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Chapter 7

A Review of Mesh Generation for Medical 
Simulators

by                                                                                        Michel A. Audette, Andrey 
Chernikov, and Nikos Chrisochoides
Introduction and Learning Objectives

Medical  simulation  is  the  application  of  computers  to  synthesizing  an  anatomical 

response to a simulated therapy. In particular, surgery simulation uses a software program 

to synthesize tissue response to virtual surgical tools, typically (but not exclusively) a 

mechanical response to cutting or manipulation. This behavior can be thought of as a 

trade-off between material fidelity and computation time, whose weighted emphasis on 

one or the other can be characterized as a spectrum. At one end of the spectrum we have 

predictive simulation, which consists of highly faithful off-line computations used by 

expert surgeons to predict the outcome of, and optimize, an intervention, on the basis of 

an anatomical  model of the patient  derived from that individual’s  preoperative image 

dataset. At the other end of the spectrum, the objective of  interactive simulation is to 

offer a means of training surgical residents in order to improve their skill without risk to a 

real patient, by way of a  haptic device manipulated by the user to position a virtual 

surgical tool, while producing a force feedback that simulates tissue  resistance and a 

real-time graphical  rendering of an anatomical model at  that point  in  simulated time. 

Figure 1 illustrates  some commonly used haptic  devices.  Typically,  the biomechanics 

engine used to achieve a response at near-haptic rates (some interpolation is feasible for 
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haptic  rates  of  500  Hz  or  more),  in  the  context  of  interactive  simulation,  is  less 

constitutively faithful than that of predictive simulation, although much recent work is 

devoted  to  reconciling  the  conflicting  requirements  of  interactivity  and  material 

faithfulness. 

Irrespective  of  whether  a  medical  simulator  emphasizes  interactivity  or  predictive 

computation,  the  simulation  requires  an  anatomical  model  on  which  to  carry  out  its 

synthesized therapy. For most clinical applications, such a model is not drawn with 3D 

CAD software, but rather extracted by image analysis from a patient dataset. As a result, 

the starting point for this model is one or more MR or CT volumes, which in the multi-

modal case can be co-registered and resampled, which leads to a volumetric scalar or

(a)
(b)

Figure  1.  Commercial  haptic  devices:  (a)  Sensable's  6  degree-of-freedom  (d.o.f.) 
Phantom 6S/1.5 (1); (b) MPB Technologies' 7 d.o.f. Freedom 7S (2). 

vector image, typically of several hundred voxels along each axis. For example, a 1mm 

isotropic MR image of the head is usually at least 256 x 256 x 256, which equates with 

more than 16 million voxels, which in turn precludes efficient computation directly based 

on raw or segmented image data. In addition, many biomechanical engines require the 
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decomposition of a geometrically complex body into simple shapes, e.g.: elements, given 

that the computation itself is typically a matrix equation based on simple, well understood 

elemental  expressions.  These  requirements,  computational  efficiency  and  geometric 

decomposition, motivate the need for a representation of the anatomy in terms of simple 

shapes, such as triangles and tetrahedra, a process, which is idealized in 2D in figure 2 

and which we describe as mesh generation. It is worth noting that in the mesh generation 

community, the generation of tetrahedra corresponds to unstructured mesh generation 

as contrasted from structured meshes which are typically comprised of hexahedra.  The 

latter  elements  are  not  generally  used  in  medical  simulation,  because  this  meshing 

approach requires a significant amount of user interaction (in contrast with tetrahedral

(a) (b) (c) (d) (e)

Figure 2. Basic processing pipeline idealized in 2D: (a) raw image data, typically MR 
and/or CT; (b) segmentation of relevant tissues, e.g. white and grey matter, corticospinal 
fluid, tumor; (c) tissue boundary meshing: segmentation results of (b) are too dense for 
practical simulation, requiring a geometrical representation; (d) tissue boundary meshing 
is completed by inserting internal, or Steiner, points and linking them by edges (and in 
3D, faces) and triangles (in 3D, tetrahedra); (e) by adding a camera, virtual tool, and 
virtual lighting, as well as biomechanics engine, we can apply the anatomical model to a 
simulation

meshing, which can be automated). Moreover, the subdivision of a hexahedron does not 

reduce  to  more  hexahedra,  which  limits  their  applicability  to  interactive  simulation, 

whereas a tetrahedron ultimately is divisible into more tetrahedra. However, hexahedra 

tend to produce stable numerical results and have been applied to predictive simulation. 
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One way in which hexahedra can be applied to patient-specific simulation involves the 

warping of a canonical anatomy to the patient’s anatomy, which is feasible if the tissue 

topology is preserved across individuals and the non-rigid transformation well defined. 

Finally,  recent  surgery  simulation  research  emphasizes  so-called  meshless  methods, 

these usually require a mesh of some sort as a starting point, if only to identify which  

points in anatomical volume neighbor each other, and in any event, visual and haptic 

rendering entails an efficient surface meshing of a relevant isosurface of their numerical 

solution. 

The objective of this chapter is to introduce the reader to leading methods in producing 

anatomical  meshes  for  medical  simulation,  in  a  manner  mindful  of  practical  clinical 

requirements, while also suggesting feasible improvements that are needed for simulation 

to address these requirements.  

Background - A survey of relevant biomechanics and open-source software

Architecture of an Interactive Medical Simulator 

The  conflicting  requirements  of  interactive  surgery  simulation  become  apparent  by 

considering the architecture of such as system, as well as demands in terms of anatomical 

modeling and biomechanics needed for clinical realism. Figure 3 illustrates simplified 

(a)
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(b)

Figure 3. Illustration of interactive surgical simulation architecture: (a) hardware and (b) 
software.

hardware  and  software  architectures  of  an  interactive  simulator.  From  a  hardware 

standpoint, the haptic device is sampled in real-time at haptic rates (500-1000 Hz) (3), 

and the joint voltages are input to the computer, by way of an analog input/output board, 

then converted to joint angles and to position, by forward kinematics (4), in a kinematics 

loop ideally running at that same rate. In addition, it is desirable to convert a feedback 

force, computed by the biomechanics engine, to joint torques and output voltages through 

a haptic  loop running  at  the  same  interactive  rate.  In  addition,  visual   feedback  is 

provided at  30-60 Hz,  in  a  manner  that  makes  use  of  the  graphical  processor unit 

(GPU).  In  addition  to  rendering  anatomical  surfaces  at  video  rates,  the  GPU  is 

increasingly used to accelerate computations other those related to visualization, a subject 

that we will revisit shortly.    

The software architecture features the following: 

 an anatomical model, typically composed of tetrahedra, encapsulating the anatomy 

over simulated time; 

 a biomechanics engine that synthesizes a tissue response to a virtual gesture; 
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 a collision  detection  algorithm that  efficiently  determines  where  the  interaction 

takes place; 

 and software engines that respectively handle haptic and visual rendering.

Mechanics of Tissue Manipulation in Medical Simulation

Biomechanical modeling of tissues is often approached by finding an numerical solution 

for the displacements, deformations, stresses and forces, as well as possibly other states, 

such as hydrostatic pressure, in relation to a history of “loading”. The approaches for 

estimating  or  simulating  biomechanicaldeformations  are  characterized  by  a  trade-off 

between computational efficiency and material fidelity, and the nature of this trade-off 

can be viewed as a spectrum between two poles. At the fast but materially approximative 

end  of  the  spectrum  lie  mass-spring  systems.  At  the  other  end  of  the  spectrum, 

computationally slower but more descriptive, we have classical  finite element method 

(FEM), which can characterize even large (finite) deformations and nonlinear elasticity. 

