
MULTI-TISSUE TETRAHEDRAL IMAGE-TO-MESH CONVERSION
WITH GUARANTEED QUALITY AND FIDELITY∗

ANDREY N. CHERNIKOV†
AND NIKOS P. CHRISOCHOIDES‡

Abstract. We present a novel algorithm for tetrahedral image-to-mesh conversion which allows
for guaranteed bounds on the smallest dihedral angle and on the distance between the boundaries
of the mesh and the boundaries of the tissues. The algorithm produces a small number of mesh
elements that comply with these bounds. We also describe and evaluate our implementation of the
proposed algorithm that is compatible in performance with a state-of-the art Delaunay code, but in
addition solves the small dihedral angle problem.

Key words. Image-To-Mesh Conversion, guaranteed quality, fidelity, multi-tissue

AMS subject classifications. 65D18, 68U20, 68W05, 92C10, 92C50

1. Introduction. The problem of unstructured Image-To-Mesh conversion (I2M)
is the following. Given an image as a collection of voxels, such that each voxel is as-
signed a label of a single tissue or of the background, construct a tetrahedral mesh
that overlays the tissues and conforms to their boundaries. In this paper we present
an algorithm for constructing meshes that are suitable for real-time finite element
analysis, i.e., they satisfy the following requirements:

1. Elements do not have arbitrarily small angles which lead to poor conditioning
of the stiffness matrix in Finite Element (FE) Analysis for biomechanics applications.
In particular, we guarantee that all dihedral angles are above a user-specified lower
bound which can be set to any value up to 35.26◦. In contrast, guaranteed quality
Delaunay methods only satisfy a bound on circumradius-to-shortest edge ratio which
in 3D does not imply a bound on dihedral angles.

2. The mesh offers a reasonably close representation (fidelity) of the underlying
tissues. Since the image is already an approximation (up to a pixel granularity) of a
continuous physical object, even a strict matching of the mesh to individual pixel’s
boundaries will not lead to a mesh which is completely faithful to the boundaries of
the object. Moreover, this approach will produce a large number of elements that
will slow down the solver. Instead, our solution is to expose parameters that allow
for a trade-off between the fidelity and the final number of elements with the goal of
improving the end-to-end execution time of the FE analysis codes.

3. The number of tetrahedra in the mesh is as small as possible provided the
two requirements above are satisfied. This requirement is based on the cost of assem-
bling and solving a sparse system of linear equations in the finite element method,
which directly depends on the number of tetrahedra [20, 23]. We achieve this goal by
developing a specialized mesh decimation procedure.

4. The mesh can be constructed within tight real-time time constraints enforced
by clinical applications. Below we describe our efficient implementation which is close
in performance and even faster than a state-of-the art Delaunay code.

There is a large body of work on constructing guaranteed quality meshes for
Computer Aided Design (CAD) models. The specificity of CAD-oriented approaches

∗This work was supported (in part) by the NSF grants CCF-1139864, CCF-1136538, and CSI-
1136536, as well as by the John Simon Guggenheim Foundation and the Richard T. Cheng Endow-
ment. Provisional patent pending.

†Department of Computer Science, Old Dominion University, (achernik@cs.odu.edu)
‡Department of Computer Science, Old Dominion University, (nikos@cs.odu.edu)

1

2

is that the meshes have to match exactly to the boundaries of the models. The
most widely used guaranteed-quality CAD-oriented approach is based on Delaunay
refinement, see [6] and the references therein. However, the problem with Delaunay
refinement in 3D is that it allows only for a bound on circumradius-to-shortest edge
ratio of tetrahedra, which does not help to improve the dihedral angles. As a result,
almost flat tetrahedra called slivers can survive. There are a number of post-processing
techniques to eliminate slivers [2–4, 9, 14, 21]. While some of them have been shown to
produce very good dihedral angles in practice, we are not aware of an implementation
that can guarantee significant (1◦ and above) dihedral angle bounds.

Labelle and Shewchuk [8] described a guaranteed quality tetrahedral meshing
algorithm for general surfaces. They offer a one-sided fidelity guarantee (from the
mesh to the model) in terms of the Hausdorff distance, and, provided the surface is
sufficiently smooth, also the guarantee in the other direction (from the model to the
mesh). Their algorithm first constructs an octree that covers the model, then fills the
octree leaves with high quality template elements, and finally warps the mesh vertices
onto the model surface, or inserts vertices on the surface, and locally modifies the
mesh. Using interval arithmetic, they prove that new elements have dihedral angles
above a certain threshold. However, images are not smooth surfaces, and to the best of
our knowledge, this technique has not been extended to mesh images. One approach
could be to interpolate or approximate the boundary pixels by a smooth surface,
but it would be complicated by the need to control the maximum approximation
(interpolation) error. On the other hand, an I2M solution can benefit from the fact
that images provide more information on their structure than general surfaces. For
example, in our proposed I2M algorithm we do not have to struggle with the problem
of quadruple-zero tetrahedra, which complicates the solution in [8]. Quadruple-zero
tetrahedra are those that have all four vertices on the surface, and it is not clear if
they should be classified as interior or exterior.

There are also heuristic solutions to the I2M problem, some of them developed
in our group [5, 10], that fall into two categories: (1) first coarsen the boundary
of the image, and then apply CAD-based algorithms to construct the final mesh,
(2) construct the mesh which covers the image, and then warp some of the mesh
vertices onto the image surface. The first approach tries to address the fidelity and
then the quality requirements, while the second approach does it in reverse order.
Unfortunately, neither of these approaches can guarantee the quality of elements in
terms of dihedral angles. Both of them face the same underlying difficulty which
consists in separating the steps that attempt to satisfy the quality and the fidelity
requirements. As a result, the output of one step does not produce an optimal input
for the other step.

