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We present three related out-of-core parallel mesh generation algorithms and their implementations for
small size computational clusters. Computing out-of-core permits to solve larger problems than otherwise
possible on the same hardware setup. Also, when using shared computing resources with high demand, a
problem can take longer to compute in terms of wall-clock time when using an in-core algorithm on many
nodes instead of using an out-of-core algorithm on few nodes. The difference is due to wait-in-queue delays
that can grow exponentially to the number of requested nodes. In one specific case, using our best method
and only 16 nodes it can take several times less wall-clock time to generate a 2 billion element mesh than to
generate the same size mesh in-core with 121 nodes.

Although our best out-of-core method exhibits unavoidable overheads (could be as low as 19% in some
cases) over the corresponding in-core method (for mesh sizes that fit completely in-core) this is a modest and
expected performance penalty. We evaluated our methods on traditional clusters of workstations as well as
presented preliminary performance evaluation on emerging BlueWaters supercomputer.
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1. INTRODUCTION

A parallel Finite Element mesh generation software decomposes the original mesh
generation problem into smaller sub-problems that can be solved (meshed) in parallel.
The limiting factor for parallel mesh generation is memory. In turn, while increasing
the number of Processing Elements (PEs) makes mesh generation time shorter the
difference is not critical when compared to other delays such as wait-in-queue time
usually associated with using large-scale shared computing resources. According to
statistics collected on the SciClone cluster at the College of William and Mary from
the last four and a half years (see Fig. 1, right) the average waiting time for 300 PEs
is several hours while it takes only several minutes to generate the largest possible
mesh (for this configuration) using our presented parallel mesh generation software.
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A:2 Andriy Kot et al.

Fig. 1. (Left) The pipe cross-section overlapped by a uniform lattice used by the PDR method. The squares
in bold represent refinement blocks that are subdivided into smaller cells; and (right) the wait-in-queue time
statistics for parallel jobs collected from the last four and a half years from a 300+ processor cluster at the
College of William and Mary.

Our goal is to make possible generating very large meshes on limited memory ma-
chines like the current and emerging multi-processor multi-core high-end worksta-
tions. The solution is to store on disk most of the mesh i.e., use out-of-core (OoC) meth-
ods. We designed a family of OoC parallel mesh generation algorithms using existing
parallel in-core mesh generation methods [Chernikov and Chrisochoides 2004; 2006a].

Existing meshing methods first decompose the original problem into smaller sub-
problems. The sub-problems can be formulated to be either tightly or partially coupled
or even decoupled. The coupling of the sub-problems (i.e., the degree of dependency)
determines the intensity of the communication and the synchronization between the
sub-problems [Chrisochoides 2005].

Tightly coupled mesh generation methods such as Parallel Optimistic Delaunay
Mesh (PODM) generation method [Nave et al. 2002] are not suitable for out-of-
core (OoC) computations due to intensive communication among subdomains which
would require very frequent (up to 25K per second) disk accesses. Since this require-
ment cannot be satisfied such methods would be prohibitively slow.

Partially coupled methods are suitable for OoC parallel Delaunay mesh generation
because they: (1) require less communication than tightly coupled methods and may
employ structured communication patterns, (2) do not rely on domain decomposition
and (3) can take advantage of existing off-the-shelf sequential mesh generation li-
braries. The last point is important due to high complexity and long development time
of high-performance sequential industrial strength mesh generation libraries.

Weakly coupled OoC Parallel Constraint Delaunay Meshing [Chernikov and Chriso-
choides 2008a] proved suitable for effective OoC computing for 2D geometries. Unfor-
tunately, the method relies on solving the Medial Axis problem which has not yet been
solved for 3D. Additionally, it uses a custom mesh generation kernel; extra work would
be required to either replace it or extend it to 3D.

The decoupled methods (e.g., Parallel Delaunay Domain Decoupling Method [Linar-
dakis and Chrisochoides 2008b]) need little to no communication and use off-the-shelf
state-of-the-art sequential software like Triangle [Shewchuk 1996]. Unfortunately,
these methods rely upon the solution of a very difficult Domain Decomposition prob-
lem which is open for 3-dimensional (3D) geometries [Linardakis and Chrisochoides
2008a].