A mass-spring system (5) is an approximation of a biomechanical system as a collection 

of point masses connected by elastic springs, and is derived from the field of computer 

animation. A mass-spring system is characterized by each node i, having a mass mi and 

position  xi, and being imbedded in a mesh where each edge coincides with a spring  k. 

Each node is subject to an equation of the form 

mid2xidt2+γidxidt+gi=fi where (1)

gi(t) = j∈Nisk and where sk = ckekrkrk . (2)

In  this  equation, sk represents  the  force  on  the  kth  spring  linking  the  node i to  a 

neighbouring node j. This force is a function of the vector separation of the nodes ||rk=xj-xi||, 
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of the deformation of the spring  ek= ||rk|| -  lk  and of the characteristics of the spring: its 

natural length lk, its stiffness ck, and its velocity-dependent damping γi. The quantity fi is 

the net external force acting on node i, which may include a surgical tool or the effect of 

gravity. 

The displacement finite elements method numerically solves for unknown displacements, 

deformations,  stresses,  forces  and possibly  other  variables  of  a  solid  body.  An exact 

solution would require force and momentum equilibrium at all times everywhere in the 

body, expressed as  St dS +Vf dV = 0  and  Sx ×t dS +Vx ×f dV = 0 respectively. 

However, the finite element method replaces this requirement with the weaker one that 

equilibrium must be maintained in an average sense over a finite number of divisions of  

the volume of the body. These divisions, or elements, are simple shapes such as triangles 

and rectangles for surfaces, and tetrahedra and hexahedra for volumes, and the method 

relies on estimating the displacement at their vertices, or nodes. Discretizing equilibrium 

equations is based on using Gauss’ theorem to restate them as a single integral, called the 

Principle of Virtual Work (PVW),  and expressing this integral in a weak form, where 

the integrand is  multiplied by a  test  function  with compact  support over the element, 

which leads to a linear system featuring a sparse matrix. 

The Principle of Virtual Work states that for a virtual displacement applied to the system, 

static equilibrium requires that the external virtual work must equal the internal work 

done within the element. The tissue volume is defined as Ω and is subject to boundary 

conditions. Assuming Cartesian coordinates, the displacement at the node  i of a given 

element is labeled ai= ui vi wiT, while the displacement at any point in Ω is expressed  u= 

ux,y,z  v(x,y,z)  w(x,y,z)T.  The  latter  displacement  is  fully  determined  by  the  nodal 
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displacements and by the  shape functions that govern the interpolation between them. 

For a tetrahedral element, we have u = INiINjINkINl ae=Nae, where Ni = 1 at node (xi yi 

zi ) but zero elsewhere, and so on, and where  a12×1e= aiajakalT is comprised of all 

nodal displacements within a given tetrahedral element. For a small strain assumption, 

the relationship between strain ϵ and displacement u is given by the following expression: 

ϵ= ϵxϵyϵzγxyγyzγxz = ∂u∂x∂v∂y∂w∂z∂u∂y+∂v∂x∂v∂z+∂w∂y∂u∂z+∂w∂x= 

BiBjBlBm ae≡ Bae (3)

where  the  shape  functions  Bi are  obtained by  deriving  INi,  and  B is  designated  the 

elemental Shape Matrix. 

Foregoing for  the sake of brevity the details of the derivation of FEM formulation from 

PVW, a linear isotropic material whose constitutive properties is expressed as a matrix 

D(λ,μ), the elemental equilibrium expression is given by (6):

qe= Keae+ fe where Ke=VeBTDBdV  and
where fe=-VeNTbdV-VeBTDϵ0dV + VeBTσ0dV .     (4)

We designate  nodal forces qe, which are statically equivalent to boundary stresses and 

body forces comprising boundary conditions,  concentrated loads b acting on the body, 

and  σ(ae,  B,σ0) the  elemental  stress,  which  is  estimated  based  on the  constitutive 

properties of the tissue.

Summing expressions (4) over the whole volume leads to the familiar FEM formulation: 

Ka= f, (5)

where Ke and fe are the elemental stiffness matrix and elemental force vector, while K, a 

and f represent the system's  stiffness matrix, having sparse structure, as well as  nodal  

displacement and force vectors.  The  unique  solution  requires  one  or  more  boundary 
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conditions, which modify the stiffness matrix and make it nonsingular. For some dynamic 

systems, this equation may be modified to further include mass M and damping C effects:

Ma + Ca + Ka= f, (6)

The Principle of Virtual Work can be seen as equating internal deformation energy with 

external energy generated by external forces over a domain  Ω:

ΩδU dΩ=ΩfTδu dΩ (7)

where  δ indicates  the  variation of  a  quantity.  For  material  nonlinearity  and  large 

geometric deformation, it  is common to solve finite elements expressed in terms of a 

Strain  Energy  Density  (SED)  function  U,  which  is  a  material-related  function  of 

invariants of the  Cauchy-Green deformation tensor C=FTF, where  F is the  deformation 

gradient. These invariants, which are unchanged under rigid transformation, include I1= 

trC ,  I2= (trC)2-(trC2),  I3= detC ,  as  well  as the Jacobian  J= detF,  where  tr and  det 

represent the trace and determinant. 

Increasingly,  researchers  are  reconciling  the  conflicting  requirements  of  fidelity  and 

efficiency by using algorithmic  refinements  and high-throughput  or  parallel  hardware 

such as the graphical processor unit (GPU). Amongst the refinements of the first type 

include  the  Total  Lagrangian  Explicit  Dynamics  (TLED)  formulation,  featuring  an 

explicit solution of nonlinear finite elements that uses shape functions precomputed (prior  

to the simulation) from undeformed coordinates (7), and the reduced basis adaptation of 

the  TLED  (8).  Another  recent  technique,  the  Multiplicative  Jacobian  Energy  

Decomposition (MJED) algorithm (9), allows matrix precomputations to be performed 
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through a decomposition of the strain energy as a sum of terms that are functions of  

various invariants, so as to avoid matrix inversions and complex derivative expressions. 

(a)
(

b)

Figure 4. GPU acceleration: (a) Idealized representation of banded matrix in terms of 
arrays  and  2D  suitable  for  texture  hardware-based  acceleration,  reproduced  with 
permission from (10). (b) Architecture of state-of-the-art multi-GPU computer, featuring 
8 GPU boards on the same backplane (11) . 

Examples  of  hardware-based  acceleration  include  the  application  of  GPUs  to  the 

computation of the TLED (12). The basic idea of GPU acceleration is depicted in figure 

4(a):   to implement the multiplication of a sparse banded matrix  A by a vector  b (10), 

each band of the matrix is represented by a one-dimensional array that in turn is stored in 

a 2D texture on the GPU (A1-A3). Zeroes are padded at the front or back depending on 

the position of the band in the matrix. The multiplication Ab is computed through a pixel-

wise multiplication of each band in A with b, and the products are added to form the final 

result. In practice, GPU-based computation produces an order-of-magnitude acceleration 

over the CPU. Moreover, recent multi-GPU computers (11), such as that depicted in 
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(a)

(b)

Figure 5. Multi-grid finite elements, computed on a cube with multi-resolution meshing. 
(a): coarse, medium and fine grids. (b): large-deformation real-time haptic interaction, 
courtesy of X. Wu (RENCI, Chapel Hill, NC).

figure  4(b),  offer  promise  to  scale  at  low cost  this  type  of  acceleration with  a  large 

number of GPUs present on one motherboard, in part through judicious choice of PCI-e 

bus switches.  

