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Abstract Multi-tissue meshing is necessary for the re-

alistic building of a biomechanical model of the brain,

which has been widely used in brain surgery simulation,

brain shift, and non-rigid registration. A two step multi-

tissue mesher is developed. First, a coarse multi-tissue

mesh is generated by redistributing labels of a Body-

Centered Cubic (BCC) mesh. Second, all the surfaces

of the submeshes are deformed to their corresponding

tissue boundaries.

To deform the mesh, two strategies are developed.

One is based on a Point-based Registration (PBR) and

the other is based on a Robust Point Matching (RPM).

The PBR method explicitly calculates the correspon-

dence, which takes both smoothing and quality into ac-

count, then resolves the displacement vector by mini-

mizing an energy function. Unlike PBR method, RPM

does not require the correspondence between the source

points and the target points to be known in advance.

To simultaneously resolve the displacement vector and

the correspondence, the Expectation and Maximization

optimization is employed to alternately estimate the

correspondence and the displacement vector. To effec-

tively cope with outliers, Least Trimmed Square, a ro-

bust regression technique, is employed to correct the

regression bias induced by outliers. Both methods are

effective in deforming the multi-tissue mesh. However,
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the PBR method favors quality and smoothing, and the

RPM method favors fidelity.

The resulting mesh is characterized by its flexible

control of four mesh properties: 1) tissue-dependent res-

olution, 2) fidelity to tissue boundaries, 3) smoothness

of mesh surfaces, and 4) element quality. Each mesh

property can be controlled on a tissue level.

Our experiments conducted on synthetic data, clinic

MRI, visible human data, and brain atlas effectively

demonstrate these features of this multi-tissue mesher.

1 Introduction

Multi-tissue mesh generation of medical images is a nec-

essary procedure for building a heterogeneous biome-

chanical model, which has numerous applications, such

as physical model-based non-rigid registration, segmen-

tation and surgery simulations. However, there is little

literature addressing this issue so far.

Several groups [3,18,14] presented multi-tissue mesh

generation methods based on a Delaunay refinement.

However, elements with small dihedral angles (aka, sliv-

ers) are likely to occur in Delaunay meshes because el-

ements are removed only when the radius-edge ratio

is large. Their dihedral angle quality is completely ig-

nored. Meyer et al. [14] showed at least 0.6% slivers

occurred in their experiments on frog data. Boltcheva

et al. [3] and Pons et al. [18] employed a sliver exu-

dation postprocessing technique [5] to remove slivers,

demonstrating a very good quality mesh (minimal di-

hedral angle is larger than 4 degrees).

Unlike Delaunay-based methods, Zhang et al. [24]

presented an octree-based method to generate a tetra-

hedral and hexahedral mesh. This method first identi-

fies the interface between two or more different tissues

and non-manifold nodes on the boundary. Then, all tis-

sue regions are meshed with conforming boundaries si-

multaneously. Finally, edge-contraction and geometric

flow schemes are used to improve the quality of the

tetrahedral mesh.

Molino et al. [15] presented a crystalline, red-green

strategy for mesh generation. This method starts from

a Body-Centered Cubic (BCC) mesh, then deforms it

to the object boundary. The geometry is represented

by a signed distance function, and the refinement is

performed by a red-green strategy. The BCC-based ap-

proach shows a very good quality mesh because the

quality of the BCC mesh is high, and its regular refine-

ment still leads to a BCC mesh. However, this approach

is limited to a single tissue.

The contribution of this paper is a novel mesh

generation method, which is characterized by 1) multi-
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tissue mesh, 2) tissue-dependent resolution, and 3) nat-

ural control of the trade-off among quality, fidelity, and

smoothness on a tissue level, which, in fact, provides a

mechanism to substantially improve the mesh quality by

slightly deviating from the input boundary.

2 Method

Our approach requires a multi-label image as input, in

which label 0 denotes the background, and positive in-

tegers indicate different tissues. The approach consists

of two steps: coarse mesh generation (CMG) and mesh

deformation, as shown in Fig. 1. Mesh deformation im-

plements two strategies: Robust Point Matching (RPM)

and Point-based Registration (PBR).

CMG includes two substeps:

1. BCC mesh:

Use BCC mesh to subdivide the object space into

connected tetrahedra. Note that this step does not

distinguish different tissues. The resulting BCC mesh

is homogeneous.

2. Coarse tissue dependent resolution multi-tissue mesh

generation (CMesh):

This step specifies which tissue each tetrahedron be-

longs to. Each tissue is capable of automatically ad-

justing its resolution based on its geometric com-

plexity and the predefined subdivision criterion.

The resulting coarse multi-tissue mesh of step 1 in-

cludes different submeshes, and each submesh has its

own resolution. The discrepancy between the surface

of the submesh and its corresponding boundary in the

multi-label image is corrected by RPM/PBR method.

This step includes three substeps:

1. detect edges for each tissue in the multi-label image

to obtain a target point set

2. extract surface nodes for each submesh to obtain a

source point set

3. deform the surface of each submesh to its corre-

sponding boundary based on RPM/PBR

The framework of the approach is shown in Fig. 1.

Each step listed in this framework will be discussed in

detail in the following sections.

2.1 Coarse mesh generation

The purpose of the coarse mesh generation is to obtain

source points, which will be used in subsequent mesh

deformation. The coarse mesh needs to take into ac-

count the following criteria: 1) a multi-tissue input, 2)

Fig. 1 Multi-tissue mesher framework.

a good conditioning for subsequent mesh deformation,

and 3) fewer tetrahedra.

This part includes two steps, as shown in Fig 1.

