base.

by definition of the insertion radius (Definition 2.4). In the second case, since p; is
inserted in the Type-C selection interval of s, p; is separated from the endpoints of s
by a distance at least u‘—é', and inequality (4.4) holds. O
LEMMA 4.4. Let p; be a Steiner point inserted on a segment s encroached upon

by a skinny triangle t with circumradius equal to r. If the parent of p; is an external
parent, then

e s intersects t’s selection circle, and

e the following inequality holds:

S
|2—| > ry/205 — 83. (4.5)

Proof. From Remark 3, we obtain that the parent p; of p; is a vertex of ¢ (in fact,
p; is the most recently inserted vertex of ¢’s shortest edge). We claim that s has to
intersect t’s selection circle. Indeed, if it does not, either s cannot be encroached upon
by t (see Figure 4.1(left)), or p; cannot be an external parent (see Figure 4.1(middle)):
a contradiction.

For the second part, observe that the length of s reaches its smallest value when
s is tangent to t’s selection circle, and its endpoints lie precisely on t’s circumcircle.
See Figure 4.1(right) for an illustration. From the right triangle formed, we obtain
that % is at least /72 — r2(1 — 62)2, and equation (4.5) holds. O

LEMMA 4.5. Let triangle t encroach upon the constrained segment s. The sepa-
rator of s cannot be the shortest edge of t.

Proof. See Figure 3.1(middle). From Definition 2.8, the separator of s = e (pypy)
is the edge e (pmpr). We will prove the Lemma by showing that the angle Zpgpipm
cannot be the smallest angle of the encroaching triangle ¢t = Apgpipm-

For the sake of contradiction, assume that ¢ = Zpgp;pm, is the smallest angle of
t. It is well-known that all inscribed angles subtended by the same arc of a circle are
equal. Therefore, we can turn ¢ into an isosceles triangle, without changing the value
of ¢, by moving appropriately the point p; on t’s circumcircle. Now, observe that
the value of ¢ decreases as the endpoints of e (p,,pr) move on t’s circumcircle and
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Di
Type-A‘ Type-B ‘ Type-C or input

Type-A (1)
pi | Type-B| (2) (3) n/a n/a (3) n/a n/a
TypeC| wja | wa | () 5) wa | () 5)

incident | non-incident incident | non-incident

external non-external external non-external

TABLE 4.1

All possible type combinations of p; and p;. The cells above labels “external” and “non-external”
correspond to the cases when p; is an external and a non-external parent respectively. Also, the cells
above labels “incident” and “non-incident” correspond to the cases when p; and p; lie on incident
and non-incident constrained segments respectively. Each of the cases (n) is analyzed separately.

away from the point p;. Thus, the smallest value that ¢ can take is when e (p,,pk)
is tangent to the selection circle of ¢, as depicted in Figure 4.2. Note that the edge
e (pmpr) cannot move further away from p;, since otherwise ¢ could not encroach upon
S any more.

See Figure 4.2. From the right triangle Ap,,pjc, we obtain that |p,, — p,|| =
r4/02(2 — §2). Similarly, from the right triangle Ap,,p;p;, we obtain that ||pm, —pi|| =
r4/2(2 — 02). Therefore, we have that

sin% = H (from the right triangle Ap.,p;pr)

ry/02(2—02)

T4/ 2(2752)
2
P
0

>

- V&
\/21

= sin @

Y

(from Equation (3.1))

Y

sin (0 < sin@ < 1; therefore v'sin@ > sin 6)
yielding that ¢ > 26.

However, since t is a skinny triangle, its smallest angle must be no larger than 6:
¢ < 0, a contradiction. O

THEOREM 4.6 (Point Spacing Theorem). With the use of the GCDR algorithm
either

or

where Cy, are defined separately for each of the cases (n) from Table 4.1 as follows:
C1 = pda, Cy = %, C3 = pd1/202 — 03, Cy = 55te—, C5 = 3, where amin is
the minimum input angle of the PSLG.

Proof.

Case (1) By the definition of the parent vertex, Definition 2.5 (Rule-2), p; is
the most recently inserted endpoint of the shortest edge of the triangle. Consider
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Di

Fi1a. 4.3. Points ¢ and ¢’ are the centers of the encroached segment s = e(pupv) and the
circumcircle of the encroaching triangle t = Apmp;pr respectively. The endpoints of the separator
of s (points py, and pm) have moved exactly on s, while t is an isosceles triangle (with e (pmpk)
being the base) mazimizing in this way the upper bound of R (p;).