One of the conflicting requirements that characterize interactive surgery simulation is the 

computation of a constitutively faithful behavior (e.g.: nonlinear FEM) over relatively 

large   organs,  such  as  the  brain,  while  also  modeling  fine  critical  tissues  whose 

preservation is central to the simulation. In short, interactive nonlinear biomechanics (at 

near-haptic rates) tend to presuppose relatively large elements, with edges in the 10-30 

mm range, while small critical tissues are typically comprised of elements of 1mm scale 
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or even less. A single resolution FE system that would imbed both types of elements 

could easily be subject to ill  conditioning, with dire consequences for its convergence 

properties. Consequently, these conflicting requirements tend to favor a  multi-grid FE 

approach  (13),  where  an  anatomical  model  consists  of  several  meshes  of  different 

resolutions, each solved as a separate FE system. Moreover, the coarse level is solved 

efficiently, due to the limited complexity of its system and to its large critical time step, 

and then is used to assist middle and/or fine level systems to converge more quickly than 

otherwise, as depicted in figure 5. Moreover, while Wu suggested medium- and fine-level 

meshes that spanned the whole volume of interest, in practice only a subvolume is of 

clinical interest, typically comprising the pathology and the path to it, which limits the 

complexity of these corresponding FE systems. 

Mechanics of Tissue Cutting and Resection in Medical Simulation

Amongst techniques for synthesizing a cut or resection in interactive surgical simulation,

Figure 6. Application of XFEM for simulating a cut to a tetrahedral mesh, courtesy of L. 
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Jerabkova (Stryker,  Germany): (left) – deformable cube fixed at  the top which is  cut 
interactively; (middle)  the dissected volume falls under the effect of gravity; (right) the 
underlying elements (usually invisible to the user) are visualized: the enriched elements 
are stretching between both dissected parts (14).

we cite those based on a tetrahedral or triangulated mesh, such as the  extended finite 

element method (XFEM). In this formulation, the shape functions Bi of expression (3) 

admit a possible discontinuity (14), as depicted in figure 6. 

The main alternative to XFEM is based on the meshless formulation, which involves a 

system of equations derived from point-centered shape functions, as shown in figure 7. 

Meshless  methods  discretize  partial  differential  equations,  including  continuum 

mechanics expressions, through shape functions with compact support defined on a local 

cloud of points (or nodes), rather than on an non-overlapping elements. Despite the name 

that implies that no mesh is involved, the latter approach requires a preliminary meshing 

that establishes neighboring vertices in the point cloud used in the discretization.

(a) (b)

(c) (d)

Figure 7. Application of meshless methods to simulating cutting by fracture mechanics, 
courtesy  of  S.  Bordas  (Univ.  Cardiff,  Wales):  (a)  illustration  of  point  cloud  and 
subdomains associated with each point (2D illustration); (b) point-based test functions, 
for  constructing the  weak form of  equilibrium expression,  and weight  functions  for 
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constructing shape functions for interpolation of the point cloud; (c) a propagating crack 
leads  to  the  insertion  of  new  points;  (d)  enriched,  discontinuity-admitting  weight 
functions (not shown) lead to a numerical solution of a simulated fracture.  

Open-source Resources in Medical Simulation

Increasingly, researchers have come to rely on open-source software for implementing 

state-of-the-art  applications.  Resources  available  include  in  particular  the  Simulation 

Open Framework Architecture (15), which features a highly modular suite of C++ classes 

that implement the basic components of an interactive

surgery simulator. This toolkit provides separate visualization and biomechanics engines, 

support for haptic interaction, and collision detection pipeline. In particular, the separate 

handling  of  visualization  and  biomechanics  makes  it  possible  to  have  a  rendered 

triangulated anatomical boundary, or  Visual Model, that is significantly denser than the 

tetrahedral Mechanical Model that is input to the biomechanics engine, while providing a 

Mapping class that updates the former on the basis of real-time deformations undergone 

by the latter.  A number of other open-source toolkits emphasize haptics and mesh-spring 

models, such as CHAI 3D (16) and H3D (17). 

Finally, an unstated assumption in this discussion is that  we have a starting point of a  

segmented image volume, which may be achieved interactively by an expert anatomist, or 

(semi-)automatically  with  segmentation  algorithm.  In  general  elements  represent  a 

homogeneous tissue volume, so it is assumed that each tissue volume is known prior to 

meshing; because of partial volume effects and imaging noise, the relationship between 

image intensity and tissue composition is not straightforward: in general, a three-tissue 

volume does not produce  three well separated spikes in the image histogram, but rather 
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three overlapping Gaussian modes. As a result, the mapping between image intensities 

and tissues has to be established. The segmentation problem is a highly active area of 

research within the medical imaging community, and an extensive survey is beyond the 

scope of this paper. We suggest the following surveys to the reader (18) (19) as well as 

leading open-source efforts such as Slicer3D (20).

Segmentation methods fall into three categories: region, boundary, and atlas-based. 

• Region-based methods identify tissues by considering the intensity of each 

voxel, and include region growing, clustering, and Bayesian approaches such 

(a)
(

b)

Figure  8. Region-based approach to detecting blood vessels in MR angiography 
data: (a) orientation of principal axes of local Hessian-based 3D ridge operator; 
(b) application to identifying cerebral blood vessels (21), courtesy of S. Aylward 
(Kitware), with labeled tumor and oedema also depicted.  

as Expectation Maximization. One illustration of a region-based approach 

is  shown  in  figure  8.  This  technique  combines  a  tube-like  structure 

detection operator, based on an eigenanalysis of the local Hessian of the 

image, and medial axis tracking of these locally bright tubes that coincide 

with  blood  vessels,  which  tracks  in  the  direction  the  eigenvector 

corresponding to the smallest of three eigenvalues (21). 
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• Boundary-based segmentation methods identify the anatomical boundary, 

and include active surface models whose dynamic behavior encapsulated 

in  a  partial  differential  equation  in  time  and  space  or  a  physical 

equilibrium expression  that  features  a  number  of  pseudo-forces.  These 

generally  correspond  respectively  to  implicit,  or level  set-based (22), 

surface  models  and  explicit,  physically  based  models  that  include  the 

simplex mesh (23).  

These surface models may also incorporate a component that accounts for 

shape statistics (24), which nudges the surface shape towards consistency 

with population statistics of the boundary of an anatomical structure. The 

simplex surface model is closely related to the surface meshing problem, 

which will be revisited in Modeling Paradigms section. 