The solution we propose in this paper is to simultaneously satisfy the quality and
the fidelity requirements. We achieve this goal by constructing an initial fine mesh
with very high quality and fidelity. The construction of this mesh is feasible due to
the specific structure of the input, which is a collection of cubic blocks corresponding
to the voxels of the image. This initial mesh, however, has a large number of elements
due to the fact that it is a one-fits-all solution with respect to the angle and fidelity
parameters, for the given image, since it satisfies the highest dihedral angle and fidelity
bounds. Therefore, we implement a post-processing decimation step that coarsens the
mesh to a much lower number of elements while at all times maintaining the required
fidelity and quality bounds. Mesh coarsening using vertex removal operation, which
we use in our algorithm, has been employed in various formulations in a large number

3

(a) (b) (c)

(d) (e) (f)

Fig. 2.1. An illustration of the main steps performed by our I2M algorithm. (a) The input
2D image of size 50× 50. It shows two circles, displayed with cyan and magenta, against the white
background. The angle bound is set to 20◦, and the fidelity bounds are both set to two voxels. (b)
The quadtree with leaves refined to meet the bounds on triangle quality and fidelity. (c) Euclidean
Distance Transform. (d) The leaves of the quadtree that are within the fidelity bound are marked.
(e) The original fine mesh, 2076 triangles inside the circles, 3534 triangles total. (f) The decimated
mesh, 263 triangles inside the circles, the outside triangles are removed. The inter-tissue boundaries
are within the marked leaves, and therefore within the requested tolerance.

of works previously for a variety of optimization problems, see e.g. [7, 11, 13, 15, 22]
and the references therein. The proposed approach may appear to require excessive
amounts of computational time and storage. However, we demonstrate that with a
carefully optimized implementation it can be used to mesh three-dimensional images
of practically significant sizes even on a regular desktop workstation. Furthermore,
our time measurements show that for two complex medical atlas images (brain and
abdominal) it is 28% to 42% faster than a state-of-the art Delaunay software.

The rest of the paper is organized as follows. In Section 2 we describe the proposed
algorithm in detail. In Section 3 we present the implementation details along with
the experimental evaluation. Section 4 concludes the paper.

2. Algorithm. The proposed algorithm works both for 2D and for 3D images.
For explanation purposes, in Figure 2.1 we show a simple 2D example of an image
being converted into a triangular mesh. The size of this image is 50 × 50 voxels. It
defines two circular objects, which could represent tissues or materials, one within
another, shown with different colors (cyan and magenta) against white background.

The mesh has to provide a faithful representation of the underlying tissues, i.e.,
each element needs to be marked with the physical properties of a unique type of
tissue. To measure the distance between the boundaries of the two regions (the image

4

I

M H(M → I)
H(I → M)

I

M

H(M → I)

H(I → M)

Fig. 2.2. An illustration of the Hausdorff distance. Left: H(I ↔ M) = H(I → M). Right:
H(I ↔ M) = H(M → I).

of a tissue and the corresponding sub-mesh), we use the Hausdorff distance. It can be
specified as either a two-sided distance, or a one-sided distance. For tissue boundary
I and mesh boundary M , the one-sided distance from I to M is given by

H(I → M) = max
i∈I

min
m∈M

d(i,m),

where d(·, ·) is the regular Euclidean distance. The one-sided distance from M to I is
given similarly by

H(M → I) = max
m∈M

min
i∈I

d(m, i).

Note that H(I → M) is generally not equal to H(M → I). The two-sided distance is
symmetric:

H(I ↔ M) = max{H(I → M), H(M → I)},

see Figure 2.2.

2.1. Input. The input to our algorithm is a 2D or a 3D bitmap, see Figure 2.1(a).
Each voxel of the bitmap corresponds to a separate material or tissue, as indicated by
a single label (color) assigned to this voxel. The user also supplies the desired angle
lower bound and fidelity bounds. We will use starred letters θ∗ and H∗ to denote the
bounds on the angle and the Hausdorff distance, respectively.

2.2. Construction of the Octree. We construct an octree (in 3D) or a quadtree
(in 2D) that satisfies the following properties (see Figure 2.1(b)):

1. The octree (equivalently, its root node) completely encloses all the tissues
from the image, except possibly for the background voxels that can be ignored.

2. There is extra space, equal to or greater than the maximum of the fidelity
parameters, between the tissues and the exterior boundaries of the octree.

3. The boundaries between the leaves correspond exactly to the boundaries
between the voxels. This is possible by using integer coordinates corresponding to
voxel indices.

4. No leaf contains voxels from multiple tissues. The nodes of the tree are split
recursively until all of the leaves satisfy this condition.

5. The sizes of the octree leaves respect the 2-to-1 rule, i.e., two adjacent leaves
must differ in depth by no more than one.

5

Fig. 2.3. The union of all possible edges of a triangulation obtained using our algorithm for a
two-dimensional square corresponding to a leaf of the octree. The edges meet at angles greater than
or equal to 45◦. Therefore, this is the lower bound for the planar angle in the initial two-dimensional
triangulation of the quadtree.

� �

�

�

� �

�

�

�
�

�

�

� �

�

�

� �

�

�

Fig. 2.4. All possible shapes of the initial tetrahedra (abcd) filling a cubic leaf of the oc-
tree, up to symmetry. The smallest dihedral angles are (left to right): 45◦, 35.26◦, 54.74◦, 45◦,
45◦. Therefore, 35.26◦ is the lower bound for the dihedral angle in the initial three-dimensional
tetrahedralization of the octree.