Figure 3.1(left). Without loss of generality, let p; = p; and e (p;pm) be the shortest
edge of the skinny triangle Apgp;py with circumradius . Then

R(pi) > dor (from Lemma 4.1)
= Gt~ pul
= O2pllpr — pm|
> 62pllpt — pmll (since p>p)
> 02pR(p1) (from Remark 1)
= 02pR(Pi);

therefore, (4.6) holds with Cy = pda.

The argument above holds for all types of p;, because it does not involve the
properties of p; specific for a particular type.

Case (2) See Figure 3.1(middle). In this case, p; is a Type-B point inserted on
an encroached, constrained segment s = e (pypy), and its parent p; is of Type-A.
Therefore, Lemma 4.2 holds.

From the first part of Lemma 4.2, we have that there are no non-free vertices that
are inside the diametral circle of s and visible from p;. Therefore, by Definition 2.5
(Rule-3), the parent p; of p; is the most recently inserted vertex of the shortest edge
of the encroaching triangle t = Apgpipm. By Lemma 4.5, e (p,,px) cannot be the
shortest edge of ¢, since it is the separator of s. Therefore, the shortest edge of ¢
is either e (ppm) or e (pipr). If e (pipm) is shorter than e (p;py), then the parent is
the vertex p; or pn,. In either case, R (p;) < ||pi — pml|| from Remark 1; otherwise,
e (pipr) is the shortest edge and thus the parent is the vertex p; or pg. In either case,
R (p;) < |lpi —pkl|| from Remark 1. Hence, no matter which exact vertex is the parent,
we obtain that R (p;) < min{|lp. — pumll, It — e}

Furthermore, from the second part of Lemma 4.2, we obtain that R (p;) >
51@ (inequality (4.2)).

We next try to find an upper bound for the ratio gg Zg
assume that segment s has been rotated around its midpoint ¢ in such a way that

. Without loss of generality,
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the separator of s (i.e., e (pmpr)) is parallel to s, as depicted in Figure 3.1(middle).
Note that this rotation does not change either the upper bound of R (p;) or the lower
bound of R (p;) because both the length of s and t’s vertices remain intact.

Keeping the lower bound of R (p;) fixed (i.e., keeping the position of s’s endpoints
fixed), we will first try to calculate what is the maximum value R (p;) can reach. See
Figure 3.1(middle): by moving the endpoints of the edge e (p,pr) (the separator
of the encroached segment) on t’s circumcircle and towards the encroached segment
e (pupv), R (p;) does not decrease, because the length of the edges e (pip.,,) and e (ppk)
increases. Note that e (pm,px) can at most fall on e (p,p,), since otherwise e (p,py)
would intersect the interior of ¢. Also, by moving appropriately the vertex p; on the
circle between the endpoints of e (p,pr), we can turn ¢ into an isosceles triangle,
and therefore we can further increase the quantity min{||p; — pmll, lp1 — prll}. See
Figure 4.3 for an illustration.

R (pi) min{|[p; — pm |, [lpr — prll}

llpi — Pl (since t is turned into an isosceles triangle)

::’Z’JT;C”” (from the right triangle Ap,,cp; of Figure 4.3)
Du—DPv
2cos A

51Rc(01;) yy (from inequality (4.2)).

A

VANNVAN

However, Lemma 4.5 also implies that the minimum angle of ¢ is A and since ¢ is a
skinny triangle, we have that A < 6. Therefore, we finally get that

R < 2l (4.5
Since 6 is an acute angle, we obtain that:
cos = 1 —sin?6
= 1- # (since sinf = 2%5 by definition)
> J1-1 (since p > 3 from Definition 3.1)
= %7

and inequality (4.8) becomes

VR (p) _

5.) <
R(pl) — 251

Therefore, (4.6) holds with Cy = %.

Case (3) Let t be the triangle encroaching upon s, [ be its shortest edge, and r
be its circumradius. From Remark 3, we have that p; is the most recently inserted
vertex of [. Since t is a poor triangle, || can at most be equal to %. Therefore, from
Remark 1, we obtain that :

R(pi) < - (4.9)

i3

Also, notice that:

R (pz)

Ell

ot (from inequality (4.2))
517/ 202 — 62 (from inequality (4.5))
51pR (pi) /282 — 63 (from inequality (4.9)).

VIV IV
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Fia.