(a)
 

(b)

Figure  9. Atlas-based minimally supervised approach (25) to detecting tumors in 
magnetic resonance imaging data: (a) axial slice of MRI data with segmentation 
results of tumor and oedema; (b) surface rendering of tumor and oedema overlaid 
on volume rendering of the brain, courtesy of M. Prastawa (Univ. Utah). 
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• Finally,  atlas-based methods use a  digital  atlas  of  a  structure or  organ,  which 

makes explicit various tissue or functional classes and which is warped to patient 

data (26). By proceeding this way, we can express tissue classification as a non-

rigid registration exercise, which in turn may require the entry of a seed point 

from a sub-volume where the relationship with the atlas is undefined, such as a 

brain tumor (25), shown in figure 9. 

Theory - The Impact of Element Quality and 

Size on Simulation

In general, the objective of the mesh generation stage is to produce a description of the 

anatomy suitable for numerical analysis and that consists of high-quality elements, where 

each element typically overlaps one type of tissue, and where the quality of an element 

correlates with the absence of edges of small relative size (in relation to the other edges 

of the element) and of small  dihedral angles (defined as the angle between two planes 

subsuming two triangular faces). A characterization of element quality,  as it relates to 

finite elements, was proposed in (27) and will be summarized in this section.

For finite elements applications, the condition number of the stiffness matrix should be 

kept as small as possible. Poorly conditioned matrices affect linear equation solvers by  

slowing down their convergence or introducing large round-off errors in the result. 

Element shape highly influences matrix conditioning, with small angles being deleterious 

to the result. The relationship between the shape of the element  and matrix conditioning 

depends on the partial differential equation being solved, as well as the basis and test 

functions used to discretize it. Given a d-dimensional problem, where in the tetrahedral 
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case  d=3,  the  finite  element  method  builds,  for  each  ith element, a  (d+1)×(d+1) 

elemental stiffness matrix Ki. These matrices are assembled into a global stiffness matrix 

K whose size is determined by the total number of elements. The convergence of the FE 

problem is made worse by  K’s condition number  κ= λmaxKλminK, where  λmaxK 

and λminKare the largest and smallest eigenvalues of K. While the eigenvalue λminKis 

not strongly influenced by elemental shape, λmaxK can be made arbitrarily large by a  

single  badly  shaped element. For the  ith  tetrahedral  element,  its  elemental  stiffness, 

labeled Ke in expression (4), is given by the following expression, where we drop the e 

superscript for simplicity: 

Ki=A 

ω1∙

ω1

ω1∙

ω2   

ω1∙

ω3

ω1∙

ω4 
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ω3∙
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where in expression (8),  ωkp= VkV denotes the  barycentric coordinates of a point  p 

within the ith tetrahedral element  ti, where V represents the volume of this element, and 

Vk(p) represents the volume of the new tetrahedron formed by replacing vertex vk by p. 

The gradient of the barycentric coordinate is 

ωk(p) = 

ωk, which does not vary with p,  is a function of the altitude of each vertex ak.. As shown 

in figure 10, we label fk the (d-1)-dimensional face ti opposite vertex vk. The altitude ak of 

this vertex vk  is the shortest distance from it to the plane that includes fk. The gradient 
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ωk is  a  vector  of  length  1/ak, directed  into  ti in  a  manner  orthogonal  to  fk.  This 

development leads to the following expression for the element stiffness matrix:

Ki=16 1≠i<j≠1lij cot θij-l34 cot θ34             -l24 cot θ24-l23 cot θ23-l34 cot θ34-l24 cot  

θ242≠i<j≠2lijcotθij-l14 cot θ14     -l14 cot θ14  3≠i<j≠3lijcotθij -l13 cot θ13-l12 cot θ12-

l23 cot θ23-l13 cot θ13            -l12 cot θ124≠i<j≠4lij cot θij  ,  (9)

where the variables lmn represent the lengths of the edges between all vertex pairs vm-vn, 

while the variables θmn represent the corresponding dihedral angles about those edges. If a 

dihedral angle approaches 0 degrees, its cotangent approaches infinity, and so does the 

resulting large  eigenvalue  λmaxK.  In other words,  flat  tetrahedra,  with  one or  more 

dihedral  angles  approaching 0,  cause the largest  eigenvalue of the stiffness matrix  to 

explode numerically, which in turn undermines the convergence of the FE linear system. 

In addition, explicit solvers such as that used in the TLED discussed above, require for 

the sake of stable computation a critical time step that is proportional to the length of the 

smallest edge of the whole mesh. As a result, one of the objectives in mesh generation is

Figure 10.  Illustration of tetrahedral  geometry,  adapted from (27),  which illustrates a 
point whose barycentric coordinates are being computed, vertices vk, and opposing outer 
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faces of two of these vertices.

control of the size of elements, in relation to enabling interactive medical simulation and 

limiting the complexity of off-line predictive simulation. In other words, a mesh whose 

smallest edge is 1 mm long will yield a critical time step that is ten times smaller than a 

mesh  whose  smallest  edge  is  10  mm  long.  Moreover,  given  that  the  volume  of  an 

equilateral tetrahedron of edge length l is given by 

V= 212 l3 (10)

and that the number of elements is therefore inversely proportional to edge length, the 

complexity (or size of the FE system) also decreases as a cubic function of the increase in 

edge  length.  For  example,  the  average  brain  volume of  a  human male  is  1260 cm3; 

representing it with regular tetrahedra of 1 mm edges equates with 1260 cm3/1.18 x 10-4 

cm3 ≈ 1.07 x 107 tetrahedra, while enforcing an edge length of 10 mm can produce about 

10,700 elements, a reduction of 3 orders of magnitude of the FE system. Clearly, control 

over the resolution of the mesh is highly material to the achievement of an interactive 

surgery  simulator,  especially  if  i)  the  biomechanics  incorporate  a  strongly  predictive 

aspect,  and  ii)  inherently  volumetric  processes,  such  as  tumor  resection,  need  to  be 

modeled explicitly. 

For  some  anatomical  structures, the  ideal  modeling  may  not  be  tetrahedral  but  a  

collection of triangular shell elements, or even a piecewise-linear collection of beam  

elements.  For example, consider large blood vessels, iatrogenic trauma to which should 

be penalized by the simulation, and which may require microsurgical suturing to correct. 

This type of simulation typically requires modeling that faithfully reproduces thin vessel 

walls.  In  this  particular  case,  the  thickness  of  the  wall  is  less  than 1  mm,  while  an 
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interactive simulation may require shell elements whose edges are significantly longer 

than  1  mm.  In  other  words,  it  does  not  make  sense  to  model  thin-walled  manifold 

structures with tetrahedra, but rather with shell  elements, in which case the condition 

number  is  not  sensitive  to  the  small  thickness  of  the  vessel  wall.  In  this  context, 

Shewchuk’s  analysis  of triangular elements,  which mirrors the  analysis  of tetrahedral 

quality  described  above,  also  suggests  that  triangular  shell  elements  should  have  no 

highly acute angles. The stiffness of the triangular  element is given by the gradient of the 

barycentric coordinates in the triangle:

Ki=A 

ω1∙

ω1

ω1∙

ω2   

ω1∙

ω3

ω2∙

ω1

ω3∙

ω1

ω2∙

ω2
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ω3 , (11)

which in turn leads to an expression in terms of the angles of the triangular element:

Ki=12 cot θ2+cot θ3- cot θ3- cot θ2- cot θ3cot θ1+cot θ3- cot θ1- cot θ2- cot θ1cot 

θ1+cot θ2  (12)

A similar development as above relates the convergence properties of triangular shell-

based finite elements with small eigenvalues in expression (12), which are the result of a 

large angle θi.