2.3. Computation of the Distance Transform. A distance transform of an
image is an assignment to every voxel of a distance to the nearest feature of the image.
In our case, the features are the boundaries between the tissues, and the distance is
measured in the usual Euclidean metric. See, e.g., Figure 2.1(c), where darker shades
correspond to the voxels that are closer to tissue boundaries. We implemented the
Euclidean Distance Transform (EDT) algorithm described by Maurer [12]. We chose
this algorithm for two reasons: (1) its linear time complexity with respect to the
number of voxels, and (2) it is formulated to work in an arbitrary dimension. We
run the EDT computation on the extended image, i.e., the image is padded with
imaginary background voxels (or truncated of the extra background voxels) to the
size of the octree root node.

2.4. Labeling of Octree Leaves. For each leaf of the octree, we find the max-
imum distance to the inter-tissue boundaries, using the EDT values of the voxels
enclosed by this leaf. In Figure 2.1(d) we marked the leaves that are within the
tolerance (2 voxels in this example) with transparent gray filling.

2.5. Filling in the Octree. We process the leaves in the order of their size,
starting with the smallest, see Figure 2.1(e) for a 2D example. The procedure is recur-
sive on dimension: to triangulate an n-dimensional face of the leaf, first triangulate

all of its (n − 1)-dimensional sub-faces. If at least one of the (n − 1)-dimensional
sub-faces is split by a mid-point, introduce the mid-point of the n-dimensional face
and connect to the elements of the (n− 1)-dimensional triangulation of the sub-face
to construct the n-dimensional triangulation of the face. If none of the sub-faces was
split, use the diagonals of the face.

This procedure is equivalent to using a finite number of predefined canonic leaf
triangulations, with the benefits of reducing manual labor and being applicable in
an arbitrary dimension. For all possible resulting leaf triangulations we obtain a
minimum planar angle of 45◦ in 2D or a minimum dihedral angle of 35.26◦ in 3D,
please see Figures 2.3 and 2.4 for an illustration. Hence, these are the bounds that
the algorithm can guarantee.

6

u

v

w

v(u)

w w(u,v)

Fig. 2.5. An illustration of the vertex merge operation. Left: Vertex u is evaluated for merging
to vertex v. The shaded triangles need to be checked for the effect of changing their shape. Center:
Vertex u is merged to vertex v. The list of vertices in brackets shows merge history. Vertex v is
evaluated for merging to vertex w. Right: Vertex v is merged to vertex w.

Once all octree leaves are filled with tetrahedra, we finish the construction of the
mesh data structure by identifying face-adjacent tetrahedra, in order to facilitate the
decimation procedure.

2.6. Mesh Decimation. We say vertex u is merged to vertex v if vertex u and
edge uv are removed from the mesh, such that all tetrahedra (triangles) incident upon
edge uv are also removed from the mesh and the remaining edges that were incident
upon u now become incident upon v. See Figure 2.5 for an illustration.

Our decimation algorithm is shown in Figure 2.6. We maintain a queue Q of
mesh vertices that are candidates for merging. The algorithm removes from and adds
vertices to Q until it becomes empty. Note that after the initialization a vertex can
be added on the queue only as a result of a merge of an adjacent vertex. Therefore,
when none of the vertices in Q passes the check for a merge, Q will become empty and
the decimation procedure will terminate. Suppose n is the total number of vertices in
the original mesh. Every vertex is added to Q once in the beginning. Afterwards, a
vertex is added to Q only if one of its vertex neighbors was merged. If m is the total
number of merges performed (obviously m < n), then the total number of evaluations
is bounded from above by n+cm, where c is the maximum number of vertex neighbors
for each vertex. For two dimensions, it is easy to see that c is constant: since at all
times during the run of the algorithm the minimum planar angle is bounded by a
constant threshold θ∗, the degree of each vertex is bounded by 360/θ∗. In three
dimensions, to our knowledge, there is no such clear relationship. The algorithm
starts with a semi-regular filling of the octree in which the degree of each vertex is a
small number, and then during decimation the maximum vertex degree can increase.
Our experiments show, however, that it does not increase dramatically. For the three
examples presented in the paper with millions of vertices, the maximum observed
vertex degree for the brain atlas is 187, for the abdominal atlas is 326, and for the
ball is 420.

2.6.1. Maintaining Element Quality. The function Check4Quality(T , θ∗)
returns true if and only if all elements on the list T are not inverted and have all angles
(planar in 2D or dihedral in 3D) above the bound θ∗. Therefore, the merge is not
accepted if at least one newly created angle is smaller than θ∗.

2.6.2. Maintaining Fidelity to Boundaries. This check, represented by the
function Check4Fidelity(T , O, H∗(I → M), H∗(M → I)) consists of two parts, for
each of the one-sided Hausdorff distances. To evaluate the distance from the boundary
of the sub-mesh to the boundary of the corresponding tissue, for each of the boundary

7

Decimation(M, O, θ∗, H∗(I →M), H∗(M → I))
Input:M is the initial mesh

O is the octree
θ∗ is the lower bound on the minimum angle bound
H∗(I →M) and H∗(M → I) are the upper bounds
on one-sided Hausdorff distances

Output: Decimated meshM that respects angle and fidelity bounds
1: Initialize Q to the set of all vertices inM
2: while Q 6= ∅
3: Pick vi ∈ Q