4.4. Point p; is a Type-C point inserted on the encroached segment s. Point p; is a

non-external parent. Point c is not part of the mesh; it is an auziliary point that denotes the center
of the segments. (Left) Points p; and p; lie on incident constrained segments separated by angle
a, 60° < a < 90°. (case (4) from Table 4.1). (Right) p; and p; lie on non-incident constrained
segments (case (5) from Table 4.1).

Therefore, in this case, equation (4.6) holds with C5 = pd;/202 — d3.

The argument above holds for each type of p; shown in Table 4.1, because it does
not involve the properties of p; specific for a particular type.

Case (4) Since p; is a Type-C point, Lemma 4.3 holds. Consider Figure 4.4(left).
Based on Lemma 4.3, we separate 2 possibilities:

(a)

If the parent p; is the closest point to p;, then

RGy = gy (from equation (43)
> lpipil (from Remark 1)
||P1 pv”
_ :23 (considering Ap;p,pi)-

We wish to determine what values angle ¢ can take. Since ||p;—p;|| < ||pi—pol|
by our assumption, we get that o < £ from Ap;p,p;. Therefore, ¢ < 180°—2a.
This implies that

Rpi) sina
R(p:) = sin(180—2a)
_ _sina
~ sin (2a)
sina

W
2cosa’
yielding that

R(pi) >

— 2CO0S Omin

R(pi) - (4.10)

If an endpoint of the constrained encroached segment e (p,p,) is the closest
point to p;, then

R(pi) #Hpugpuu

D S R (from inequality (4.4))
> % (from Remark 1).

An upper bound for the distance ||p; — py|| is obtained when p; lies on the
diametral circle of the segment e (p,p,) (in fact, p; cannot lie exactly on the
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diametral circle, since it is a non-external vertex). From the isosceles triangle
Apicp, (see Figure 4.4(left)), we get that ||p; — pyl| < ||pu — Poll cos @, and

therefore
R(pi) pllpu—poll
R(p:) = 2lpu—psllcosa
= 2cosa’?
obtaining in this case that
R(pi) > -———R(p). (4.11)
2 COS Qmin

In both cases, Cy =
(4.6) holds.
The argument above holds for each type of p; shown in Table 4.1, because it does
not involve the properties of p; specific for a particular type.
Case (5) See Figure 4.4(right). Based on Lemma 4.3, we, again, separate two
possibilities:
(a) If p; is the vertex closest to p;, then, from equation (4.3), R (p;) = ||p: — pil|-
Since, however, p; and p; lie on non-incident features, we obtain that Ifs (p;) <
|lpi — Dill (see Definition 2.2), yielding that R (p;) > lfs (p;).
(b) Otherwise, an endpoint of the constrained encroached segment e (p,p,) is the
closest point to p;. Then, if ¢ is the center of s, by Definition 2.2 of the 1fs ()

satisfies both equation (4.10) and (4.11), and thus

K
2 COS Omin

function,
s (¢) < lle— pul. (412)
Therefore,
Ifs (p;) < MUs(c)+|pi — (from Lemma 2.3)
< le=pill + [lps — |l (from (4.12))
< L;' + |lpi — || (because p; is inside the diametral circle of s)
< ‘—;l +(1- u)\_;l (since p; lies in the Type-C selection interval of s)
(2 - mk!
< (2-p) R(ﬁi) (from inequality (4.4)).

In both cases, C5 = 5% satisfies the inequality (4.7).
The argument above holds for each type of p; shown in Table 4.1, because it does
not involve the properties of p; specific for a particular type. O

5. Proof of Good Grading. The main result of this section is Theorem 5.5
which proves that GCDR produces well-graded triangles. Theorem 5.5 will also allow
us to prove termination, since it is possible to bound from below the closest distance
of any two visible vertices. Notice that we first prove good grading and then we prove
termination.

First, we prove Lemmas 5.1, 5.2, and 5.3 that bound from above the distance
from a point to its parent in terms of the size of the corresponding two-dimensional
and one-dimensional selection region, respectively. These results are used to prove
Lemma 5.4 which shows that the vertex density in a point is bounded from above
by a linear function of the density in its parent. Lemma 5.4 is proved only for cases
(1)—(4), since for case (5) the relation of the insertion radius to the local feature size
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Fic. 5.1. The circumcircle and selection circle of the triangle t which encroaches upon the
constrained segment s. The point c is the center of s. The parent p has been moved on the position
that mazimizes the distance ||c — p||, while s remained fized. Next, keeping the position of ¢ fized, we
are moving the endpoints of s such that |s| is minimized; in this case, s is tangent to the selection
circle, and at least one endpoint of s lies precisely on the circumcircle.

proved by Theorem 5.5 follows directly from the Spacing Theorem. Finally, we prove
Theorem 5.5 by enumerating all possible type combinations of a point and its parent.