Finally, anatomical structures that benefit from beam elements are essentially curvilinear, 

in comparison with the scale of the simulation overall: e.g. thin cranial nerves modeled in 

conjunction with  a  brain  model.  Consider  the  synthetic  example  of  figure  11,  which 

depicts a curvilinear structure of comparable dimensions to a cranial  nerve or narrow 

blood vessel: let's suppose that we have a curved structure of a radius of 0.5 mm that is 

20 mm of arclength. With a fully three-dimensional approach, the avoidance of acute 

dihedral angles in expression 9 would entail a large number of tetrahedra: the volume of 

this structure is 20 mm x Π x (0.5 mm)2 = 15.7 mm3, while each tetrahedron which would 

have edges of roughly 0.5 mm, and a volume of 0.0147 mm3, using expression (10). The 

tetrahedral approach would then produce roughly 1065 elements, and the time step would 
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(a) (b)
(

c)

Figure  11.  Application  of  1D elements  to  curvilinear  features:  (a)  synthetic  nerve  of 
20mm arclength; (b) for the segment between two points in (a), the tetrahedralization is 
idealized  in  -  assuming  tets  of  0.5mm edge  length,  (b)  amounts  to  more  than  1000 
tetrahedra, while in (c) a piecewise-linear beam element representation uses six elements.  

(a)
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(b)

(c)

Figure  12.  Application  of  1D representation  to  medical  simulation:  (a)  Catmull-Rom 
spline,  left,  and  uniform  B-spline,  right;  (b)  curvilinear  path,  left,  and  generalized 
cylinder defined on this path, right; (c) application of generalized cylinder elastic model 
to suturing simulation, courtesy of J. Lenoir (SimQuest). 

need to account for edges of 0.5 mm. By contrast, the 1D element approach, exemplified 

by the piecewise-linear beam elements of this example, would typically lead to a much 

more compact representation, as shown in figure 11, and each time step would reflect 

edges far longer than 0.5mm.  

Not surprisingly, 1D elements are used to model thread in interactive suturing simulation 

(28), as depicted in figure 12, as well as to modeling catheters in angioplasty simulation 

(29). In contrast with the simple ∁0 piecewise-linear example suggested in figure 11(c), 

Lenoir exploits a formalism based on splines, including either Catmull-Rom, or uniform 

as well as non-uniform B-Splines. The path traced by these splines achieves a material or 

tissue representation of high levels of continuity (∁1 and ∁2). This path is imbedded in a 

general cylinder, which endows the curve with a width in 2D or a cross-sectional radius 
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in  3D,  which  serves  as  basis  for  an  elastic  model  parameterized  according  to  the 

arclength of the path.  

Modeling Paradigms  – Methods for Mesh Generation
Generally  speaking,  there  are  two types  of  mesh generation  schemes:  structured  and 

unstructured. Methods for producing structured grids are based on rules for geometrical 

grid-subdivision and mapping techniques (30). Structured grids have a regular topology 

where  the  neighborhood relation  between all  points  is  captured  with  a  two or  three-

dimensional array. If the nodes can be ordered into a regular array, where nodes (i,j,k) and 

(i,j,k+1) are considered neighbors, then the grid is described as structured. Otherwise, the 

grid is categorized as unstructured.

Structured Tetrahedral Mesh Generation

Generally, structured meshing describes quadrilateral and hexahedral meshing in 2D and 

3D respectively, characterized by interior nodes having a constant number of incident 

elements. Typically, the elaboration of these methods involves manual interaction on the 

part  of the user to produce a template (30), as well  as a procedure  for warping this 

template to patient data. IA-FEMesh is an open-source interactive software program that 

enables the development of structured hexahedral meshes (31). Figure 13 illustrates the 

application of this program to the development of  practical anatomical meshes.  

Unstructured Tetrahedral Mesh Generation

In contrast, unstructured mesh generation relaxes the node valence requirement, so that 

any  number  of  elements  can  meet  at  a  given  node.  Unstructured  tetrahedral  mesh 

generation falls under four categories (32): 

• Octree-based
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• Delaunay

• Advancing Front

• Optimization-based

Octree-based Unstructured Tetrahedral Mesh Generation

The octree method (33) (34) entails a recursive subdivision of the tissue volume into 

contiguous cubes that are fully or partially overlapped by this tissue. Irregular cells are 

created where the cubes intersect the boundary of the volume, which typically requires a 

large number of surface intersection computations. Subsequently, both irregular cells on

(a)
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(b)

Figure 13. Orthopedic applications of structured meshing, courtesy of N. Grosland (Univ. 
Iowa): (a) cervical laminoplasty; (b) knee model. 
generally means triangulated and tetrahedral mesh generation in 2D and 3D respectively. 

(a) (b)

Figure 14. 2D analogy of octree-based spatial occupancy: quadtree; (a) section of a 2D 
tissue; (b) quadtree-based decomposition of three levels.
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the boundary and internal regular cells give rise to tetrahedral. In general, this method 

does not use as input a triangulated surface boundary, but derives the tetrahedra explicitly 

from cubic cell occupancy. This representation then leads to a tetrahedralization inserting 

vertices at each inner octree node, as well as at intersections between octree edges and the 

tissue  boundary.  A simple  2D  analogy,  featuring  the  quadtree  to  implement  spatial 

decomposition, appears in figure 14. To ensure that element size does not change too 

dramatically, a rule enforces a maximum  difference of one level between adjacent cells 

of the octree subdivision. Post-processing can be used to improve element quality.

After an octree is constructed and filled with well-shaped tetrahedra, there are various 

approaches to proceed with further mesh improvement. Let us consider the first case, 

when the resolution of the octree is significantly more coarse then the resolution of the 

image. In this case, the geometric fidelity, measured as Hausdorff distance between the 

boundary  of  the  mesh  and  the  boundaries  of  the  tissues  in  the  image,  is  often  not 

satisfactory. A common approach to improve boundary fidelity is to move the nodes of 

the mesh to some positions corresponding to the tissue boundaries to improve the fidelity 

(35) (36) (37). In the second case, the resolution of the octree matches the resolution of 

the structures in the image. In this scenario, the fidelity can be acceptable, however the 
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Figure 15 Octree-based tetrahedral meshing of the brain. (a) An octree-based multi-tissue 
tetrahedral mesh of a brain atlas (38) and the surrounding space. Right: the final mesh 
obtained with the Lattice Decimation method which conforms to the bounds of 2 voxels 
on the fidelity to the tissue boundaries and 15 degrees minimum dihedral angle (39).
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number  of  tetrahedra  in  the  mesh  is  generally  very  high.  To  reduce  the  number  of 

tetrahedra in the mesh, a decimation approach was developed which, while preserving 

fidelity and quality bounds, makes the mesh much more sparse through the use of edge 

contraction operations (39). See Figure 15 for an illustration.