4: Q←− Q \ {vi}
5: Find A = {vj} the set of vertices adjacent to vi

6: for each vj ∈ A

7: Find T = {tk} the set of tetrahedra incident
upon vi and not incident upon vj

8: for each tk ∈ T

9: Replace vi with vj in tk
10: endfor

11: if (Check4Quality(T , θ∗) ∧
Check4Fidelity(T , O, H∗(I →M), H∗(M → I)) ∧
Check4Connectivity(T ,M))

12: Merge vi to vj , updateM
13: Q←− Q ∪A

14: break

15: endif

16: for each tk ∈ T

17: Replace vj with vi in tk
18: endfor

19: endfor

20: endwhile

21: returnM

Fig. 2.6. A high level description of the decimation algorithm. The actual implementation is
slightly different and more elaborate to support efficient data structures and to minimize computa-
tion, for more details see Section 3.

faces (edges in 2D or triangles in 3D) of elements in T , we recursively check for the
intersection with the octree nodes. If at least one of the faces intersects at least one of
the nodes marked as outside the fidelity tolerance, the merge is discarded. To evaluate
the distance from the boundary of each tissue to the boundary of the corresponding
sub-mesh, for each vertex we maintain a cumulative list of the boundary vertices that
were merged to it. If at least one of the boundary vertices, as a result of a sequence
of merges, is further away from its original location than the corresponding fidelity
tolerance, the merge is discarded.

2.6.3. Maintaining Tissue Connectivity. The geometric constructions used
in our algorithm are assigned colors based on their location with respect to the tissues
on the bitmap:

1. Each leaf of the octree (quadtree) derives the color from the block of voxels
that it encloses; remember that the nodes are split recursively until they enclose voxels
of a single color, in the limit case a leaf encloses a single voxel.

2. Each tetrahedron in 3D (or triangle in 2D) derives its color from the octree
(quadtree) leaf that it is used to tetrahedralize; it keeps the original color even after it

8

changes shape due to vertex merge. As a result, all tetrahedra (triangles) are always
correctly classified with respect to the underlying tissues, including the quadruple-zero
(triple-zero) ones.

3. Each vertex derives its color from the block of incident voxels (eight in 3D
or four in 2D); if the block of voxels has multiple colors, the vertex is considered
boundary.

The following rules help us maintain the original structure of the inter-tissue
boundaries: (1) boundary vertices cannot merge to non-boundary vertices, (2) a vertex
cannot merge to a non-boundary vertex of a different color, and (3) a boundary vertex
can merge to another boundary vertex only along a boundary edge—this helps to
prevent the case when a vertex from one boundary merges to another boundary along
a non-boundary edge, and thus the merge connects the parts of the boundaries that
were not originally connected.

3. Implementation and Evaluation. We implemented the proposed Lattice
Decimation (LD) algorithm in C++, in both two and three dimensions. The following
implementation decisions have significantly improved the performance:

1. Most of the computation is performed in integer arithmetic. This is possible
due to the fact that vertex coordinates are integers; they are indices with respect to the
matrix of voxels. The only floating point computation is involved in the comparison of
cosines of angles since long integer arithmetic could overflow. In addition, the lengths
of the integer variables correspond to the range of values of each specific arithmetic
operation, such that very long integers are used only when necessary to avoid overflow.
For example, if variable x is represented with b bits, then x2 requires 2b bits, while
x4 requires 4b bits; using 4b bits for x2 would be excessive.

2. All expensive mathematical functions, such as trigonometric, square root,
etc., including floating point division, are avoided in the computationally critical
parts. Instead, computation is performed on squares, cosines, and other functions of
the original values.

3. We wrote customized memory allocation functions, such that objects that are
created in large numbers but occupy little memory each (vertices, tetrahedra, nodes
of the tree) are allocated in contiguous memory buffers. This improvement decreases
memory fragmentation and allocation overheads.

4. We arranged the sequences of complex pass-fail condition evaluations such
that the least expensive and the most likely to fail conditions are evaluated first, while
the most expensive ones are evaluated last.

Clearly, the performance of our algorithm in terms of the running time, as well as
the number and the size of tetrahedra, depends on the input geometry. Therefore, our
approach to the evaluation is based on two experimental setups. The first setup uses a
very simple 3D geometry (sphere) and evaluates the performance with respect to dif-
ferent sizes of the sphere. This way, we gain an insight into the performance for a con-
trolled range of domain geometries with varied ratio of maxp∈Ω lfs (p) /minp∈Ω lfs (p).
The local feature size function lfs (p) for a given point p is equal to the radius of the
smallest ball centered at p that intersects two non-incident elements of domain Ω.
For images, these elements are vertices, edges, and faces from the tissue boundary.
For a sphere this ratio is simply equal to its radius, and therefore is easy to vary.

The second setup uses two complex real-world medical images: an abdominal
atlas [18], and a brain atlas [19]. The atlases come with a segmentation, such that
each voxel is assigned a label which corresponds to one of 75 abdominal and 149 brain
tissues. All tests were performed on a desktop with Intel(R) Core(TM) i7 CPU @