LEMMA 5.1. If p is of Type-A, then

lp—pll < (2= d2)r, (5.1)

where r is the circumradius of the skinny triangle t.

Proof. If ¢ is the circumcenter of ¢, then

lp=2ll < llp—cll+llc—5 (from the triangle inequality)
< (1 =0d2)r + |lc— P (since p is in the selection circle)
= (1=d)r+r (since p is a vertex of t)
= (2 — (52)7‘.

LEMMA 5.2. If p, lying on an encroached, constrained segment s, is of Type-B,
and its parent p is an external parent, then

R 2 —4§ S
lp—pll < (1 + TQ —51> % (5.2)

Proof. By Definition 2.5 (Rule-2), p is a vertex of the skinny triangle ¢ encroaching
upon s.

First, we will try to find a tight upper bound for the ratio ”Cl;s‘ﬁ”, where c is the
center of s.

Keeping the position of ¢ and the position of s’s endpoints fixed, we are trying
to increase the distance ||c — p|| by moving only the parent p on t’s circumcircle. See
Figure 5.1: the distance ||c — p|| reaches its largest value when p lies on the extension

of the straight line connecting ¢ and ¢’s circumcenter ¢’
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Conversely, keeping the position of ¢ fixed, we are trying to decrease |s| by moving
only the endpoints of s: the length of s reaches its smallest value when s is tangent
to the selection circle, and one of its endpoints—say the point p,—Tlies precisely on
the circumcircle. See Figure 5.1 for an illustration. Note that if s did not intersect
the selection circle at all, then the first part of Lemma 4.4 would be violated: a
contradiction.

From the right triangle Acdc’ (see Figure 5.1), we obtain that:

lle = ¢|I? ::Hd*dW+WC*MF
= r2(1=382)*+ [le - d|?

2
= 2(1-6)+ (4~ Ipu — )
2
= r2(1 52)% + (' sl /20, 7(55) (from the right triangle Akdp,,)

= 240525, — 6,

yielding that:

2
le—C| = \/r2 + % —r|s]1/202 — 43. (5.3)

We also have that:

lle=pll _ T+HC |
[s]

(since ¢, p and ¢ are collinear)

r 2 \S\ —
_ +\/ T \I rsy/20:—03 (from Equation (5.3)),

and after the simplification, we finally get that:

|c|s|p|| <|r|) \/<ﬂ)+i<ﬂ) 257 32, (5.4)

Basic calculus, however, reveals that the right-hand part of Equation (5.4) is an al-
ways increasing function with respect to the “variable” T . Also, from inequality (4.5),

we already know that | | < Q\/ﬁ Thus, by replacmg ol in the right-hand part
of Equation (5.4) with its largest value and simplifying the result, we get that:

lle=pl L j2-02
r <= 5 (5.5)

Lastly, the desired outcome follows:

lp=oll < lp—cll+llc—5l (from the triangle inequality)
< (1- 51)% + |le = P (since p is in the Type-B selection interval)
< (1- 61)% + % 25252 (from Equation (5.5))
- (1 +y/ 52 - 61) sl
a

LeEmMMA 5.3. If p; is of Type-C, then

R 5
lpi —pill < (2 — N)?, (5.6)
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where |s| is the length of the encroached segment s.

Proof. If c is the center of s, then

lpi =il < lpi — | + lle — 5l (from the triangle inequality)
< (1- u)‘—gl + |le = pill (since p; is in the Type-C selection interval)
< (1- u)‘—gl + ‘—;' (since p; is a non-external parent)
= @-wh
a

LEMMA 5.4. If p is a vertex of the mesh inserted by the GCDR algorithm, and
Chn (n = 1,2,3,4) are the constants specified by Theorem 4.6 for the corresponding
cases listed in Table 4.1, then the following inequality holds:

D5
25
where By = 25‘52, By = B3 = Hé#; B, = =4,
2 1 1
Proof.
First, we prove the inequality
lp =5l < Bn- R(p) (5.8)
for each of the cases below.
Case (1):
lp—5ll < (2—20d2)r (from Lemma 5.1)
—_ 27525
5, 02T
< %R (p) (from Lemma 4.1);
2-5,

therefore, inequality (5.8) can be satisfied with By = =5

Case (2): In this case, p; is of Type-B and its parent p; is a Type-A point. We
assume that p; is an external parent, since if it was a non-external parent, the distance
between p; and p; would be smaller.

lp—2l < (1 + 4/ 23262 - 51) % (from Lemma 5.2)
. 1+1/2g262 —01 51|S‘

14 2;52 —6,
< —V 2 R(p) (from inequality (4.2));

[2=55
therefore, inequality (5.8) can be satisfied with By = Hai‘?%.