Delaunay Unstructured Tetrahedral Mesh Generation

The most widely used tetrahedralization technique is the method based on the Delaunay 

(a)
 

(b)

(c)

Figure 16 Delaunay tetrahedralization. (a) two neighboring triangular elements fulfilling 
the Delaunay “empty circle” criterion,  adapted from (32) ;  (b)  constrained Delaunay 
tetrahedron  T (see text below), adapted from (40);  (c) topologically faithful Delaunay 
tetrahedralization  of  radially  varying  density  for  pituitary  surgery  simulation: 
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visualization based on planar intersection and rendering of individual edges  (reproduced 
with permission from (41)).

partition of  space,  otherwise  known as  the  “empty  sphere”  criterion.  The basic  idea, 

illustrated in figure 16 (a) with a 2D “empty circle” equivalent, is that no node can be 

contained in the circumsphere of a tetrahedron not incident to it. However, this criterion 

is not used as an algorithm for generating a mesh, but rather for determining which subset 

of a point cloud should be connected to form tetrahedra. A number of point insertion 

methods have been proposed for Delaunay methods.  As suggested in (32), the simplest 

point insertion approach is to define a regular grid of points covering the domain at the 

desired density. This density can be a spatially varying size function defined by the user 

as opposed to a constant. A mesh of varying density was proposed by the first author for 

representing the brain for endoscopic pituitary surgery simulation, based on a radial edge 

size function defined from a point centered in the pituitary gland, as illustrated in figure 

16  (c).  A variation  of  this  density-  driven  insertion  approach  involves  the  recursive 

insertion of points into the centroid of 

each tetrahedron provided that the size objective function is not violated (42). Alternate 

methods for inserting internal points include the following:

• the  center of element circumcircles in 2D and circumspheres in 3D, also known as 

Garanteed-Quality mesh generation (43) because of a minimum bound on element 

angles that can be achieved with a prescribed order of insertion, and

• point insertion based on the Voronoi-segment, which is defined as the line segment 

between two circumcircles/spheres of contiguous triangular/tetrahedral elements (44). 
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• So-called selection balls (or disks) within the circumscribed spheres of poorly shaped 

tetrahedra,  or  within the  equatoral  and diametral  spheres  of  encroached boundary 

elements (45)  (46) (47).  Instead of  the previous approaches based on one or  two 

specific positions for the new points, this generalized approach offers whole three-, 

two-,  and  one-dimensional  regions  with  infinite  number  of  points.  These  regions 

allow for the development of multiple point insertion strategies, all within a single 

theoretical framework endowed with proofs of termination and good grading.

As pointed out in (40), Delaunay methods tend to produce convex tetrahedralizations, 

especially  if  we  constrain  them to  use  as  few  elements  as  possible  for  the  sake  of 

interactivity,  while  polygonal  surface  boundaries,  also  known  as  piecewise  linear 

complexes (PLC), often feature concavities. Moreover, these input boundaries can feature 

arbitrarily small dihedral angles, which high-quality tetrahedral meshing tries to prevent. 

Consequently, in addition to the point insertion strategy, Delaunay methods also can be 

differentiated according to  their  policy in relation to preserving the input  PLC in the 

output tetrahedralization, versus maintaining element quality, as follows. 

• Conforming Delaunay. A tetrahedralization T is said to conform to a PLC C if for 

any face of C is a union of faces of T. In this approach, vertices are inserted into 

the mesh while still maintaining the Delaunay property and until it conforms to 

the boundaries (48) (49). The precise choice of where to insert additional vertices 

to  obtain  boundary  conformity  is  not  obvious,  especially  in  relation  to 

guaranteeing termination,  as  sharply edged boundaries  and corners can induce 

cascading  additions  of  Steiner  points.  This  problem  is  alleviated  somewhat 

through  the  definition  of  protected  areas  near  the  PLC  that  restricts  the 

page 33



geometrical requirements for inserting Steiner points. Nonetheless, these methods 

tend to  produce a large number of small  tetrahedra,  while  the need for good-

quality elements and the need for boundary conformity appear to be conflicting 

requirements  (40).  There are  also parallel  Delaunay mesh refinement  methods 

with proven conformity of the concurrently refined subdomains (46) (50). 

• Almost  Delaunay. The  second  approach  to  reconciling  a  Delaunay 

tetrahedralization with input PLC is termed almost Delaunay approach (51). This 

method is similar to the conforming approach, except  that the vertex insertion 

near the PLC boundary does not necessarily fulfill the Delaunay property. Once 

the PLC boundary is fully recovered by the outer faces of the tetrahedralization, 

the algorithm uses topological flips to regain the Delaunay property.  They too can  

fall prey to either creating a large number of tetrahedra or very short edges. 

• Constrained Delaunay. Constrained Delaunay Tetrahedralizations, or CDTs, are 

not fully Delaunay but retain some of the qualities of Delaunay Tetrahedra: they 

control  interpolation  error,  while  preserving  high  quality  meshes  under 

refinement. Moreover, they tend to require fewer vertex insertions and therefore 

afford better control over mesh resolution, without creating short edges. A CDT is 

a tetrahedralization where every tetrahedron T  is constrained Delaunay, which is 

defined as follows: 

o T  respects the PLC C: there exists no segment of C that is cut in two by T, 

and T  does not penetrate C from one side of a facet to the other.

o There is a circumsphere S of T such that there is no vertex v of C  that falls 

inside  S and that is  visible from any point in the relative interior of  T. A 

34



Wiley STM / Sokolowski, Banks: Handbook of Real World Applications in Modeling and Simulation 
Chapter 07/ Michel A. Audette / filename: ch07_Audette.doc

constrained Delaunay tetrahedron appears in figure 16 (b): the intersection 

of T with a facet F of C is a face of T, so this tetrahedron respects C. The 

circumsphere of T encloses a vertex v, but v is not visible from any point 

in the interior of T, although visible from points on the boundary of T.

Finally,  Delaunay-based  mesh  generation  approaches  for  medical  images  can  be 

classified  according  to  how tissue  boundary  is  processed.  The  first  group begins  by 

constructing a piecewise linear complex coinciding with the boundaries of the tissues, 

and then uses a CAD-oriented algorithm (such as the one implemented in Tetgen software 

(52)) to mesh the interior (53) (54). This approach, while enjoying the benefit of using 

existing algorithms, needs to solve a difficult problem of constructing an initial surface 

which will lead to a tetrahedral mesh with good fidelity, element shape, and number of 

elements. The other approach is based on simultaneous construction of mesh surface and 

interior (55).

Advancing Front Unstructured Tetrahedral Mesh Generation

Starting from the tissue boundary, new vertices are added by a local heuristic to ensure
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Figure  17.  Two-dimensional  analogy for  advancing front  method,  after  one  iteration, 
based on simple ellipsoid with two holes; adapted from (32). 

that the generated tetrahedra have acceptable shapes and sizes and conform to the desired 

size  objective  (56).  An  active  front  is  maintained  where  new tetrahedra  are  formed. 

Figure 17 shows a simple two dimensional analogy, where triangles have been formed at 

the boundary. As the algorithm progresses, the front will advance to fill the remainder of 

the area with triangles. In three-dimensions, for each triangular facet on the front, an ideal  

location for a  fourth node is computed. Mesh optimization steps can also be performed to 

further improve the quality. 

Optimization-based Unstructured Tetrahedral Mesh Generation

In  general  contrast  to  the  preceding  approaches,  variational  approaches  express 

tetrahedral  meshing  as  a  functional  that  is  interpreted  in  terms  of  energy,  based  on 

calculus of variations, and where the optimal mesh results from an iterative minimization 

of this functional, through vertex displacements and connectivity changes of the mesh. 