In [Chernikov and Chrisochoides 2004; 2006a] we presented an in-core partially cou-
pled Parallel Delaunay Refinement (PDR) method which relies upon a simple block
data decomposition (see Figure 1, left). The data decomposition is generated with a
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uniform 2D/3D lattice1 covering the entire domain of M. The block decomposition is
used to guide the parallel refinement, so that Steiner points, independently inserted
in certain regions ofM, are a priori Delaunay-independent. This method is extended
to 3D [Chernikov and Chrisochoides 2008b]. In this paper we use the 2D PDR method
to develop and analyze the performance of the parallel OoC guaranteed quality De-
launay mesh generation algorithms and their implementation. The 2D method is not
as computationally intensive as the 3D PDR method and thus we expect that the per-
formance data we present here will improve even further for the 3D case since longer
time spent in computations leads to better overlap with network and disk I/O.

The main contribution of this paper are three OoC algorithms and their implemen-
tations on a cluster of workstations (CoW) with both single processor nodes and k-
way multi-processor/multi-core nodes. Specifically, in Section 4.1 we present an OoC
method for shared memory machines with multiple processing cores, in Section 4.2 we
present an OoC method for distributed memory machines with a single processor per
node and in Section 4.3 we present a hybrid OoC method for CoWs with multi-core
nodes. Our performance data in Section 5 indicate that the total wall-clock time in-
cluding wait-in-queue delays and total execution time for the hybrid OoC method on
16 processors is 3.3 times shorter than the total wall-clock time for the in-core gener-
ation of the same size meshes using more than one hundred processors. Although the
OoC methods exhibit 19% to 56% overhead over the corresponding in-core method (for
mesh sizes that fit completely in the core of the CoWs) this is a modest performance
penalty for savings of many hours in response time. All OoC codes use the fastest
to our knowledge off-the-shelf sequential Delaunay mesh generator [Shewchuk 1996].
This helps us leverage the on-going improvements in terms of quality, speed, and func-
tionality of sequential in-core Delaunay mesh generation methods.

2. RELATED WORK

The modeling of physical phenomena in Computational Fluid Dynamics, Solid Me-
chanics, Biomedical and Material image analysis, and other related areas is based on
solving systems of partial differential equations (PDEs). When PDEs are defined over
geometrically complex domains, they often do not admit closed form solutions. In these
cases, the PDEs are solved approximately using finite element and finite volume meth-
ods by considering discretizations of domains into simple elements like triangles in two
dimensions, and tetrahedra in three dimensions. These discretizations are called finite
element meshes.

Delaunay refinement is a popular technique for generating triangular and tetrahe-
dral meshes for approximation and interpolation in various numeric computing ar-
eas. Among the reasons of its popularity is the amenability of the method to rigorous
mathematical analysis, which allows to derive guarantees on the quality of the ele-
ments in terms of circumradius-to-shortest edge ratio, the gradation of the mesh, and
the termination of the algorithm. The problem of parallel Delaunay triangulation of
a specified point set has been solved by Blelloch et al. [Blelloch et al. 1999]. Delau-
nay refinement algorithms work by inserting additional (so-called Steiner) points into
an existing mesh to improve the quality of the elements. In Delaunay mesh refine-
ment, the computation depends on the input geometry and changes as the algorithm
progresses. The basic operation is the insertion of a single point which leads to the
removal of a poor quality tetrahedron and of several adjacent tetrahedra from the
mesh and the insertion of several new tetrahedra. The new tetrahedra may or may

1We call the PDR method that employs a uniform lattice for data decomposition the uniform PDR. We also
developed the PDR method that employs a quadtree (octree in 3D) for data decomposition which we call
non-uniform PDR. In this paper we always refer to the uniform PDR method unless stated otherwise.
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not be of poor quality and, hence, may or may not require further point insertions. It
is proven that the algorithm eventually terminates after having eliminated all poor
quality tetrahedra, and in addition the termination does not depend on the order of
processing of poor quality tetrahedra, even though the structure of the final meshes
may vary. Traditional Delaunay refinement algorithms insert new points in the cen-
ters of the circumscribed circles [Shewchuk 2002; Ruppert 1995], while in our recent
work [Chernikov and Chrisochoides 2009; Foteinos et al. 2010] we have shown that
any points inside larger regions (called selection disks) can be chosen.