Case (8): The analysis is exactly the same as in case (2), since p; is a Type-B
point, and p; is an external parent. Therefore, inequality (5.8) can be satisfied with
B = Bs.

Case (4): Based on Lemma 4.3, we separate two possibilities:

(a) If p; is closest to p;, then ||p; — pi|| = R (p;) from equality (4.3).

(b) If an endpoint of s is closest to p;, then

lpi —p:ll < (2-— M)% (from Lemma 5.3)
— 2=p sl
)
< ZLR(p) (from inequality (4.3));
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therefore, inequality (5.8) can be satisfied with By = 277“ in both cases.

Now, for all cases (1)—(4),

Ifs (p) < Us(p)+ |lp— Pl (from Lemma 2.3)
< 18 (p) + B.R(p) (from (5.5))
= D) R(p)+ BuR(p) (from (2.2))
< D(p) Réf) + B,R(p) (from Theorem 4.6).

The result follows from the division of both sides by R (p). O

THEOREM 5.5. Suppose that the following three inequalities hold:
I-1. p> é (implying a lower angle bound of 26.56°), and
I-2. auin > 60° (recall that aumin is the smallest input angle).
Then, there exist fized constants Dy > 1, D > 1, and Do > 1 such that, for any
vertex p inserted by the GCDR algorithm, the following inequalities hold:

Dy if pis of Type-A,
D(p) <§ Dgp ifpis of Type-B, (5.9)
D¢ if p is of Type-C.

Therefore, the insertion radius of p has a lower bound proportional to its local feature
size.

Proof. The proof is by induction and is similar to the proof of Lemma 7 in [23].
The base case covers the input vertices, and the inductive step covers the other three
types of vertices.

Base case: The theorem is true if p is an input vertex, because in this case, by
Remark 2, D (p) =1fs (p) /R (p) < 1

Inductive hypothesis: Assume that the theorem is true for p, i.e.,

D, if pis of Type-A,
D(p) <{ Dp if pis of Type-B, (5.10)
D¢ if pis of Type-C.

Inductive step: For each of the cases (n), n = 1,2, 3,4, we start with (5.7) and
apply the inductive hypothesis considering the possible type combinations of p and
p from Table 4.1. As a result, the inequalities in (5.9) can be satisfied if D, Dp,
and D¢ are chosen such that the following inequalities (5.11), (5.12), (5.13), (5.14),
(5.15), (5.16), (5.17), and (5.18) hold:

Case (1):
B +24<p, (5.11)
Ch
D
B+ =2 < Dy, (5.12)
Ch

D
By + =2 < Da, (5.13)
Cy



23

Case (2):
By + Da < Dg, (5.14)
C
Case (3):
D
Bs + —Z < Dp, (5.15)
C3
D
Bs + =2 < D, (5.16)
C3
Case (4):
D
B, + =2 < D¢, (5.17)
Cy
D
By + =2 < De, (5.18)
o

For case (5), from Theorem 4.6, we have: D (p) = 1fs (p) /R (p) < 1/Cs, i.e., the
inequalities in (5.9) can be satisfied if D¢ is chosen such that the following inequality
holds:

Case (5):

Cis _ B, < D, (5.19)
Notice that since B, > 1 for every n = 1,2,3,4, the solution of the system
above guarantees that D4, Dp, Do are larger than or equal to 1. Also notice that
inequality (5.14) implies that Dp > Dy4, because CLZ < 1. Therefore, (5.11) can be
ignored, since it follows from (5.12) and (5.14).
Inequalities (5.12), (5.14), (5.17), and (5.19) are satisfied when:

— B2t B 10

Pa = “Bichipioc
— 202 10102

Dp = B+ 55006 (5.20)
= By | ByCo+B1C1Cy 1

DC - maX{B4 + Cy (010271)02047 C5}

Inequalities (5.12), (5.15), and (5.17) are satisfied when:

— B;C
DA - Bl + (0331)3017
Dp = &%, (5.21)
— B, C:
Dec = Bs+ (0311)304
Inequalities (5.13), (5.14), (5.15), and (5.18) are satisfied when:
— B,C
DA = Bl + (C4i1)401’
— By B4C B4Cy
Dp = max{B+ & + 2%, By + 225 | (5.22)
Do = B4Cy