The main difficulties of the early implementations of this type of method included their 

susceptibility to local minima, as a result of highly non-convex functionals, and as well as 
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to  producing  non-compact,  sliver-like  tetrahedra  (57).  Successful  methods  in  this 

category include the  Variational Tetrahedral Meshing proposed in (57) and  Centroidal  

Voronoi Diagram-based variational method (58). 

Unstructured Surface Mesh Generation

The representation of surface boundaries by unstructured meshes typically involves the 

identification of the polygonal intersection of a tissue volume with a regular grid, also 

known as isosurface extraction, in the manner pioneered by the Marching Cubes method 

(59), which can give rise to fifteen topologically different cases, as depicted in figure 18. 

Figure 18. Illustration of isosurface intersection cases of Marching Cubes (reproduced 
from freely licensed media repository of (60)). 

These polygons are then stitched together to produce a polygonal surface, which can be 

refined into purely triangulated surface. The Marching Cubes method subsequently lead 

to  a  number  of  refinements  based  on  other  types  of  grids,  namely  the  Marching 

Tetrahedra (61). For a survey of isosurface extraction, the reader is referred to (62). 

The results of these methods tend to be extremely dense and require decimation in order 

to  produce  a  surface  that  is  usable  in  simulation,  especially  interactive  simulation. 
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However, most of the early decimation methods were conceived to meet the requirements 

of  visualization  of  a  static  scene,  rather  than  simulation  based  on  a  dynamically 

deformable model, so that they tend to produce very short edges at high-curvature areas. 

By contrast, the discrete active surface model known as the simplex model, introduced in 

(23), offers a means of precisely controlling the density of the final mesh, as well as a 

number of other advantages. The simplex is a physically based discrete surface model 

featuring a set of vertices, with each vertex having a mass as well as three neighbors, as 

(a) (b) (c)

Figure 19. Topology of simplex model. (a) 3-neighbour vertex topology, and duality with 
triangulated mesh; (b) two topological operators of the Delingette simplex model; (c) two 
of several topological macro-operators introduced in the Gilles simplex model, courtesy 
of B. Gilles (INRIA, Grenoble, France). 

shown in figure 19 (a), and where the motion of each vertex is governed by a Newtonian 

law of motion:

m ∂2pi∂t2+γ∂pi∂t- αfintpi= βfext(pi) (13)

38



Wiley STM / Sokolowski, Banks: Handbook of Real World Applications in Modeling and Simulation 
Chapter 07/ Michel A. Audette / filename: ch07_Audette.doc

Fint is  the  sum  of  internal  forces,  which  enforces  geometric  continuity,  while  Fext 

represents  summed  external  forces.  The  variable  m denotes  the  vertex  mass,  γ the 

damping factor, and α and β are weight factors balancing internal and external forces. 

It  features  forces  that  assure i)  internal  stabilization in  Fint,  ii)  balloon inflation and 

image attraction forces, and iii) topological operators (see figure 19 (b)) that enable the 

insertion  and  deletion  of  individual  edges  as  well  as  provide  resolution  control.  A 

Simplex-based solution was proposed by the first author to achieve controlled-resolution 

decimation of brain meshes for (41). 

In  addition,  a  number  of  highly  descriptive  features  were  proposed  in  (63)  for 

musculoskeletal applications, emphasizing multi-surface modeling (figure 22) and also 

included the following: 

Topological operators that produce hexagonal faces (figure 19 (c)), enabling
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(a)

(b)

Figure 20. Recent innovations of Simplex model: (a) multi-resolution meshing; (b) 
multi-surface coupled model, courtesy of B. Gilles (INRIA, Grenoble, France).

• resolution control and multi-resolution surface meshes;

• spline-based contours for inter-surface attachments.

• Medial axis representation of the surface interior, coupling forces between medial 

axis and surface model, and medial-axis based inter-surface collision handling.

Beyond the above refinements for multi-resolution and multi-surface modeling, recent 

work  (24)  also  endowed  the  Simplex  with  a  statistical-shape  energy  functional,  as 

depicted in figure 21:

EshapeS= 12S-ST∑⊥-1S-S, (14)

the regularized covariance matrix. This term models the universe of possible object
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Figure  21.  Shape  statistics-aware  simplex  mesh:  3D patellar  cartilage  model:  (a)  3D 
rendering;  (b)  MR axial  slice  (note:  low contrast);  axial  slice  of  Simplex  model  (c) 
without and (d) with shape statistics, reproduced with permission from (24). 

where S is the Simplex model, S is the average Simplex shape, and ∑⊥-1 is the inverse 

of shapes as a Gaussian distribution. A minimization of the expression in (14) is used to 

modify the evolution equation in (13) to nudge the surface model towards the average 

shape, in a manner inversely weighted by second-order statistics. 

In  addition  to  the  Simplex-based  approach,  a  variational  formulation  to  surface 

decimation was proposed by Valette, based on the notion of Centroidal Voronoi Diagram 

(CVD) (64). This formulation is characterized by a partitioning, or clustering, of the input 

mesh, with individual clusters positioned according to a user-provided choice of mesh 

density, which in turn leads to an energy functional for spatially distributing clusters over 

the original surface. This technique is revisited in the Case Studies section. Recently, this 
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method was  also  adapted to  deal  with  implicit  surfaces,  which  typically  arise  in  the 

application of meshless methods (65). 

The  implications  of  these  surface  meshing  refinements  to  tetrahedral  meshing  are 

profound, especially those methods that preserve the integrity of the original triangulated 

tissue boundary. In conjunction with surface meshing techniques based on the simplex 

model,  tetrahedral meshing can now exploit boundary meshing methods that enforce  

precise resolution control, multi-tissue boundary consistency as well as conformity to  

population shape statistics. This development, in our opinion, portends a revolution in 

anatomical  modeling,  with  equally  important  implications  for  medical  simulation, 

especially in conjunction with the application of multi-grid finite elements. 

Case Studies

The  first  author  has  collaboratively  applied  the  CVD surface  meshing  method  (66), 

described  above,  to  controlled  resolution  surface  meshing  of  the  brain  with  strict 

requirements  for  fidelity  to  the  input  surface.  In  particular,  this  surface  emphasizes 

separability of the mesh about one Sylvian fissure in conjunction with the on-going 

(a) (b)
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(c)                                 (d)

Figure  22.  Illustration  of  approach  specific,  sulcal-separable  brain  surface  mesh 
decimation by CDV, based on on-going work of first author: (a) illustration of access to 
deep-seated tumor by pterional approach, featuring tissue being parted about the Sylvian 
fissure and critical tissues, courtesy of C. Trantakis (Leipzig); (b) illustration of BrainVisa 
sulcal  labeling  output;  (c)  wireframe rendering  of  ACV surface  mesh;  (d)  simulated 
deformation of tetrahedral model through haptic interaction with TLED biomechanics 
engine (inset: undeformed tetrahedral model). 

development  of  a  neurosurgery  simulator  based  on  the  pterional  approach  (66),  as 

depicted in figure 22. The identification of the Sylvian fissure is achieved with a publicly 

available  sulcal  labeling  software  (67)  (68).  This  fissure  was  found  to  be  easily  be 

obliterated by decimation methods whose final result  is not close to the input surface 

mesh  (69),  such  as  the  decimation  available  through  the  Computational  Geometry 

Algorithm Library (70), even if the resulting mesh was otherwise high-quality. Figure 22 

(d)  illustrates  preliminary  results   in  TLED-based  haptic  interaction  with  tetrahedral 

model, which was produced by inputting the CVD surface  to Tetgen. The development 
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of  this  model  is  produced  in  conjunction  with  clinical  specifications  through  the 

development of approach- and pathology-specific neurosurgical ontologies (71). 