9

0

50

100

150

200

250

Size of image, voxels

1
0

0
3

1
5

0
3

2
0

0
3

2
2

5
3

2
5

0
3

2
7

5
3

3
0

0
3

3
1

0
3

3
2

0
3

3
3

0
3

3
4

0
3

3
5

0
3

3
6

0
3

3
7

0
3

3
8

0
3

3
9

0
3

4
0

0
3

T
im

e
,

s
e

c
o

n
d

s

θ* = 5
°

Distance transform

Creating the octree

Initial mesh

Mesh connect

Decimation

0

50

100

150

200

250

Size of image, voxels

1
0

0
3

1
5

0
3

2
0

0
3

2
2

5
3

2
5

0
3

2
7

5
3

3
0

0
3

3
1

0
3

3
2

0
3

3
3

0
3

3
4

0
3

3
5

0
3

3
6

0
3

3
7

0
3

3
8

0
3

3
9

0
3

4
0

0
3

T
im

e
,

s
e

c
o

n
d

s

θ* = 15
°

0

50

100

150

200

250

Size of image, voxels

1
0

0
3

1
5

0
3

2
0

0
3

2
2

5
3

2
5

0
3

2
7

5
3

3
0

0
3

3
1

0
3

3
2

0
3

3
3

0
3

3
4

0
3

3
5

0
3

3
6

0
3

3
7

0
3

3
8

0
3

3
9

0
3

4
0

0
3

T
im

e
,

s
e

c
o

n
d

s

θ* = 25
°

0

50

100

150

200

250

Size of image, voxels

1
0

0
3

1
5

0
3

2
0

0
3

2
2

5
3

2
5

0
3

2
7

5
3

3
0

0
3

3
1

0
3

3
2

0
3

3
3

0
3

3
4

0
3

3
5

0
3

3
6

0
3

3
7

0
3

3
8

0
3

3
9

0
3

4
0

0
3

T
im

e
,

s
e

c
o

n
d

s

θ* = 35
°

Fig. 3.1. A breakdown of the total LD time into the major computational parts, as the diameter
of the sphere varies from 100 to 400 voxels. H∗(I ↔ M) = 0.

2.80 GHz and 8 GB of main memory.

3.1. Synthetic Benchmark—3D Sphere. Figure 3.1 shows a breakdown of
the total time into the major computational parts, as the diameter of the sphere grows
from 100 to 400 voxels. These parts are the computation of the distance transform,
the construction of the octree, the construction of the initial mesh that fills the leaves
of the octree, the finding of the connectivity among the tetrahedra of the initial mesh
(which is expensive because involves a search through the adjacent leaves), and the
decimation. Here and in all other time measurements we exclude the time taken
by input/output and by the process of initializing the data structure representing
the initial image. We conclude that all components represented in the figure grow
approximately linear with respect to the total number of voxels in the image, while
the sharp jump between the diameter values of 250 and 275 corresponds to the increase

10

Fig. 3.2. Three-dimensional image of the abdominal atlas.

of the octree size which can only take values of powers of two.

Table 3.1 shows the output mesh size of our implementation for a sphere of a fixed
diameter of 400 voxels. In these tests, having fixed the dihedral angle bound and the
diameter of the sphere, we vary each of the two one-sided Hausdorff distance bound
parameters independently. We present four columns, for different interesting values
of the dihedral angle bound (5, 15, 25, and 35 degrees) spread through the range of its
feasible values (0 to 35.26 degrees). As we can see from Table 3.1, for all configurations
the output mesh size is high when either one or both of the H∗ parameters is low
(H∗(M → I) has higher influence than H∗(I → M) due to implementation specific
details), and decreases as the H∗ bounds decrease. Indeed, the weaker constraints
can be satisfied with a smaller number of tetrahedra. The same argument explains
why the final number of tetrahedra grows as the dihedral angle bound increases. The
total running time in these tests does not change significantly with the variation of the
fidelity bounds and is close to 250 seconds. The actually obtained smallest dihedral
angles in all experiments are between θ∗ and θ∗ + 0.3◦.

11

H∗(I →M) H∗(M → I)
Resulting number of tetrahedra

θ∗ = 5◦ θ∗ = 15◦ θ∗ = 25◦ θ∗ = 35◦

0 0 2,676,905 3,533,827 6,228,998 7,568,401
0 1 2,628,051 3,486,279 6,192,725 7,585,208
0 2 1,051,537 1,828,910 5,228,905 6,810,152
0 4 1,049,190 1,831,595 5,241,114 6,816,286
0 6 1,052,819 1,833,990 5,239,028 6,810,705
0 8 1,050,645 1,830,927 5,239,671 6,812,804
0 10 1,049,490 1,828,948 5,235,814 6,805,851
1 0 2,674,541 3,536,514 6,231,690 7,585,208
1 1 2,619,272 3,483,032 6,180,726 7,585,208
1 2 615,495 1,294,315 4,832,255 6,702,274
1 4 622,144 1,296,503 4,845,919 6,708,335
1 6 620,531 1,286,649 4,853,066 6,700,642
1 8 621,753 1,288,004 4,832,317 6,707,849
1 10 618,635 1,287,916 4,833,412 6,695,580
2 0 2,678,337 3,528,875 6,219,659 7,567,694
2 1 2,622,046 3,471,997 6,169,755 7,567,694
2 2 420,742 954,058 4,761,521 6,689,753
2 4 420,287 963,392 4,767,670 6,694,121
2 6 418,914 956,169 4,767,004 6,687,824
2 8 418,605 967,353 4,761,786 6,693,867
2 10 415,096 957,492 4,764,773 6,682,444
4 0 2,680,017 3,529,907 6,227,939 7,572,235
4 1 2,610,273 3,470,074 6,181,200 7,572,235
4 2 206,744 669,844 4,761,246 6,693,880
4 4 205,792 669,727 4,761,246 6,693,880
4 6 201,715 674,707 4,761,532 6,687,545
4 8 197,087 664,810 4,757,938 6,693,670
4 10 198,760 662,854 4,765,483 6,682,099
6 0 2,673,759 3,528,173 6,222,394 7,567,112
6 1 2,618,425 3,470,097 6,173,119 7,567,112
6 2 108,961 627,153 4,761,532 6,687,545
6 4 108,667 627,153 4,761,532 6,687,545
6 6 108,667 627,153 4,761,532 6,687,545
6 8 111,692 616,427 4,757,938 6,693,670
6 10 109,520 600,885 4,765,479 6,682,099
8 0 2,673,161 3,527,634 6,221,837 7,569,203
8 1 2,612,149 3,467,740 6,174,740 7,569,203
8 2 76,523 604,821 4,757,938 6,693,670
8 4 76,108 604,795 4,757,938 6,693,670
8 6 76,108 604,795 4,757,938 6,693,670
8 8 76,108 604,795 4,757,938 6,693,670
8 10 78,542 594,901 4,765,479 6,682,099