Cy—1
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Combining the equations (5.20), (5.21), and (5.22), we finally get that:

— B2aCo+B1C1Cy B3C3 B4Cy
Dy = max{ €105 —1 7Bl+(c371)C1’Bl+(C471)01 ’
— . B3Co+B1C1Cy B3Cs By B4Cy B4Cy ( )
Dp = de{BZ"{‘ (Choa—Dey rTy=1: B2t oy ter=horos Bt e —ne; 5.23
= : By | BoCo+B51C1Ca 1 B3C3  BaCy
De = de{B4+C4+(010271)0204705734"‘(0371)04’04*1

Note that the inequalities I-1 and I-2 guarantee that the grading constants D 4, Dp,
and D¢ are well defined, i.e., they are neither infinite nor negative. O

The area (size) of the selection regions affects the grading of our algorithm, theo-
retically at least. Indeed, if either of the parameters 01, d2, 1 decreases (thus increasing
the area of the selection regions), then the lower bounds for the constants D4, Dg, D¢
of Theorem 5.5 increase making the grading worse. In practice, when we increase the
area of the selection regions, the deterioration of grading is less severe (see Section 7).

6. Proof of Termination. The good grading of GCDR implies termination as
well. For reasons of completeness, however, we present a concrete proof.

THEOREM 6.1. GCDR terminates producing triangles with angles arbitrarily close
to 30°.

Proof. To prove termination, it suffices to prove that no two vertices, visible to
each other, are closer than a real constant C’ > 0, since the insertion of an infinite
number of vertices would necessarily introduce at some point two visible vertices closer
than C’. From Remark 1, however, the distance of any two visible vertices is bounded
from below by the insertion radius of one of these vertices. Therefore, it is adequate to
prove that the insertion radius of any point is not less than the positive, real constant
C'.

Table 4.1 presents an exhaustive enumeration of all possible parent-child com-
binations. First, we prove by contradiction that the combinations marked as “n/a”
cannot arise. These combinations can occur in the following two cases:

1. A Type-B point p; lies on an encroached segment s, and its parent is a non-
free non-external vertex, i.e., p; is a non-free point that lies strictly inside the
diametral circle of s. Recall that the parent of any point p; is visible from p;
(see Lemma 2.6). By the way we defined Type-B points, however, there is no
non-free vertex strictly inside the diametral circle of s and visible from p;: a
contradiction.

2. A Type-C point p; lies on an encroached segment s, and its parent is either
a free vertex or a non-free external parent. By the way we defined Type-C
points, the diametral circle of s contains at least one non-free vertex visible
from p;. Therefore, from Definition 2.5 (Rule-4), the parent of p; is the closest-
to-p;, non-free vertex that lies inside the diametral circle of s and is visible
from p;. This means that p; can be neither a free vertex nor an external
parent: a contradiction.

All the remaining parent-child combinations (marked with numbers) have been
analyzed in Theorem 5.5. From that theorem it follows that with the use of the GCDR
algorithm the insertion radius of any vertex is no less than ¢’ = W, where
USmin = lzr)nelg Ifs (p) > 0. Note that inequalities I-1 and I-2 of Theorem 5.5 imply that

the positive constants D4, Dg, D¢ cannot approach infinity, and therefore C’ is a
positive real number. O
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Fic. 7.1. (Left) The input PSLG used for the experiments. It consists of 5 concentric squares.
The horizontal and vertical distance between two adjacent squares is one hundredth of the side length
of the outer-most square. (Right) The output mesh obtained by GCDR on the input PSLG with p
being set to 1. GCDR terminates producing 3200 triangles whose angles are more than 30°.

7. Experimental Evaluation. In this section, we experimentally evaluate the
grading achieved by GCDR. We have implemented GCDR on top of the Computa-
tional Geometry Algorithms Library (CGAL) [2]. For the visualization of the mesh,
we used the C++ Visualization Toolkit Library (VTK) [1].

The input PSLG used for the experiments is depicted in Figure 7.1. Other input
PSLGs yielded similar results.

We conducted two experiments denoted as Experiment-1 and Experiment-2 re-
spectively. In the Experiment-1, we executed GCDR 36 times. At every execution, we
changed the size of the selection regions by altering the values of the parameters s, 41,
and p. Also, for each execution, all the Steiner points inserted (or considered for inser-
tion) by GCDR lied exactly on the boundary of selection circles or selection intervals.
More precisely, every Type-A Steiner point is inserted as close to an arbitrary vertex
of the corresponding skinny triangle as possible, and every Type-B/Type-C Steiner
point is inserted as close to an arbitrary endpoint of the corresponding encroached
segment as possible. In this way, we test our algorithm when the inserted Steiner
points lie in extreme positions.