(a) (b) (c)

Figure 23. Application of simplex mesh to stent design. (a) Basic topology - top: regular 
simplex mesh (thin lines with vertices) imbedded with strut mesh (thick lines); bottom: 
typical strut mesh pattern; (b) two stent designs; (c) screen shots of deployment in vessel. 
Images courtesy of I. Larrabide and A. Frangi (Univ. Pompeu Fabra, Barcelona, Spain.)
Beyond the modeling of anatomical surfaces, the simplex mesh has also been applied to 

the design of stents and the simulation of their deployment, as depicted in figure 23 (72). 

This stent simulation was achieved by first modeling the simplex with rectangular faces, 

while still preserving the three-neighbor connectivity, and then imbedding a coarser strut 

mesh within the simplex mesh. In addition, as shown in figure 23 (b), this imbedded 

simplex-strut mesh pattern was given a cylindrical topology. The cylindrical model could 

then be represented with an equilibrium equation that accounted for both simplex and 

strut meshes. Expression (13) was restated as
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pit+1= pit+1-γ(pit-pit-1)+ αfint(pit)+ βfext(pit) , (15)

which was expanded to account for shape-constraining forces needed to model the stent:

pit+1= pit+1-γpit-pit-1

               + χfl(pbt)+ψfapbt + fspit + fexp(pit)+ fext(pit) . (16)

In  this  model,  parameters  α and  β are  considered  equal  to  1,  and  the  equilibrium 

expression applies to both the simplex vertices pit and the stent points  pbt. In addition, χ 

and ψ are factors that balance the forces that determine the strut mesh length and angle 

forces  fl and  fa respectively, while  fs and  fexp are simplex mesh smoothing and stent 

expanding  forces.  The  result  of  the  stent-based  vessel  opening  was  input  to  a 

computational fluid dynamics simulation of the blood flow, which in turn is validated 

against phantoms.

Summary
This chapter surveyed tetrahedral and surface meshing techniques, emphasing those most 
relevant to medical simulation. It is clear that medical simulation is still in its infancy,  
and that improvements to methods for producing anatomical meshes will be a key issue 
in making simulators more clinically relevant, including enabling the computation of a 
patient-specific  suite  of  models  for  clinical  applications  of  interest.  The  introduction 
provided the reader with an understanding of leading methods of biomechanical engines 
used in the simulation of manipulation and cutting of tissues. A theoretical justification of 
the relevance of high-quality elements was described. Finally, the leading four categories 
of  tetrahedral  meshing  were  surveyed.  Leading  techniques  for  producing  controlled 
resolution  surface  meshes,  based  on  the  simplex  model  and  clustering,  were  also 
presented, with the former also offering methods for dealing with multi-tissue boundaries 
and with population shape statistics.  

Key Terms

Medical simulation:

predictive simulation: medical simulation whose emphasis is high-quality computations, 

typically used by expert surgeons to optimize their procedure. 
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interactive simulation: medical simulation whose emphasis is real-time response, 

usually to a  surgical gesture input through a haptic  device by a young surgeon in the 

course of training.

kinematics loop: the loop in haptic processing that converts input voltages from the 

device into input joint angles and input tool position.

haptics loop: the loop in haptic processing that converts output force computed  by the 

biomechanics engine into output joint torques and output voltages to the motors of the 

device.

Meshing: 

mesh generation: the decomposition of a tissue volume into simple shapes, suitable for 

finite elements, such as hexahedra or tetrahedra. 

unstructured mesh generation refers to this decomposition, whose vertices are inserted 

in an irregular pattern rather than a grid, which typically results in tetrahedra. 

dihedral angle: the angle between two planes subsuming two triangular faces meeting at 

a vertex; there are six dihedral angles in a tetrahedron. 

Mechanics:

finite elements method (FEM): a numerical simulation based on decomposition of non-

overlapping elements, where a weak form of an equilibrium expression is discretized 

through shape functions defined on tetrahedral or triangular elements. 

extreme finite elements method (XFEM) is a variant of FEM that features shape 

functions that admit a discontinuity, in contrast to the preceding that is based on 

continuous interpolants.
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Principle of Virtual Work: principle describing an equilibrium where applied forces and 

constraint forces on a mechanical system balance such that the system remains static, and 

according to which virtual work of these forces also balance out; the weak form of this 

principle is the foundation of FEM. 

shape function: interpolating function of an element that relates nodal quantities such as 

displacements to quantities evaluated at any position within the element, based on 

internal coordinates defined with respect to the nodes of the element; these functions are 

assembled into a matrix for the whole volume, and the stiffness matrix is obtained from 

this shape matrix. 

condition number: for a nonsingular linear system, e.g. Ax = b, a number that indicates 

the sensitivity of the solution x = A-1 b, based on the factor of the largest to the smallest 

eigenvalues of A, to small changes in b, which in turn is predictive of the system's 

numerical convergence to a solution.

meshless methods: continuum mechanics simulation that is based on a volumetric 

decomposition into overlapping spheres of interest defined over a cloud of points, where 

a weak form of a equilibrium expression is discretized through shape functions defined 

on these  overlapping spheres. 

mass-spring systems are an elastic sparse representation of a volume, in contrast to the 

densely interpolative schemes described above: this representation consists of point-

masses linked by linear springs. 

Unstructured Tetrahedral meshing
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Octree-based meshing: Tetrahedralization based on a hierarchical decomposition of 

space into octrees. 

Delaunay meshing: Tetrahedralization based on the insertion of points is carried out in 

way which is optimal in terms of a containment sphere. 

Advancing-front meshing: Tetrahedralization based on the iterative addition of 

tetrahedra, starting from tissue boundaries. 

Optimization-based meshing: Tetrahedralization achieved through the expression of the 

meshing problem as a functional based on calculus of variations, suitable for 

optimization. 

Unstructured Surface Meshing

Simplex mesh: Active discrete surface model characterized by each vertex having three 

neighbours, and by an equilibrium relation between pseudo-forces that govern the 

behavior of the model.

Exercises
1. Is it feasible to input a segmented volume into a numerical simulation? If so, why, 

and if not, why not? 
2. Is it feasible to input a raw image volume into a tetrahedralization method? If so why, 

and if not, why not?
3. If we are representing the anatomy of interest by tetrahedral meshes of several levels 

of resolution, should we model the whole volume coinciding with the organ at each 
level, as was illustrated in figure  4? 

4. If we must represent clinically relevant blood vessels by elements, what are the 
relative merits of using tetrahedra versus shell elements? 

5. Contrast the main methods for decomposing a volume into tetrahedral elements. 
6. Describe the simplex surface model. The surface model is formally known as a 2-

simplex, where an n-simplex is such that (n+1) is the number of vertex neighbors. If 
this 2-simplex is known as geometrically dual to a triangulation, what is the value of 
n for a n-simplex that is dual to a tetrahedron?
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