There are two basic approaches for the out-of-core computing: implicit, usually in-
volves virtual memory (VM) supported by internal mechanisms of an operating sys-
tem (OS); and explicit, which often implies algorithm-specific optimizations.

While VM is easy to employ it has limitations. The OS-supported VM is optimized for
system throughput and usually cannot exploit access patterns of irregular and adap-
tive applications. On four processors, our tests indicate that an increase in the problem
size from 23.8 million elements to 58.8 million elements (doubling the amount of mem-
ory by using disk) resulted in an increase of the execution time from about 7 minutes
to over 3 hours (192 minutes). Our out-of-core methods generate meshes of the same
size (58.8 millions) in less than 30 minutes on the same four processor workstation.
Additionally, the amount of VM may be limited by either computer architecture (32-bit
processors can only address 4GB) or by administration of the computing resources (it
is common to set VM no more than twice the amount of RAM 2).

The explicit approach is usually employed to develop algorithm-specific out-of-core
methods. This approach has been very effective in linear algebra parallel computa-
tions [Toledo and Gustavson 1996; D’Azevedo and Dongarra 2000]. Out-of-core lin-
ear algebra libraries use various mapping layouts (depending on the underlying I/O
and algorithm specifics) to store out-of-core matrices and employ vendor supplied li-
braries for asynchronous disk I/O. They rely on high performance in-core subroutines
of BLAS [Dongarra et al. 1988], LAPACK [Demmel et al. 1987] and ScaLAPACK [Choi
et al. 1992] and a simple non-recursive (in most cases) pipeline to hide latencies asso-
ciated with disk accesses.

Large amount of work was performed on designing optimal algorithms for parallel
multi-level memory model [Aggarwal and Vitter 1988; Vitter and Nodine 1993; Nodine
and Vitter 1995; Vitter et al. 1994; Vitter and Shriver 1993] as well as designing meth-
ods to map existing in-core algorithms based on batch-synchronous parallel models
into efficient out-of-core algorithms [Dehne et al. 1997].

In [Salmon and Warren 1997] authors described an out-of-core N-body parallel
method which is irregular and there is no creation or deletion of new bodies during
the execution, unlike the parallel mesh refinement computation we focus on in this pa-
per. Salmon et al. extend the virtual memory scheme to store out-of-core pages on the
disk. They use an algorithm-specific space-filling curve to arrange data within memory
pages. A problem-independent feature [Salmon and Warren 1997] is the page replace-
ment algorithm which is based on the last recently used (LRU) replacement policy. The
same policy is used as a basic virtual memory policy for many platforms (e.g., Linux).
However, the authors extend it by introducing priorities, different aging speeds for
different data types, and explicit page locking.

Etree [Tu and O’Hallaron 2004] is an out-of-core algorithm-specific approach for se-
quential mesh generation. The novelty of Etree is in the use of a spatial database to
store and operate on large octree meshes. Each octant is assigned a unique key using
the linear quadtree technique which is stored as a B-tree. There are three steps to
generate a mesh with Etree: (1) create an unbalanced octree on disk, (2) balance the

2Based on authors’ personal experience having access to computational clusters of varying sizes
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etree by decomposing further the octants that violate the 2-to-1 constraint (each octant
may not have more than two neighbors on each side) and (3) store the element-node
relations and node coordinates in two separate databases. Subsequently, all the mesh
operations are performed by querying the databases using Etree calls. This method
targets octree meshes and it is exceptionally fast, especially after recent new improve-
ments using a two-level bucket sort algorithm [Tu and O’Hallaron 2005]. However, it
targets octree-based meshes and is not parallel yet.