Table 7.1 summarizes the results for the first experiment under the label “Experi-
ment-17. The quality upper bound is set to p = 2 which means that do > % ~ 0.56
and that §; > 05—36. Since apmin = 90°, we also have that p > 0. Each row of the
table corresponds to a specific execution where the values for the parameters are
shown in the second, third, and forth cell of each row. The table reports the largest
density observed in practice per point type: the largest density observed among Type-
A points (8" column), among Type-B (9" column), and among Type-C points (10"
column). For comparison, the table also depicts (at the 5**, 6'", and 7" column) the
theoretical upper bound of the density per point type for the respective configuration,
as calculated in inequality (5.23) of Theorem 5.5.

The observed largest densities of Experiment-1 should be less than their theoret-
ical counterparts. Indeed, the grading achieved in practice is much smaller than the
theoretical bound of Theorem 5.5. This fact verifies the theory and also implies that
GCDR behaves much better than theory suggests.

Also, notice that p seems to strongly affect the size of the output mesh. Indeed,
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TABLE 7.1
The 36 configurations used by Experiment-1 and Ezperiment-2. The results are shown in the
last 7 columns.

Experiment-1 Experiment-2
£
e 2
P = & = £ | &= = =
3 A Q A £ |8 A ~
g T 8 v 2 T 8 09
Ka KA ) @ B KA HE
S & & u Da Dy Dc PR 2 L s -
1 1.00 1.00 1.00 3.40 480 1.00 || 1.14 035 1.00 972 | 1.14 0.35 1.00
2 | 1.00 1.00 0.80 3.40 4.80 1.50 || 1.21 0.38 1.00 1164 | 1.43 0.50 1.00
3 | 1.00 1.00 0.60 3.40 480 233 129 049 1.00 1362 | 1.55 0.51 1.00
4 1.00 1.00 0.40 3.40 4.80 4.00 1.52 051 1.27 1661 | 1.58 0.51 1.21
5 | 1.00 090 1.00 4.25 6.50 1.00 || 1.14 0.36 1.00 980 | 1.15 0.39 1.00
6 | 1.o00 0.90 0.80 4.25 6.50 1.50 || 1.21 0.42 1.00 1164 | 1.50 0.55 1.00
7 | 1.00 0.90 0.60 4.25 6.50 233 || 1.55 0.51 1.00 1360 | 1.57 0.56 1.00
8 | 1.00 0.90 0.40 4.25 6.50 4.00 || 1.51 0.54 1.27 1667 | 1.56 0.55 1.21
9 | 1.00 0.80 1.00 5.81 9.62 1.00 || 1.13 040 1.00 964 | 1.16 0.43 1.00
10 | 1.00 0.80 0.80 5.81 9.62 1.50 || 1.21 047 1.00 1164 | 1.53 0.60 1.00
11 | 1.00 0.80 0.60 5.81 9.62 233 || 1.29 0.58 1.00 1378 | 1.54 0.63 1.00
12 | 1.00 0.80 0.40 5.81 9.62 4.00 || 1.51 0.62 1.22 1663 | 1.54 0.62 1.33
13 1090 1.00 1.00 4.85 6.52 1.00 || 1.36 0.35 1.00 1007 | 1.57 0.35 1.00
14 | 090 1.00 0.80 4.85 6.52 1.50 || 1.46 0.38 1.00 1161 | 1.58 0.51 1.00
15 | 090 1.00 0.60 4.85 6.52 233 || 1.54 046 1.00 1357 | 1.70 0.52 1.00
16 | 090 1.00 0.40 4.85 6.52 4.00 || 1.71 0.51 1.27 1675 | 1.74 0.51 1.19
17 | 090 090 1.00 6.35 9.22 1.00 || 1.33 043 1.00 957 | 1.58 0.42 1.00
18 | 0.90 0.90 0.80 6.35 9.22 150 || 1.46 042 1.00 1163 | 1.50 0.55 1.00
19 1 090 090 0.60 6.35 9.22 233 | 1.59 051 1.00 1359 | 1.61 0.54 1.00
20 | 0.90 090 040 6.35 9.22  4.00 || 1.71 0.56 1.22 1653 | 1.75 0.56 1.19
21 { 090 080 1.00 952 1494 1.00 || 1.32 0.43 1.00 975 | 1.67 0.52 1.00
22 1 090 080 0.80 9.52 1494 1.50 || 1.46 047 1.00 1165 | 1.49 0.61 1.00
23 1 090 080 0.60 952 1494 233 || 154 0.59 1.00 1383 | 1.56 0.61 1.00
24 1 090 080 0.40 9.52 1494 4.00 || 1.71 0.62 1.22 1661 | 1.68 0.61 1.27
25 1 080 1.00 1.00 7.52 9.63 1.00 || 1.66 0.35 1.00 1011 | 1.58 0.35 1.00
26 | 0.80 1.00 0.80 7.52 963 1.50 || 1.91 0.38 1.00 1161 | 1.91 0.52 1.00
27 | 0.80 1.00 0.60 7.52 9.63 233 || 1.81 047 1.00 1345 | 2.04 0.52 1.00
28 | 0.80 1.00 0.40 7.52 9.63 4.00 || 2.34 0.52 1.27 1651 | 2.01 0.52 1.25
29 | 0.80 090 1.00 10.82 1492 1.00 || 1.68 0.43 1.00 991 1.94 042 1.00
30 | 0.80 090 0.80 10.82 1492 150 (| 1.91 0.42 1.00 1161 | 2.26 0.57 1.00
31 | 080 090 0.60 10.82 1492 233 || 1.8 0.52 1.00 1361 | 1.86 0.56 1.00
32 |1 080 090 040 1082 1492 4.00 || 2.21 0.56 1.22 1654 | 2.02 0.57 1.23
33 | 080 0.80 1.00 20.65 30.64 1.00 | 1.86 0.54 1.00 996 | 1.81 0.49 1.00
341080 080 0.80 2065 30.64 1.50 || 1.91 047 1.00 1163 | 1.73 0.62 1.00
351080 0.80 0.60 20.65 30.64 233 | 1.88 0.63 1.00 1385 | 1.94 0.64 1.00
36 | 0.80 0.80 0.40 20.65 30.64 4.00 || 2.26 0.61 1.24 1664 | 2.36 0.64 1.27