10 0 2,671,255 3,534,080 6,216,296 7,567,005
10 1 2,613,405 3,466,948 6,167,959 7,567,005
10 2 58,510 593,862 4,765,479 6,682,099
10 4 56,975 593,519 4,765,479 6,682,099
10 6 56,975 593,519 4,765,479 6,682,099
10 8 56,975 593,519 4,765,479 6,682,099
10 10 56,975 593,519 4,765,479 6,682,099

Table 3.1

The size of the LD final mesh for the image of a sphere of diameter 400 voxels, depending on
the one-sided Hausdorff bounds varied independently, and on the angle bound.

12

Fig. 3.3. A slice through the LD mesh of the abdominal atlas for θ∗ = 15◦ and H∗(I ↔ M) = 2.

3.2. Three-Dimensional Medical Images. The size of the abdominal atlas
is 256× 256× 113 voxels and the size of the brain atlas is 256× 256× 159 voxels. In
both cases each voxel has side lengths of 0.9375, 0.9375, and 1.5000 units in x, y, and
z directions respectively. Before meshing the atlases, we resampled them with voxels
of equal side length corresponding to the original 0.9375 units. As a result, in both
cases we obtained equally spaced images that were used for meshing. Figures 3.4, 3.5,
3.2 and 3.3 show the atlas images and corresponding three-dimensional meshes.

In Table 3.2 we list the final number of tetrahedra, the smallest dihedral angle,
and the total running time for both images, as we vary the H∗ and θ∗ parameters.
To obtain a point of reference for these numbers, we conducted a separate experiment
using a state-of-the art open source tetrahedral mesh generator Tetgen [16]. Tet-
gen is designed to work with Piecewise Linear Complexes (PLCs), and not images.
Therefore, to make it process the same tissue geometries, we extracted the voxel faces
corresponding to the boundaries between different tissues and between the tissues
and the surrounding space, and saved them in the PLC format files that we passed
to Tetgen. The main difference between the two methods is that Tetgen does not
provide any guarantees on the dihedral angle (since it is designed to improve only
circumradius-to-shortest edge ratio of tetrahedra for general PLCs), and its empirical
smallest dihedral angle will generally be different for other input geometries. As can
be expected, the meshes produced by Tetgen had low smallest dihedral angles, around
5◦. At the same time, our Lattice Decimation (LD) algorithm can provide guaranteed

13

Fig. 3.4. Three-dimensional image of the brain atlas.

smallest dihedral angles up to 35.26◦ for all input images.

For all of our time measurements we excluded all data preprocessing, such as
image resampling, surface extraction, and input/output. We see that our LD im-
plementation is faster than Tetgen by a significant margin for both atlas images.
Figures 3.6, and 3.7 show breakdowns of the total LD time into the main computa-
tional components as the symmetric Hausdorff distance bound changes from 0 to 2
voxels. Similar to the case of the sphere, we see little change both in the running time
and in its distribution with the variation of H∗ and θ∗ parameters.

As far as the number of tetrahedra, the difference between Tetgen and LD is
insignificant, although in both cases in favor of LD, for the bound of H∗(I ↔ M) = 0
which allows for a comparison with respect to the same fidelity, and θ∗ = 5◦ which
is close to the empirical Tetgen angles. In Figure 3.8 we show the final number of
tetrahedra for both atlases, as we vary H∗(I ↔ M) and θ∗.

Table 3.3 presents our experimental evaluation of the I2M conversion function-
ality offered by Computational Geometry Algorithms Library (CGAL) [1]. We used
function make mesh 3 with the following parameters:

• domain is the brain or abdominal atlas image without resampling
• facet angle is a lower bound on the planar angle of boundary faces; we set
it to an ignored value

14

Fig. 3.5. A slice through the LD mesh of the brain atlas for θ∗ = 15◦ and H∗(I ↔ M) = 2.

• facet size is an upper bound on the radii of the surface Delaunay balls; we
set it to an ignored value

• facet distance is an upper bound on the distance between the circumcenters
of surface facets and the centers of the corresponding surface Delaunay balls;
we varied this parameter as shown in the table

• cell radius edge ratio is an upper bound on radius-edge ratio of tetrahe-
dra; we used 2.0

• facet size is an upper bound on the circumradii of the mesh tetrahedra; we
set it to an ignored value

• lloyd(), odt(), perturb(), exude() with the corresponding no prefixes
are available mesh optimization functions; the default usage is no lloyd(),

no odt(), perturb(), exude(); we used four combinations specified in the
table with all the default arguments

In addition to the quantities measured in the previous experiments, we also queried
subdomain index for each tetrahedron of the resulting mesh. Then we counted the
total number of unique subdomain indexes and compared with the number of unique
voxel labels in the image (75 for the abdominal atlas and 149 for the brain atlas).