Body-Centered Cubic provides an initial lattice, which

has been well documented in [9,15]. For the complete-

ness of this paper, we will briefly describe its properties

and red-green subdivision, then focus on how CMesh

generates and refines submeshes.

2.1.1 BCC mesh

BCC mesh is an actual crystal structure ubiquitous in

nature. It is highly structured and easily refined initially

or during the simulation [15]. The nodes of BCC are

grid points of two interlaced grids like the blue grid and

the green grid in Fig. 2(a). The edges of BCC consist of

edges of the grid and additional edges between a node

and its eight nearest neighbors in the other grid.

The refinement of the BCC mesh is performed by

a red-green strategy. Initially, all BCC lattice tetrahe-

dra are labeled with a red color. A red tetrahedron

can be subdivided into eight children (1:8 refinement),

and each child is labeled with a red color, as shown in

Fig. 2(b). There are three choices for the internal edge

of the tetrahedron. If the shortest one is selected, the

resulting eight child tetrahedra are exactly the BCC

tetrahedra except the size is one half of the original

BCC. So, the quality of the refined mesh can be guaran-

teed using this red (regular) subdivision. This is the rea-

son that we select BCC as the initial tetrahedral mesh

although our method is general enough to start from

any tetrahedral meshes. The red subdivision will lead to

T-junctions at the newly-created edge midpoints where

neighboring tetrahedra are not refined to the same level.
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(a) A portion of the BCC lattice. The blue
and the green connections depict the two in-
terlaced grids, and the eight red connections
at each node lace these two grids together.

(b) Red-greed subdivision

Fig. 2 BCC lattice and red-green subdivision (The two fig-
ures come from [15] ).

To remove the T-junctions, green subdivision, including

three cases, is performed. The three cases are:

1. there is one edge with T-junction

2. there are two opposite edges with T-junctions

3. there are three edges of a face with T-junctions

The green subdivision, corresponding to the three cases,

is shown in Fig. 2(b). All the child tetrahedra of the

green subdivision are labeled with a green color. The

irregular green subdivision will reduce the quality of

the tetrahedron. So, all the child tetrahedra will be re-

moved, and the red subdivision is performed on their

red parent when higher resolution is desired.

2.1.2 CMesh

CMesh is used to identify the submesh for each tissue in

BCC mesh, and subdivide it if necessary. We define a la-

bel operation table, based on which label redistribution

is performed to produce different submeshes. A prede-

fined subdivision criterion is used to determine which

submesh needs to be further subdivided. If a submesh

needs to be subdivided, in order to reduce the num-

ber of the tetrahedra, only its boundary tetrahedra are

further subdivided (multi-resolution).

In Fig. 3, we illustrate how CMesh identifies and

subdivides submeshes. First, CMesh assigns each tetra-

hedron with a label of the tissue, to which most part of

the tetrahedron belongs by simply counting the number

of voxels within the tetrahedron (Fig. 3(a)). As a result,

an initial multi-tissue mesh is produced. However, this

multi-tissue mesh is not well conditioned for subsequent

deformation because more than one face are probably

on the interface. We term this kind of tetrahedron a

bad conditioned tetrahedron. In this case, deforming

four nodes easily crushes this tetrahedron. We prefer a

submesh only including two kinds of tetrahedra: inner

tetrahedra (no faces on the interface) and boundary

tetrahedra (only one face on the interface). To reach

this end, we redistribute the label of the bad condi-

tioned tetrahedra according to the operations defined

in Table 1 to generate a well conditioned multi-tissue

mesh (Fig. 3(b)). The label redistribution operation is

performed label by label, and, therefore, the labeling is

unique. After label redistribution, we need to check if

each submesh needs to be further subdivided. If it satis-

fies the criterion for the resolution, defined in Fig. 3(e),

the algorithm stops, Otherwise, it subdivides (Fig. 3(c))

and redistributes labels (Fig. 3(d)). The above proce-

dures repeat until the desired resolution is reached. The

submesh, produced by the label redistribution, not only

has good conditioning, but also reaches conformity with

its neighboring submeshes.
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Fig. 3 Coarse multi-tissue mesh generation. (a) L1 and L2
are tissue labels, the dashed line is the real boundary, and
the blue line is the submesh interface. (b) Redistribute labels
according to operation table 1. (c) Subdivide if not satisfy
the resolution criterion defined in (e). (d) Redistribute labels
again. (e) Resolution criterion: 0.85 is the subdivision thresh-
old, an experiment value evaluated on MRI ,visible human,
and brain atlas. Points represent voxels and colors represent
different tissues. S1 is the voxel set within the blue submesh
(blue dash lines), and S2 is the voxel set within the blue tissue
(blue curves).

Operation table The operation table decides how

to redistribute the label of a tetrahedron based on its

relation, termed as configuration, with face-adjacent

tetrahedra. The purpose of the operations defined in

Table 1 is to move the bad conditioned tetrahedra to

its neighboring submeshes. If all the bad conditioned

tetrahedra are removed from one submesh, this sub-

mesh and its neighboring submeshes will reach good

conditioning at the same time. We clarify this point by

taking case 5 defined in table 1 as an example. If the

four face-adjacent tetrahedra of a given tetrahedron T

have labels: < L,L1, L1, L1 >, denoted as < L, 3L1 >

for simplicity, the label of T will be reassigned with

L1 because its three faces are on the interface between
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submesh L and L1. Fig. 3 uses case 5 for redistribution.