3. PARALLEL DELAUNAY REFINEMENT METHOD

The Parallel Delaunay Refinement (PDR) algorithm is based on a theoretical frame-
work for constructing guaranteed quality Delaunay meshes in parallel [Chernikov
and Chrisochoides 2004; 2006a]. Sequential guaranteed quality Delaunay Refine-
ment algorithms insert points at the selection disks around circumcenters of trian-
gles [Chernikov and Chrisochoides 2006b] of poor quality or of unacceptable size. Two
points are called Delaunay-independent iff they can be inserted concurrently without
destroying the conformity and Delaunay properties of the mesh. For 2-dimensional ge-
ometries, we presented [Chernikov and Chrisochoides 2004] a sufficient condition of
Delaunay-independence which is based on the distance between points: two points are
Delaunay-independent if the distance between them is greater than 4r̄, where r̄ is an
upper bound on triangle circumradius in the initial mesh. In n-dimensions, to ensure
that processors insert only Delaunay-independent points at each step of the algorithm
we impose an n-dimensional hypercube lattice3 over the entire n-dimensional domain.

Fig. 2. Subdivision of a meshM.

For simplicity we begin by presenting the algorithm in one dimension4. In one di-
mension the hypercube lattice is equivalent to a segment subdivided into a number
of smaller equal size subsegments (cells). We call the length of the segment (i.e., 1-D
lattice) the size of the lattice. Similarly, we call the length of a subsegment (i.e., cell)
the size of the cell. Consequently, the length of a segment that consists of several cells
is the size of the segment and is equivalent to the sum of the cell sizes.

Given a conforming Delaunay meshM and the number of available processors P we
compute r̄ such that the size of the corresponding lattice can be computed as αr̄ × P
where α is a constant that depends on implementation and dimensionality of the prob-
lem (α = 16 for our 2D implementation). Next,M is distributed among P processors:

3The points pattern of the lattice is equivalent to that of an n-dimensional hypercube
4In one dimension a “triangulation” of a segment is a discretization of the segment.
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letMi be the mesh that resides in memory of processor i such thatM =
⋃P

i=1
Mi, and

the size of a lattice segment that corresponds toMi is equal to αr̄.
We denote bordering segments ofMi as ∂Mi,j where i is the index of the subdomain

containingMi and j is the index of the respective neighbor, j ∈ {i−1, i+1} (e.g., ∂M3,4

would be the rightmost segment ofM3). Size of each bordering segment is βr̄, where β
is a constant that depends on implementation and dimensionality of the problem (β = 4
for our 2D implementation) and β | α. Additionally, we denote segments of equal size

of the border ∂Mi,j insideMi as ∂M′

i,j. Figure 2 shows the subdivision5 ofM.

M1 M2 M3

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

Fig. 3. An example of the PDR algorithm in one dimension. The mesh is comprised of three submeshesM1,

M2 andM3 (there are three processors), ∂Mi,j denote border segments. Stages (0)–(5) correspond to algo-
rithm steps 0–5. Arrows between different steps indicate movements of submeshes between domains (e.g.,
network send-receive). Right dashed (thin lines) areas show parts that are being modified during refinement,
left dashed (thick lines) areas show refined parts.

Below is the outline of the algorithm. First, we define the necessary operations (for
simplicity, A and B are abstract variables):

A← B: A is assigned a copy of a value in B, this includes transferring the copy
to a processor where A is located, if necessary

A ∪B: the result of this operation is a mesh that contains all elements of A and
B as a single simply connected mesh, A and B are not modified

A \B: the result of this operation is a mesh that contains all elements in A
except those in B, A and B are not modified

5According to the figureMi = (∂Mi,i−1 ∪ ∂M′

i,i−1
∪ ∂M′

i,i+1
∪ ∂Mi,i+1) which is true for our 2D imple-

mentation but is not required, in factMi ⊇ (∂Mi,i−1 ∪ ∂M′

i,i−1
∪ ∂M′

i,i+1
∪ ∂Mi,i+1).
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refine(A, B): defined only if A ∪ B where mesh A is refined as follows: elements in A
that belong to A ∩ B are refined, additionally refinement may affect ele-
ments in A that belong to A△ B and are geometrically within γ (γ is an
implementation dependent constant, γ | β; γ = 2r̄ for our 2D implemen-
tation) from the bounding box of B, resulting in refined mesh stored in
A.