no matter how large the Type-A and Type-B regions are, when the size of Type-C
selection intervals increases (i.e., low values for p), the number of triangles is consid-
erably higher. On the contrary, for high values of u, low values for §, and §; do not
result in a high size output mesh. This fact is attributable to the high number of
Type-C points: in all the executions, the number of Type-C points (inserted into the
mesh) is 3 to 4 times more than the combined number of Type-A and Type-B points.

Although the Steiner points in Experiment-1 are inserted in extreme positions, it
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is not certain whether the measured maximum densities are the worst. For example,
see the 2" configuration under the label Experiment-1: Type-C Steiner points lie far-
ther from the center of the encroached segments than they do in the 15¢ configuration,
but the maximum practical densities observed do not increase.

Therefore, we conducted another experiment which could potentially generate
the highest (i.e., worst) practical densities. The results are illustrated in Table 7.1
under the label “Experiment-2”. Here, each configuration of the previous experiment
is repeated for 100 times (and not just once as before). Each time, the Steiner
points inserted were randomly chosen from within their corresponding selection region
(i.e., they do not always lie on the boundary of the selection regions as before). We
report the highest density per point type among the densities observed during the 100
repetitions.

The maximum densities measured in Experiment-2 are slightly higher than before,
but still less than the theoretical counterparts. These observations further verify the
theory and suggest that GCDR behaves much better in practice.

8. Conclusions and Future Work. We have presented and implemented a
constrained Delaunay refinement algorithm in two dimensions. Our algorithm is more
flexible than the traditional approaches, since the user can choose which Steiner point
to insert into the mesh among an infinite, enumerable number of choices. Our algo-
rithm significantly increases the number of these choices over our previous Generalized
algorithms [4-7]. The flexibility offered by Generalized algorithms can benefit sliver
removal in three dimensions [10, 16], since the area from which Steiner points are
selected now increases potentially allowing to achieve even better dihedral angles.
These customizable point insertion strategies offered by our algorithm can also help
in boundary recovery by inserting, for instance, points on the boundary while refining
the mesh. Other applications of Generalized algorithms can be found in [7].

The parallelization of our Generalized algorithm is left as future work. A parallel
Generalized algorithm would automatically imply the parallelization of any point
insertion strategy as long as the Steiner points lie in the selection regions.

Lastly, we wish to implement our algorithm in three dimensions and identify point
insertion strategies suitable for sliver removal.
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