Because we use 2D triangles instead of 3D tetrahedra

in Fig. 3, case 5 is degenerated from < L, 3L1 > to

< L, 2L1 >. In summary, the operations defined in Ta-

ble 3 move a tetrahedron to its face-adjacent submesh

if this tetrahedron is not an inner (case 1) or boundary

tetrahedron (case 2). As a result, no tetrahedra with

more than one face on the boundary exist, which leads

to a well conditioned mesh for the subsequent deforma-

tion.

Table 1 Operation case table for a tetrahedron T with a
label L.

Case Configuration Operation
1 4L T=inner tetra
2 < 3L, 1L1 > T=boundary tetra
3 < 2L, 2L1 > T.label=L1
4 < 2L, 1L1, 1L2 > T.label=L1
5 < 1L, 3L1 > T.label=L1
6 < 1L,L1, 2L2 > T.label=L2
7 < 1L, 1L1, 1L2, 1L3 > T.label=L1

Criteria for subdivision In multi-label image,

a tissue is defined by a set of voxels with the same

intensity, say L. Heuristically, the closer the surface of a

submesh is to the boundary of a tissue, the more voxels

of the tissue are located in the submesh, and the more

voxels with label L this submesh has. To quantitatively

evaluate the similarity between the submesh and the

tissue region, we define two voxel sets:

1. S1: all voxels in the submesh (the points within two

dashed lines in Fig. 3 (e))

2. S2: all voxels in the tissue region (the points within

the curve in Fig. 3 (e))

S1 ∩S2 defines the point set shared by the submesh

and the tissue region. We expect the common region to

be similar with the submesh and the tissue region. We

use |S1∩S2|
|S1| to measure the similarity between the com-

mon region and the submesh, and |S1∩S2|
|S2| to measure

the similarity between the common region and the tis-

sue region. So, the subdivision criterion can be defined

as:

|S1 ∩ S2|
|S1|

< threshold and
|S1 ∩ S2|
|S2|

< threshold

(1)

where threshold is an input parameter. 0 ≤ |S1∩S2|
|S1| ≤

1.0 and 0 ≤ |S1∩S2|
|S2| ≤ 1.0, so 0 ≤ threshold ≤ 1.0.

The reason that we simultaneously use two values

as the criterion is to avoid case a and case b in Fig. 4.

Moreover, in order to avoid case c in Fig 4, we do not

simply use |S1|
|S2| .

a b c

Fig. 4 Three special cases. The circle represents the tissue
region, and the polygon represents the submesh. For simplic-
ity, the voxels are not shown. All these three cases show a big
discrepancy between the tissue boundary and the submesh
boundary. However, for case (a), because the tissue is totally

covered by the submesh, |S1∩S2|
|S2|

has the highest value 1.0.

For case (b), because the submesh is totally covered by the

tissue region, |S1∩S2|
|S1|

has the highest value 1.0. For case (c),
|S1|
|S2|

can be 1.0 if the submesh and tissue region have the

same number of voxels.

The criterion relies on the number of the voxels, and,

therefore, it is susceptible to the resolution of the multi-

label image. For instance, if the resolution is very low,

we cannot find any voxels in a tetrahedron. To overcome

this difficulty, up-sampling is performed automatically

if no voxels are detected in a tetrahedron. To improve

the performance, we do not perform up-sampling in the

whole image, but restrict it to the bounding box of the

tetrahedron.

2.2 Mesh Deformation

This step is used to 1) deform the coarse mesh close

to the boundary, 2) maintain the quality of the coarse

mesh, and 3) generate a smooth mesh. The coarse mesh

needs to be deformed to the boundary. Unlike the in-

terpolation method used in [15], we develop two mesh

deformation strategies based on RPM and PBR. PBR

method needs to explicitly specify the correspondence

(displacement) between two point sets, and, therefore,

it provides a mechanism to control the smoothing and

the quality of the mesh. RPM method does not require

explicit correspondence calculation, but handles it in an

Expectation and Maximization framework. Compared

to PBR method, this method lacks flexible control on

the smoothing and quality, but is capable to reach a

higher fidelity.

2.2.1 Source point set and target point set

Two point sets are needed in the mesh deformation: the

source and target point sets. The source points are the

surface nodes of the mesh, and the target points are the

edge points in the multi-label image. The source point

set is obtained by extracting the surface nodes of each
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(a) Coarse multi-tissue
mesh

(b) Source point set

(c) Multi-label image (d) Target point set

Fig. 5 Point sets. The source point set (b) includes all the
surface nodes of the coarse mesh (a), and the target point set
(d) are the edge points in the multi-label image (c).

submesh. The target point set is obtained by canny

edge detection, which is facilitated by ITK implemen-

tation [12]. For each source point, its potential corre-

spondence point is located in the neighborhood of the

source point. It is computationally intensive to search

for the correspondence point in all target points. We as-

sociate each source/target point with a label to denote

which tissue it belongs to, and, therefore, the search

is only restricted to the target points, which have the

same label with the source point.

Figure 5 shows the source point set and the target

point set produced by visible human data. These in-

termediate results for other data will not be shown in

Section 3.

2.2.2 Extended Robust Point Matching for Mesh

Deformation

RPM is a flexible framework for non-rigid point match-

ing, in which the thin-plate spline (TPS) is employed as

the parameterization of the non-rigid spatial mapping,

and the softassign is used for the correspondence [10].

Our extension are twofold: First, the TPS smooth-

ing term in RPM is replaced with the stress energy of

a biomechanical model used in [6], and, therefore, the

underlying deformation can be estimated more realisti-

cally. Second, we combine RPM with a powerful robust

regression technique: Least Trimmed Square [20], to ef-

fectively deal with outliers.

To solve the mapping function and correspondence,

the point matching problem is formulated as a func-

tional minimization decomposed into a regularization

energy and a similarity energy.