Similar to Tetgen, mesh generation in CGAL consists of two phases, the con-
struction of the initial mesh and its improvement as a post-processing step. The

15

Input bounds Resulting mesh statistics Total time
Code H∗(I ↔M) θ∗ Number of tetrahedra Smallest dih. angle

AA BA AA BA AA BA

Tetgen 0 (implicit) n/a 3,501,569 3,398,654 4.725 5.002 169 128

LD

0

5 3,332,477 3,267,276 5.002 5.003 122 74
15 3,932,131 3,698,787 15.002 15.002 120 74
25 6,768,472 6,266,442 25.066 25.066 120 73
35 7,806,292 6,773,951 35.264 35.264 110 68

1

5 3,134,565 3,126,393 5.000 5.005 134 82
15 3,714,781 3,555,290 15.002 15.002 128 82
25 6,415,049 6,082,604 25.066 25.066 127 75
35 7,625,360 6,657,475 35.264 35.264 115 68

2

5 557,242 521,952 5.000 5.002 111 71
15 924,642 874,764 15.000 15.000 116 77
25 4,506,340 5,137,417 25.061 25.066 135 83
35 6,658,700 6,318,544 35.097 35.264 119 71

Table 3.2

Experimental evaluation of Tetgen and LD. AA stands for abdominal atlas and BA stands for
brain atlas. Angles are measured in degrees, and time is measured in seconds.

Resulting mesh statistics Total time
facet # of tetrahedra Smallest dih. angle # of subdoms.

distance AA BA AA BA AA BA AA BA

no lloyd(), no odt(), perturb(), exude()

0.5 659,104 751,640 2.833 2.365 74 145 65.5 50.4
1.0 174,080 209,437 3.355 2.246 74 143 18.0 16.5
2.0 44,108 51,772 4.504 3.586 74 138 3.9 3.8

no lloyd(), odt(), perturb(), exude()

0.5 659,641 753,978 1.012 1.185 74 145 342.9 251.7
1.0 173,554 209,457 0.815 0.812 74 144 103.4 82.2
2.0 43,197 51,603 1.588 2.943 73 141 81.5 60.7

lloyd(), no odt(), perturb(), exude()

0.5 643,371 745,864 1.277 2.941 74 144 2533.7 1017.4
1.0 171,117 207,582 2.983 1.211 74 143 513.8 179.9
2.0 42,903 52,688 0.090 1.182 74 140 124.0 73.4

lloyd(), odt(), perturb(), exude()

0.5 651,023 756,038 1.695 0.371 74 144 3571.6 956.0
1.0 173,512 212,914 2.009 3.388 74 143 468.8 202.7
2.0 44,357 53,192 2.223 2.799 74 138 138.4 111.8

Table 3.3

Experimental evaluation of the I2M functionality offered by CGAL. AA stands for abdominal
atlas and BA stands for brain atlas. Angles are measured in degrees, time is measured in seconds.

first phase in both Tetgen and CGAL uses a variation of the Delaunay refinement
approach which guarantees only a bound on radius-edge ratio. The second, optimiza-
tion, phase improves other mesh properties such as the dihedral angles. Using various
combinations of optimization algorithms implemented in CGAL, we could not obtain
minimum dihedral angles of 5◦ or more. The final number of tetrahedra produced
by CGAL is significantly smaller than produced by LD, however, at the expense of
occasionally not representing some of the tissues from the image. CGAL’s processing

16

0 1 2
0

20

40

60

80

100

120

140

H*(I↔M), voxel units

T
im

e
,
s
e
c
o
n
d
s

θ* = 5
°

Distance transform

Creating the octree

Initial mesh

Mesh connect

Decimation

0 1 2
0

20

40

60

80

100

120

140

H*(I↔M), voxel units

θ* = 15
°

0 1 2
0

20

40

60

80

100

120

140

H*(I↔M), voxel units

θ* = 25
°

0 1 2
0

20

40

60

80

100

120

140

H*(I↔M), voxel units

θ* = 35
°

Fig. 3.6. A breakdown of the total LD time for the abdominal atlas, for varied θ∗ and H∗(I ↔

M).

0 1 2
0

10

20

30

40

50

60

70

80

90

H*(I↔M), voxel units

T
im

e
,
s
e
c
o
n
d
s

θ* = 5
°

Distance transform

Creating the octree

Initial mesh

Mesh connect

Decimation

0 1 2
0

10

20

30

40

50

60

70

80

90

H*(I↔M), voxel units

θ* = 15
°

0 1 2
0

10

20

30

40

50

60

70

80

90

H*(I↔M), voxel units

θ* = 25
°

0 1 2
0

10

20

30

40

50

60

70

80

90

H*(I↔M), voxel units

θ* = 35
°

Fig. 3.7. A breakdown of the total LD time for the brain atlas, for varied θ∗ and H∗(I ↔ M).

time varies significantly, from much lower than that of LD, to order of magnitude
higher, depending on the selection of mesh optimization algorithms.

4. Summary. We presented a novel guaranteed quality and fidelity image-to-
mesh conversion algorithm and its efficient sequential implementation. The algorithm
preserves not only external boundaries, but also the boundaries between multiple
tissues which makes the resulting meshes suitable for finite element simulations of
multi-tissue regions with different physical tissue properties.

17

0 1 2
0

2

4

6

8

10

12
x 10

6

H*(I↔M), voxel units

N
u

m
b

e
r

o
f

te
tr

a
h

e
d

ra

Abdominal atlas

Before decimation

After decimation for θ* = 35
°

After decimation for θ* = 25
°

After decimation for θ* = 15
°

After decimation for θ* = 5
°

0 1 2
0

2

4

6

8
x 10

6

H*(I↔M), voxel units

N
u

m
b

e
r

o
f

te
tr

a
h

e
d

ra

Brain atlas

Fig. 3.8. Final number of tetrahedra using LD, for varied θ∗ and H∗(I ↔ M).