The algorithm will perform the following steps:

(0) distributeM:M =

P
⋃

i=1

Mi,Mi ∩Mj = ∅, i, j = 1, 2, . . . , P , i 6= j

let I = {2, 3, . . . , P − 1}

(1) ∀i, i ∈ I:Mi ← (Mi \ ∂Mi,i+1) ∪ ∂Mi−1,i

M1 ←M1 \ ∂M1,2

MP ←MP ∪ ∂MP−1,P

(2) ∀i, i ∈ I: refine

(

Mi, (Mi \ (∂M′

i,i+1 ∪ ∂Mi−1,i))
)

refine

(

M1, (M1 \ (∂M′

1,2 ∪ ∂M1,2))
)

refine

(

MP , (∂MP−1,P ∪ ∂M′

P,P−1
)
)

(3) ∀i, i ∈ I:Mi ←Mi ∪ (∂Mi,i+1 ∪ ∂Mi+1,i) \ (∂Mi−1,i ∪ ∂Mi,i−1)

M1 ←M1 ∪ ∂M1,2 ∪ ∂M2,1

MP ← (M1 \ ∂MP−1,P ) ∪ ∂MP,P−1

(4) ∀i, i ∈ I: refine

(

Mi, (Mi \ (∂M′

i,i−1 ∪ ∂Mi+1,i))
)

refine

(

M1, (∂M′

1,2 ∪ ∂M1,2)
)

refine

(

Mn, (Mn \ ∂M′

P,P−1
)
)

(5) ∀i, i ∈ I:Mi ← (Mi ∪ ∂Mi,i−1) \ ∂Mi+1,i

M1 ←M1 \ ∂M2,1

MP ←MP ∪ ∂MP,P−1

See Figure 3 for an example of algorithm execution with mesh partitioned between
three subdomains. In step 0, mesh is subdivided into submeshes and distributed be-
tween processors. In step 1, border segments on the right side of each submesh are
transferred to neighbors on the right of their respective processors. In step 2, each pro-
cessor refines its submesh, border segments ∂M′

i,i+1 and ∂Mi−1,i are not refined but
changes may propagate into them. In step 3, border segments on the left side of each
submesh together with the border segments that were transferred in step 1 are trans-
ferred to neighbors on the left of their respective processors. In step 4, each processor
refines its submesh, border segments ∂M′

i,i−1 and ∂Mi+1,i are not refined but changes
may propagate into them. In step 5, border segments now located on the right of each
submesh are transferred to their original locations, on the left side of their respective
submeshes. At this point the mesh is refined and the algorithm finishes.
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3.1. Shared memory implementation of the PDR

The original implementation of the PDR was for distributed memory computing. How-
ever, since multi-core (including support for hardware threads) is becoming increas-
ingly popular we implemented a modified algorithm to take advantage of shared re-
sources and to avoid unnecessary communication:

— due to the location of buffer cells from different domains in the same memory space
it is no longer necessary to exchange them using message passing; instead those
cells are referenced by different processors

— synchronization is necessary to allow concurrent access to shared data-structures
— consequently, all supportive operations that accompany buffer exchange (i.e., pack-

ing/unpacking and merging of submeshes) are no longer needed

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

M1 M2 M3 M4

∂M4,3∂M3,4

∂M3,4 ∂M4,3

∂M4,3∂M3,4

∂M4,3∂M3,4

∂M4,3∂M3,4

∂M3,4 ∂M4,3

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2 ∂M4,3∂M3,4

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2 ∂M4,3∂M3,4

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2 ∂M4,3∂M3,4

∂M4,3∂M3,4

∂M1,2 ∂M2,1 ∂M2,3 ∂M3,2 ∂M3,4 ∂M4,3

Fig. 4. An example of out-of-core PDR algorithm in one dimension. Mesh is comprised of four submeshes
M1,M2,M3,M4 (there are two processors, RAM is limited so only one submesh can be loaded per proces-

sor), ∂Mi,j denote border segments. Solid arrows between different steps indicate movements of submeshes
between subdomains, dashed arrows indicate that a submesh will be stored on disk until it is required. Right
dashed (thin lines) areas show parts that are being modified during refinement, left dashed (thick lines) ar-
eas show refined parts. Large gray-shaded areas show data that currently reside on disk.
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Our evaluation showed [Kot et al. 2005] that performance of the Shared memory
PDR (SPDR) is better than the original method when used on the same hardware
platform. However, the difference is very small and the problem size is limited by the
total memory of an SMP/SMT node. Nevertheless, this work was used to implement an
advanced version of the out-of-core algorithm giving more of a performance boost (see
Section 5).