A Fuzzy Linear Assignment Energy Functional
Suppose there are two point sets S (Source point set)

and T (Target point set) in <3 consisting of points

si, i = 1, 2, ...p and ti, i = 1, 2, ...l, respectively. The func-

tional is constructed as follows:

W (u,C) =

∫
Ω

σ(u)tε(u)+λ

p∑
i=1

‖si+u(si)−
∑
tj∈ΩR

cijtj‖2

(2)

The first term is the regularization energy defined by

the stress energy of a linear elastic model, and the sec-

ond term is the similarity energy. A physical model is

capable of realistically describing the movement of the

soft tissue, allowing accurately estimating the inner de-

formation given the boundary condition. This physical

model is widely used in the image registration field [13,

6]. λ is used to control the trade-off between these two

energies. Using the stress energy as the regularization

term will make the estimation of the mapping function

more realistic than other work [10,16,23], which use the

smoothing measure of TPS or CSRBF as the regular-

ization term.

In the similarity energy,ΩR defines the search range,

which is a sphere centered at the source point with ra-

dius R. cij is the probability with which the point si
corresponds with tj located in ΩR. u is the unknown

displacement field, and C is the unknown correspon-

dence matrix with entry cij . The correspondence ma-

trix C is similar with that in [10], but we define a range

ΩR, and only take into account the target points located

in ΩR. The search range basically makes RPM act as

a multi-resolution matching. As the range reduces, the

matching will go from the coarse level to the fine level.

cij is calculated as equation (3). For each source point

si, assume its potential correspondences are subject to

the Gaussian distribution:

cij =
c′ij∑k=m

k=1 c′ik
, c′ij =

1

R
√

2π
e
−(tj−si)

2

2R2 ,

∀tj ∈ ΩR, j = 1 . . .m

(3)

Combining the search range with Least trimmed squares

(LTS) [20], we can effectively detect outliers existing in

both point sets.

It is difficult to find the analytical solution from

equation (2). We use finite element method to discretize
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the problem by approximating:

u =

i=n∑
i=0

NiUi, (4)

where n is the number of the vertices of the finite el-

ement mesh, N is the shape function, and U is node

displacement vector. For simplicity, we define a vector

D with entry:

Di(cij) = si −
∑
tj∈ΩR

cijtj . (5)

The homogeneous biomechanical model used in [6] is

generalized with a more flexible tissue-aware model. As

a result, equation (2) can be discretized as:

W (U,C) =
n∑
i=1

(UTKiU + λi(HiU −Di(C))T (HiU −Di(C))),

(6)

where n is the number of the tissues, and Ki is the

global stiffness matrix assembled by the tetrahedra within

i-th tissue. Ki is related with two biomechanical at-

tributes of the i-th tissue: Young’s modulus and Pos-

sion’s ratio. The building of Ki has been well docu-

mented in [1]. Hi is the global linear interpolation ma-

trix assembled by matching points.

Each matching point ok with number k contained

in tetrahedron with vertex number ci, i ∈ [0 : 3] con-

tributes to four 3×3 submatrices: [H]kc0 , [H]kc1 , [H]kc2 ,

and [H]kc3 . Readers are referred to [6,13,1] for details.

[H]kci is defined as: [H]kci = diag(hi, hi, hi). The linear

interpolation factor hi is calculated as:
h0
h1
h2
h3

 =


vxc0 v

x
c1 v

x
c2 v

x
c3

vyc0 v
y
c1 v

y
c2 v

y
c3

vzc0 v
z
c1 v

z
c2 v

z
c3

1 1 1 1


−1 

oxk
oyk
ozk
1

 (7)

where vci is the vertex with number ci. Because we use

the node as the matching point, which means ok is same

with one of the four nodes, equation (7) is reduced to:

hi =

{
1 for ok = vci

0 for ok 6= vci
(8)

We term energy function (6) as a tissue-aware model

because it is able to use λi to balance the quality and

fidelity for the i-th tissue whether this model is homo-

geneous (same Young’s modulus and Possion’s ratio for

all tissues) or not.

The displacement vector U and correspondence ma-

trix C are resolved in an Expectation and Maximization

framework, in which C is estimated using equation (3)

in E step, and U is calculated by minimizing W (U) in

M step.

∂W

∂U
= 0⇒

i=n∑
i=1

(Ki + λiH
T
i Hi)U =

i=n∑
i=1

λiH
T
i Di(C)

(9)∑i=n
i=1 (Ki + λiH

T
i Hi) is semi-positive definite ma-

trix, therefore we can use Conjugate Gradient (CG) [22]

to resolve the linear system of equations. This compo-

nent is computed in parallel, facilitated by PETSc im-

plementation [17].

Expectation and Maximization The Expectation

and Maximization (EM) algorithm [8] is a general opti-

mization technique for maximum-likelihood [11] estima-

tion of the unknown model parameter in the presence

of missing or hidden data.

L(θ) = lnP (X|θ) = ln(
∑
z

P (X|z, θ)P (z|θ)), (10)

where X is measurement data, θ are unknown model

parameters, and z are hidden variables.

To estimate the model parameter, EM proceeds iter-

atively, and each iteration of the EM algorithm consists

of two steps: The E step and the M step. In the E step,

the missing data are estimated given the observed data

and current estimate of the model parameters. In the

M step, the likelihood function is maximized under the

assumption that the missing data are known. The es-

timate of the missing data from the E step are used

in lieu of the actual missing data. Convergence is as-

sured since the algorithm is guaranteed to increase the

likelihood at each iteration.