The algorithm and the implementation we presented are sequential. Our future
work includes the development of the corresponding parallel algorithm and the code
to increase the processing speed and the size of the images that can be handled. One
stage of the algorithm, the distance transform, has already been parallelized [17].
However, according to the Amdahl’s law, to achieve good speedup, we need to par-
allelize the other stages as well. We also plan to address the smoothness of mesh
boundaries in order to improve the accuracy of such simulations as the blood flow.

Acknowledgments. We thank the anonymous reviewers for detailed comments
which helped us improve the manuscript.

REFERENCES

[1] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
[2] Dobrina Boltcheva, Mariette Yvinec, and Jean-Daniel Boissonnat, Mesh generation

from 3d multi-material images, in Proceedings of the 12th International Conference on
Medical Image Computing and Computer-Assisted Intervention: Part II, Berlin, Heidel-
berg, 2009, Springer-Verlag, pp. 283–290.

[3] Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello, and

Shang-Hua Teng, Sliver exudation, J. ACM, 47 (2000), pp. 883–904.
[4] L. Paul Chew, Guaranteed-quality Delaunay meshing in 3D, in Proceedings of the 13th ACM

Symposium on Computational Geometry, Nice, France, 1997, pp. 391–393.
[5] Andriy Fedorov and Nikos Chrisochoides, Tetrahedral mesh generation for non-rigid reg-

istration of brain mri: Analysis of the requirements and evaluation of solutions, in Pro-
ceedings of the 17th International Meshing Roundtable, Pittsburgh, PA, October 2008,
Springer, pp. 55–72.

[6] Paul-Louis George and Houman Borouchaki, Delaunay Triangulation and Meshing. Ap-
plication to Finite Elements, HERMES, 1998.

[7] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle,
Mesh optimization, in Proceedings of the 20th Annual Conference on Computer Graphics

18

and Interactive Techniques, New York, NY, USA, 1993, ACM, pp. 19–26.
[8] François Labelle and Jonathan Richard Shewchuk, Isosurface stuffing: Fast tetrahedral

meshes with good dihedral angles, ACM Transactions on Graphics, 26 (2007), pp. 57.1 –
57.10.

[9] Xiang-Yang Li and Shang-Hua Teng, Generating well-shaped Delaunay meshes in 3D, in
Proceedings of the 12th annual ACM-SIAM symposium on Discrete algorithms, Washing-
ton, D.C., 2001, pp. 28–37.

[10] Yixun Liu, Panagiotis Foteinos, Andrey Chernikov, and Nikos Chrisochoides, Multi-
tissue mesh generation for brain images, in Proceedings of the 19th International Meshing
Roundtable, Chattanooga, TN, October 2010, Springer, pp. 367–384.

[11] David P. Luebke, A developer’s survey of polygonal simplification algorithms, IEEE Comput.
Graph. Appl., 21 (2001), pp. 24–35.

[12] Calvin Maurer, Rensheng Qi, and Vijay Raghavan, A linear time algorithm for comput-
ing exact Euclidean distance transforms of binary images in arbitrary dimensions, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25 (2003), pp. 265–270.

[13] Renato Pajarola and Jarek Rossignac, Compressed progressive meshes, IEEE Transactions
on Visualization and Computer Graphics, 6 (2000), pp. 79–93.

[14] J.-P. Pons, F. Ségonne, J.-D. Boissonnat, L. Rineau, M. Yvinec, and R. Keriven, High-
quality consistent meshing of multi-label datasets, in Proceedings of the 20th interna-
tional conference on Information processing in medical imaging, Berlin, Heidelberg, 2007,
Springer-Verlag, pp. 198–210.

[15] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen, Decimation of
triangle meshes, in Proceedings of the 19th annual conference on Computer graphics and
interactive techniques, New York, NY, USA, 1992, ACM, pp. 65–70.

[16] Hang Si, Tetgen version 1.4.3. http://tetgen.berlios.de/.
[17] Robert Staubs, Andriy Fedorov, Leonidas Linardakis, Benjamin Dunton, and Nikos

Chrisochoides, Parallel n-dimensional exact signed Euclidean distance transform, Insight
Journal, (2006). http://hdl.handle.net/1926/307.

[18] I. Talos, M. Jakab, and R. Kikinis, SPL abdominal atlas 2010.
http://www.spl.harvard.edu/publications/item/view/1918, 10 2010.

[19] I. Talos, M. Jakab, R. Kikinis, and M. Shenton, SPL-PNL brain atlas.
http://www.spl.harvard.edu/publications/item/view/1265, 03 2008.

[20] Joe F. Thompson, Bharat K. Soni, and Nigel P. Weatherill, Handbook of Grid Genera-
tion, CRC Press, 1998.

[21] Jane Tournois, Rahul Srinivasan, and Pierre Alliez, Perturbing slivers in 3D Delaunay
meshes, in Proceedings of the 18th International Meshing Roundtable, Brett W. Clark,
ed., Springer, 2009, pp. 157–173.

[22] Jingqi Yan, Pengfei Shi, and David Zhang, Mesh simplification with hierarchical shape
analysis and iterative edge contraction, IEEE Transactions on Visualization and Computer
Graphics, 10 (2004), pp. 142–151.

[23] O. C. Zienkiewicz, R. L. Taylor, and J.Z. Zhu, The Finite Element Method: Its Basis and
Fundamentals, Butterworth-Heinemann; 6 edition, 2005.