4. OUT-OF-CORE PDR

See Figure 4 for an example of the algorithm execution with the mesh partitioned into
four subdomains with only room for two in memory.

4.1. Shared Memory Out-of-Core PDR

The Out-of-Core Shared memory PDR (OSPDR) algorithm is designed to create large
meshes in parallel, using only one node of the supercomputer with the hard disk com-
plementing the memory. The following assumptions were made for the design of the
OSPDR algorithm: (1) parts of the mesh stored on disk can be accessed by any proces-
sor that needs them but synchronization is necessary to handle collisions; (2) only a
small fraction of the mesh can be loaded into the system memory, and (3) disk accesses
have a very high latency. Therefore, our goal in OSPDR is to minimize the number of
accesses and overlap them with computation whenever possible.

The mesh is stored on disk as a collection of subdomains. The subdomains are gen-
erated from the block decomposition using an auxiliary lattice we used for the PDR
method. All processors can access all subdomains therefore no specific data distribu-
tion is required. The subdomains are stored as a sequence of separate entities, that
is each subdomain is an atomic block and can be loaded/stored independently of the
others, yet it must be loaded/stored as a whole. Only one subdomain can be loaded into
processor memory at any time. Throughout the paper for simplicity of presentation we
assume that subdomains send and receive data (e.g., if subdomain i is loaded into the
memory of processor m and subdomain j is loaded into the memory of processor n and
processor m sends data to processor n we say subdomain i sends data to subdomain j).

There are four main steps (we call them phases) in the PDR algorithm, each con-
sists of a refinement step and a data exchange called shift. Since we only have enough
memory to hold a portion of the mesh in-core it is impossible to perform a phase si-
multaneously for all subdomains as in the PDR. In OSPDR, we break each phase into
several steps. At each step we load a portion of the mesh, refine it, exchange data be-
tween in-core subdomains and store the updated portion of the mesh. We call the data
exchanges between in-core subdomains a shift, in consistence with the PDR.

During a shift each subdomain6 receives data from one of its neighbors and sends
data to another. We define a direction of a shift as a relative geometric position of the
subdomain that receives data with regards to the position of the subdomain that sends
data. All shifts in a phase share the same direction which is the direction of the phase.

There are two distinct types of phases based on their direction: parallel (up, right,
down, left) and diagonal (up-right, down-right, down-left, up-left). We only need to ex-
plain one of each, the rest can be understood by analogy. In particular, we describe the
phase with right shift and the phase with down-right shift. PDRrefinement refines a por-
tion of the mesh using external mesh library (Triangle). PDRshifts integrates triangles
in the border subdomain into the mesh. For more detailed description of PDRrefinement

and PDRshifts see the in-core algorithm [Chernikov and Chrisochoides 2004].

6With the exception of the boundary subdomains.
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A phase with parallel direction is rather straightforward, the order of refinement (ge-
ometrical direction in which blocks are loaded, refined and stored back to disk) coin-
cides with the direction of the shift:

OSPDR.HORIZONTALSHIFT(M,X , ∆̄, ρ̄, P , p, N )
Input:M is a Delaunay mesh computed in previous phase(s)

X is a planar straight line graph which defines the domain ofM
∆̄ and ρ̄ are desired upper bounds on triangle area

and circumradius-to-shortest edge ratio, respectively

P is the total number of processors (
√

P is integer)
p is the index of the current processor, 1 ≤ p ≤ P

N2 is the total number of subdomains (N/
√

P is integer)
Output: a (partially) refined Delaunay meshMp which conforms to X

and respects (in certain regions) ∆̄ and ρ̄
0 Calculate row(p) and col(p) of the current processor

// 1 ≤ row(p), col(p) ≤
√

P
1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) ×N + n as local meshMp

4 if n 6= 0 and col(p) = 1
5 Reference cells {ci,1 | 1 ≤ i ≤ 4} of local meshMp

6 endif
7 Mp ← PDRrefinement(Mp, ∆̄, ρ̄, P , p)
8 Mp ← PDRshifts(Mp, ∆̄, ρ̄, P , p)