Fig. 6 An EM example: Mixture components and data. The
data consists of three samples drawn from each mixture com-
ponent, shown above as circles and triangles. The means of
the mixture components are -2 and 2, respectively, which need
to be estimated from six samples.

Fig. 6 from [7] shows two Gausian mixtures and six

samples drawn from the mixtures, in which the mean of
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each mixture is unknown. The purpose is to estimate

the two means without knowing from which mixture

each sample is drawn.

Since there are two mixtures and six samples, all

the possible data associations can be represented by a

2× 6 table.

In E step, a soft assignment, a posterior probability

the sample associating with the mixture, is estimated

for each sample. Then, a lower bound to the true like-

lihood function is constructed as [4]:

l(θ|θn) = L(θn) +∆(θ|θn), (11)

where θn is the estimation of θ at n-th iteration, and

∆(θ|θn) is the difference of the log likelihood defined

as:

∆(θ|θn) =
∑
z

P (z|X, θn)ln(
P (X|z, θ)P (z|θ)

P (z|X, θn)P (X|θn)
) (12)

As shown in Fig. 7 from [4], the lower bound function

l(θ|θn) is equal to the true likelihood function at θ = θn.

The new updated θn+1 is the value, which maximizes

the lower bound function in M step.

Fig. 7 Lower bound function l(θ|θn) of the likelihood func-
tion L(θ)

Each next bound is an increasingly better approx-

imation to the real likelihood, and, therefore, EM is

capable of guaranteeing the convergence.

The intuition behind EM is: alternate between esti-

mating the unknowns and the missing data. The point

matching problem can be stated as: find the mapping

function (unknown) between the source point set and

target point set in the absence of the correspondence

(missing data). The EM proceeds as follows:

– E-step: estimate correspondence given current esti-

mate of the mapping function according to equa-

tion (3)

– M Step: calculate mapping function given correspon-

dence according to equation (9)

Outlier rejection We present an outlier detection tech-

nique by combining the search range with Least Trimmed

Square (LTS) estimator [20]. LTS estimator is a robust

regression technique tolerant to outliers. Considering a

linear regression model for sample (xi, yi) with a re-

sponse variable yi and a vector of p explanatory vari-

ables xi:

yi = βxi + εi, i = 1, . . . , n. (13)

where β is the coefficient vector, and ε is a random

error term.

The LTS estimator is defined as:

β = argmin
β∈<P

h∑
i=1

r2i (β) (14)

where r2i ≤ . . . ≤ r2n are the ordered squared resid-

uals. Equation (14) is very similar to the traditional

least square with the only difference that only h obser-

vations with the smallest squared residuals are used in

the summation, thereby allowing the fit to stay away

from the outliers. The best robustness properties are

achieved when h, termed as trimming constant, is ap-

proximately n/2, in which case the breakdown point

attains 50% [20]. It is computationally intensive to de-

termine the LTS estimator by examining the total of(
n
h

)
subsamples when n is large [19].

In this paper, combining with a search range R, we

present an approximation method. This method con-

tains two steps: a trial step and an outlier rejection

step.

Trial step: Using EM algorithm to find the mapping

function corresponding to the search range R, and then

transform the source points. The purpose of this step

is not the mapping function due to its bias induced by

the outliers, but the detection of outliers in the next

step.

Outlier rejection step: based on the transformed source

point set, for each source point, find target points within

the search range R = R × a, where a is the annealing

parameter, and is equal to 0.93 as suggested in [10]. If

there are no target points within the search range of the

source point, this source point is marked as an outlier.

Replace the original source point set with this marked

source point set, and estimate the mapping function

again. The difference between this modified LTS and

the traditional LTS is that we use the search range in-

stead of h to perform the outlier rejection, and, there-

fore, there is no need for the ordering of the residuals.

For the target points, only the points in the range are

involved in the computation, and the other points will

be marked as outliers. So, this method can be used to

deal with the outliers in both point sets.
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The complete pseudo codes are presented in Algo-

rithm 1, in which Coarse Mesh Generation gener-

ates a coarse multi-tissue mesh and RPM Deforma-

tion deforms the coarse mesh to the tissue boundary.

Algorithm 1 multi-tissue mesh generation

M=MultiTissueMesher(MultiLabelImage, tolerance)

Require: MultiLabelImage, tolerance
Ensure: M : tissue dependent resolution multi-tissue mesh
1. Coarse Mesh Generation:
2. Generate BCC mesh M
3. Assign label for each tetrahedron in M
4. repeat
5. Label redistribution according to Table 1 to yield

multi-tissue mesh M
6. for each subMesh do
7. if satisfy the subdivision criterion (equation (1))

then
8. Subdivide M along the boundary using red green

strategy
9. end if

10. end for
11. until no subdivision
12. RPM Deformation:
13. Generate source point set S by surface extraction from

M (out of deformation loop, different from PBR)
14. Generate target point set T by edge detection from

MultiLabelImage
15. Assemble Ki

16. Assemble Hi using equation (7)
17. repeat
18. LTS trial step:
19. E step: Estimate correspondence C according to

equation (3)
20. Calculate Di using equation (5)
21. M step: Solve U according to equation (9)
22. Transform S based on U : S ⇐ U(S)
23. LTS outlier rejection step:
24. S ⇐ S − si if there are no target points in ΩR×a

25. recalculate U based on outliers rejected S
26. Deform M using M ⇐M + U
27. error ⇐ ‖Ui − Ui−1‖ between successive iterations
28. R⇐ R× a
29. until error < ε
30. Remove the tetrahedra with label 0 from M

2.2.3 Point-based Registration for Mesh Deformation

The classic PBR [6] is used to register two images: float-

ing image and reference image. The PBR is based on

the concept of energy minimization. A sparse set of

registration points within the floating image are iden-

tified. The displacement between the floating and the

reference images is estimated using Block Matching [2]

at each registration point. These displacements are ap-

plied as a boundary condition on a biomechanical model

to derive the entire brain deformation.

In our work, we extend this PBR method, and use

it in the mesh generation field. In the mesh generation,

the registration points will be fixed to the nodes of the

mesh instead of the feature points. The displacements

of these registration points are estimated by taking fi-

delity, smoothing, and quality into account. The dis-

placement is known in the energy function instead of a

variable relying on the correspondence C in RPM, i.e.

D(C).

The energy function is constructed similarly with

equation (6), except that D is assumed to be known.

W (U) =

n∑
i=1

(UTKiU + λi(HiU −Di)
T (HiU −Di)),

(15)

To incorporate smoothing into the registration frame-

work, we calculate D according to the relaxed target

position using the classic Laplacian smoothing. Gener-

ally, mesh smoothing is performed as a postprocessing

after the mesh generation. However, this will lead to the

smoothing out of control of the biomechanical model.

So, we reflect the smoothing as we calculate D by natu-

rally incorporating it into energy function (6). The i-th

entry di of distance vector D is calculated as follows:

Let the source point corresponding to di be s, its

normal be n, and the set of its neighboring nodes be S.

| S | denotes the set’s cardinality or size. The normal

n is calculated by averaging the normals of the surface

faces, which share the source point s. For each point

pi ∈ S, calculate its closest target point ti, i = 1 . . .m.

For s, calculate its closest target point q. The relaxed

(smoothed) position of s is s′ =
∑k=m

k=1 ti+q

|S|+1 . Projecting

s′ − s onto the normal of s leads to:

di = (

∑k=m
k=1 tk + q

| S | +1
− s) · n (16)

We illustrate the calculation of di in Fig. 8.

Once D is known, U can be resolved using equa-

tion (9). After we obtain U , we can update the posi-

tions of the nodes of the mesh. This procedure will be

repeated until the average error between source points

and target points is below a predefined tolerance or the

iteration reaches maximum number. The average error

is evaluated by:

d̄ =

∑
‖si − ti‖
| S |

, (17)

where si is a source point, ti is the closest target point

of si, and S is a source point set. The average error is

also used to evaluate the fidelity in Section 3.
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q

t1

n

t2

p1

s

p2

di

s′

Fig. 8 The calculation of di of node s. p1 and p2 are two
neighboring nodes of s. t1, t2, and q are the closets points
corresponding to p1, p2, and s, respectively. Their average
position is s′. Project s′ − s on unit normal n of the node s
to produce di.

The whole method, including the coarse mesh gen-

eration and the PBR based deformation, is presented

in Algorithm 2.

Algorithm 2 multi-tissue mesh generation

M=MultiTissueMesher(MultiLabelImage, tolerance)

Require: MultiLabelImage, tolerance
Ensure: M : tissue dependent resolution multi-tissue mesh
1. Coarse Mesh Generation:
2. Generate BCC mesh M
3. Assign label for each tetrahedron in M
4. repeat
5. Label redistribution according to Table 1 to yield

multi-tissue mesh M
6. for each subMesh do
7. if satisfy the subdivision criterion (equation (1))

then
8. Subdivide M along the boundary using red green

strategy
9. end if

10. end for
11. until no subdivision
12. PBR Deformation:
13. Generate target point set T by edge detection from

MultiLabelImage
14. repeat
15. Generate source point set S by surface extraction from

M (in deformation loop, different from RPM)
16. Calculate Di using equation (16)
17. Assemble Ki

18. Assemble Hi using equation (7)
19. Solve U using equation (9)
20. Deform M using M ⇐M + U
21. Calculate error d̄ using equation (17)
22. until reach maximum iteration or d̄ < tolerance
23. Remove the tetrahedra with label 0 from M

(a) Coarse brain and
sphere

(b) Closeup of
the cut through
view

(c) Compressed
brain and sphere

Fig. 9 Multi-tissues mesh generation for synthetic data. The
coarse multi-material mesh (a) is compressed into (c), then
cut through and zoomed in as (b)

3 Results

To completely evaluate the method, we first conduct

experiments on synthetic data with an artificial sphere

inserted into the brain to show the smoothing of the

multi-tissue mesh. Then, a clinic MRI, which includes

two tissues: brain and ventricle, is used to generate

a two tissue mesh. We use this data for the compar-

ison between RPM method and PBR method and the

conformity evaluation. Furthermore, we use two nerves

in the visible human data to evaluate the tissue-aware

quality control. Finally, we qualitatively and quantita-

tively evaluate the method on a non-manifold data, i.e.

a brain atlas. Note that except the results presented

in the comparison between PBR and RPM, the other

results are generated using PBR method due to its ad-

vantages regarding surface smoothing and mesh quality.

3.1 Synthetic data

We construct a synthetic data by inserting a sphere into

the brain. The results of the synthetic data are shown

in Figure 9. Figure 9(a) is generated using Algorithm 2

with BCC parameter 8mm and subdivision threshold

0.8. The outer boundary of the brain is not further sub-

divide, but its inner interface with the sphere is further

subdivided, as shown in Figure 9(b). Figure 9(c) shows

the smoothing of the brain and the sphere from an outer

view.

3.2 Real MRI

The ventricle has different biomechanical attributes from

other tissues in the brain, and, therefore, it is often

used to build a heterogeneous biomechanical model [21].

We evaluate our method on this simple heterogeneous

model: the ventricle and the rest of the brain, in which

the Young’s modulus E = 10Pa, Poisson’s ratio ν = 0.1

for ventricle, and E = 3000Pa, ν = 0.45 for the rest
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(a) Multi-label
image

(b) Coarse mesh (c) Final mesh

Fig. 10 Multi-tissue mesh generation for MRI data. (a) is
the multi-label image. The coarse multi-tissue mesh (b) is
generated with subdivision threshold 0.85. (c) is the deformed
multi-tissue mesh. The numbers of source points and target
points are 4497 and 31241, respectively.

(a) Closeup (b) Wireframe
view

(c) Extracted ven-
tricle

Fig. 11 (a) is the closeup of the inner ventricle, (b) is the
wireframe view of the two submeshes, and (c) is the extracted
ventricle.

of the brain [21]. The results are shown in Fig. 10.

Fig. 10(a) is the multi-label image, in which labels 128

and 255 denote the ventricle and the brain, respec-

tively. Fig. 10(b) is the coarse multi-tissue mesh, and

Fig. 10(c) is the final (deformed) multi-tissue mesh.

The deformed mesh is cut through and zoomed in as

Fig. 11(a). Fig. 11(b) is the wireframe view of two sub-

meshes, and Fig. 11(c) is the extracted ventricle. The

subdivision threshold we used to produce Fig. 10(b) is

0.85. With this parameter, the outer boundary of the

brain is not further subdivided, but its inner interface

with the ventricle is subdivided twice. Fig. 11(b) clearly

shows that the ventricle has higher resolution than the

brain.

From Fig. 10(a), we can see that the segmented

brain and ventricle are not smooth, but the brain sub-

mesh (Figure 10(c)) and the extracted ventricle sub-

mesh (Figure 11(c)) are very smooth. It demonstrates

that this method has a low requirement for the segmen-

tation due to the incorporation of the smoothing into

the PBR framework.

To show the conformity of the interfaces, we first

extract two submeshes: the brain and the ventricle.

The extracted brain is shown in Fig. 12(a), in which

the hole is induced by the extracted ventricle. The ex-

tracted ventricle is shown in Fig. 12(b). We want to

insert the ventricle into the hole to show the confor-

mity on the interface between the ventricle surface and

the hole surface. The ventricle surface should not be

(a) Ventricle
hole

(b) Ventricle Surface (c) Hole
wireframe

Fig. 12 (a) is the brain with a ventricle hole. (b) is the
extracted ventricle surface. (c) is the wireframe view of the
hole. The front surfaces of the brain are culled to show the
hole.

too smooth to distinguish surface triangles. Otherwise,

the conformity is not easily to be observed.

To show the conformity, we need to visualize the two

surfaces on the interface simultaneously. So, the hole

should be visualized in a different way from the ventri-

cle. We use wireframe to show the hole as Fig. 12(c).

Note that the front surface of the brain in Fig. 12(c) is

culled to clearly show the hole. Fig. 13 is the result of

inserting the ventricle into the hole. Part of the inter-

face located in the bounding box is zoomed in to show

the conformity. We conducted this experiment on Dell

PowerEdge (2 x dual-core Opteron 2218, 2.6 GHz CPU)

with a runtime of about 5 minutes.

Fig. 13 Multi-tissue mesh conformity.

Table 2 shows the comparison between the RMP

method and the PBR method. It clearly shows that
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RPM method is capable of dramatically improving the

fidelity, but at the same time deteriorates the mesh

quality. On the contrary, the PBR method can effec-

tively maintain the quality of the mesh at the cost

of sacrificing fidelity. The meshing-research community

has been taking the input-model boundary as a hard

constraint, which has been making any types of meshing

unnecessarily difficult. However, in reality, only fraction

of the input-model boundary is really important, and

other part of the boundary can be slightly perturbed

without making a substantial impact on the finite ele-

ment simulation. This PBR method provides a mech-

anism to naturally control the balance between the fi-

delity and the quality of the mesh.

Table 2 Comparison between RPM and PBR methods in
terms of minimum dihedral angle and average distance with
λi fixed.

PBR RPM
Iteration Num. Dihedral angle Distance Dihedral angle Distance

0 [39.00,39.00] 4.71 [39.00,39.00] 4.71
1 [24.31,50.22] 2.03 [8.59,71.62] 1.21
2 [15,67,61.58] 1.25 [3.70,80.58] 0.33
3 [9.02,77.48] 0.87 [1.05,86.54] 0.17
4 [5.35,80.97] 0.66 [0.31,110.76] 0.03
5 [4.62,81.05] 0.61 [0.11,115.41] 0.01

3.3 Visible human

We also evaluate the method using visible human data1.

Its multi-label image is shown in Fig. 14(a). This data

includes three tissues: two nerves (dorsal thalamus (DT)

with label 50 and caudata nucleus (CN) with label 100)

and the brain with label 255. Fig. 14 and Fig. 15 show

the results of this data. We use the same subdivision

threshold 0.85 with that in MRI data. Fig. 15(a) and

Fig. 15(b) clearly demonstrate the tissue-dependent res-

olution: nerve CN with resolution 1 (subdivided once),

nerve DT with resolution 2, and the brain with resolu-

tion 0.

We use this data for the evaluation of the tissue-

aware control of the quality. The results are shown in

Fig. 16. The top three figures are the closeup of DT and

CNP (λDT = λCNP = 1.0), the dihedral angle distri-

bution of the tissue DT, and the dihedral distribution

of the tissue CNP. The bottom three figures are the re-

sults as we fix λCNP , but reduce λDT to 0.25. The left

two figures do not show a big difference, but the two

middle figures clearly show the quality of DT improves

from [13.6,76.1] to [15.1,80.6] because we pay more at-

tention to the quality of DT. The two right figures do

not show any big differences because we do not change

1http://www.nlm.nih.gov/

(a) Multi-label
image

(b) Coarse mesh (c) Final mesh

Fig. 14 Multi-tissue mesh generation for visible human data.
(a) is the multi-label image. The coarse multi-tissue mesh
(b) is generated with subdivision threshold 0.85. (c) is the
deformed multi-tissue mesh. The numbers of source points
and target points are 5828 and 26060, respectively.

(a) Wireframe view (b) Extracted two nerves

Fig. 15 (a) is the wireframe view of the three submeshes,
and (b) is the extracted two nerves.

λCNP . Compared to MRI experiments, more time is

needed (9 minutes) because more tissues are involved.

Fig. 16 Tissue-aware quality control. The two values in the
bracket are minimum and maximum dihedral angles.

3.4 Brain atlas

We use the brain atlas2 to evaluate the method on non-

manifold surfaces. The multi-label image is shown in

Fig. 17(a), and the final multi-tissue mesh, produced

with the same trade-off parameters (λ1 = λ2 = ...λ6 =

1.0), is shown in Fig. 17(b).

We zoom in the interfaces of these tissues to show

the conformity in Fig. 18 in a different point of view

from Fig. 13. Fig. 19 has three subfigures, showing the

2http://www.spl.Harvard.edu/publications/item/view/1265
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(a) Brain atlas (b) Final multi-tissue mesh

Fig. 17 Multi-tissue mesh for brain atlas. Five tissues along
with the rest of the brain (a) are discretized. 43: right caudata
nucleus (RCN), 53: left caudata nucleus (LCN), 98: right an-
terior horn of lateral ventricle (RAHLV), 99: left anterior horn
of lateral ventricle (LAHLV), 140: corpus callosum (CC). (b)
is the final mesh. The numbers of source points and target
points are 6225 and 39136, respectively.

Fig. 18 Conformity of interfaces.

fidelity, tissue-dependent resolution, and quality, respec-

tively. The fidelity part shows the comparison of the fi-

delity before PBR (left) and after PBR (right). The fig-

ure is generated by cutting through the mesh, and over-

lapping it with the same slice of the multi-label image.

The black arrows point to the places where bigger im-

provement of the fidelity occurs. Compared to the inner

structures, the brain shows bigger improvement of the

fidelity. The reason is, compared to the inner structures,

the brain has lower resolution and, therefore, lower fi-

delity. Since we do not pay more attention to the inner

structures (the same λi for all tissues), the tissue with

lower fidelity improves its fidelity more. The fidelity is

evaluated using equation (17), and the measurements

are listed in Table 3. In the resolution part, the mesh

is cut through to show the tissue-dependent resolution.

In the quality part, we present the distribution of the

dihedral angle and aspect ratio under different trade-

off parameters λ (λ1 = λ2 = ...λ6 = λ). The values

in brackets are the minimum and maximum values for

the whole mesh. The values for each submesh are listed

in Table 3. As we increase λ from 1.0 to 1.5, i.e pay-

ing less attention to the quality, the minimum dihedral

angle reduces from 4.57 to 3.96, and the maximum as-

pect ratio increases from 8.80 to 15.83. It takes about

14 minutes to generate the final multi-tissue mesh.

Fig. 19 The evaluation of the fidelity, tissue dependent res-
olution, and quality on the brain atlas.

A good quality mesh is characterized by the absence

of slivers, i.e. tetrahedra with a very small dihedral an-

gle, or aspect ratio close to 1. One observation from the

quality part is the number of the tetrahedra with ra-

tio around 1 increases from 20000 to 40000 even when

we pay less attention to the quality (increase λ from 1

to 1.5). This can be explained by the fact that lots of

tetrahedra happen to improve their quality as they are

deformed to the boundary.

Table 3 Quantitative evaluation for the multi-tissue mesh
on the brain atlas. The atlas is regularized using a spacing:
1mm × 1mm × 1mm and a size: 240 × 240 × 259. The pa-
rameters are subdivision threshold=0.85 and λ = 1.0.

Nerve Aspect ratio Dihedral angle Distance #Tetras #Nodes
RCN [1.03,3.75] [13.36,79.80] 0.80 2944 814
LCN [1.07,3.01] [24.7,72.60] 0.91 612 220

RAHLV [1.02,6.84] [10.06,79.12] 0.79 9480 2589
LAHLV [1.03,4.07] [17.74,78.40] 0.82 3849 1136

CC [1.03,3.96] [13.56,78.14] 0.82 14937 3766
Other [1.02,8.80] [4.57,84.15] 0.99 109466 21407

4 Conclusion

This paper presents a BCC-based multi-tissue mesh

generation approach. This method inherits the advan-

tages of BCC lattice mesh, and extends it to a multi-

tissue mesher. To make submesh interfaces well posed

for deformation and reach conformity, we design a label

redistribution algorithm based on a predefined opera-

tion table. The proposed multi-tissue mesh generation
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method can reach tissue-dependent resolution by using

a red-green subdivision under the guide of a subdivision

criterion. Two mesh deformation strategies are devel-

oped and compared with each other. The RPM method

demonstrates its benefit on mesh fidelity, and the PBR

methods demonstrates its benefit on mesh quality. The

experiments on the synthetic data, clinic MRI, visi-

ble human, and brain atlas demonstrate the effective-

ness of this method. Although the proposed multi-tissue

mesher is only evaluated on brain images, it can be eas-

ily applied on other soft tissues by specifying suitable

biomechanical parameters.
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