9 if col(p) =
√

P and n 6= N
10 Assign cells {ci,4 | 1 ≤ i ≤ 4} to processor in (row(p), 1)
11 endif
12 Store local meshMp as block p of subdomain (m− 1)×N + n
13 endfor
14 endfor
15 returnMp

A phase with diagonal direction is more complex, because the corner cell shifts both
horizontally and vertically and both groups of side cells shift into their respective di-
rections:

OSPDR.DIAGONALSHIFT(M,X , ∆̄, ρ̄, P , p, N )
Input: same as in OSPDR.HorizontalShift
Output: a (partially) refined Delaunay meshMp which conforms to X

0 Calculate row(p) and col(p) of the current processor

// 1 ≤ row(i), col(i) ≤
√

P
1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) ×N + n as local meshMp

4 if n 6= 0 and col(p) = 1
5 Reference cells {ci,1 | 1 ≤ i ≤ 3} of local meshMp

6 endif
7 Mp ← PDRrefinement(Mp, ∆̄, ρ̄, P , p)
8 Mp ← PDRshifts(Mp, ∆̄, ρ̄, P , p)

9 if col(p) =
√

P and n 6= N
10 Assign cells {ci,4 | 1 ≤ i ≤ 3} to processor in (row(p), 1)
11 endif

12 if row(p) =
√

P and m 6= N
13 Assign cells {c4,i | 1 ≤ i ≤ 3} to processor in (1, col(p))
14 endif
15 if p = P and n 6= N and m 6= N
16 Assign cell c4,4 to processor in (1, 1)
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17 endif
18 if row(p) = 1 and m < N
19 Reference cells {b1,i | 1 ≤ i ≤ 3} of local buffer B
20 Overwrite cells {c1,i | 1 ≤ i ≤ 3} of block p in subdomain m ×N + n with B content
21 endif
22 if n < N and m < N
23 Reference cell b1,1 of local buffer B
24 Overwrite cell c1,1 of block p in subdomain m×N + n + 1 with B content
25 endif
26 Store local meshMp as block p of subdomain (m − 1)×N + n
27 endfor
28 endfor
29 returnMp

4.2. Out-of-core Distributed Memory PDR

The Out-of-core Distributed memory PDR (ODPDR) algorithm is designed to create
very large meshes in parallel, using the aggregate and concurrent access of disk space
through multiple nodes of a CoW. The following assumptions were made for the design
of the ODPDR algorithm: (1) parts of the mesh stored on disk can only be accessed by
the processor that the disk is directly attached to; (2) only a small fraction of the mesh
can be loaded into the system memory, and (3) network and disk accesses have a very
high latency. Therefore our goal in ODPDR is to minimize the number of accesses and
overlap them with computation whenever possible.

The mesh is stored on disk as a collection of subdomains. The subdomains are gen-
erated from the block decomposition (using an auxiliary lattice) we used for the PDR
method. The ODPDR uses different from PDR assignment of the cells to processors,
but relies on the PDR (in-core) parallel Delaunay meshing and refinement code.

Optimal data distribution reduces the amount of communication to a necessary min-
imum and consequently lowers associated latencies. We propose an interleaving block
partitioning (see Figure 5, left). That is the domain is partitioned into N2 subdomains,
where N is a number related to the size of the mesh and the amount of available RAM.
Each subdomain is further partitioned into P blocks, where P is the total number of
processors. Since P is a constant for every configuration, N is chosen such that the
memory requirements of any single block is small enough to fully fit into RAM of a sin-
gle node. The total number of blocks in the domain is P ×N2; each processor stores (on
local disk) one block from each subdomain, total of N2 blocks. This scattered decom-
position helps to implicitly improve workload imbalances. Similarly to OSPDR we will
only explain one horizontal and one diagonal shifts.

Fig. 5. An example of domain partitioning for the ODPDR (left) and the OHPDR (right) methods. P is the
number of processors in 1 processor/core per node scenario, ppn is the number of processors per node, K is
the number of nodes. N is derived empirically and depends on amount of memory and disk space (N2 is the
total number of subdomains).
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The horizontal/vertical type of top-level shift is rather straightforward, the order of
refinement coincides with the direction of the shift (see Figure 6):

ODPDR.HORIZONTALSHIFT(M,X , ∆̄, ρ̄, P , p, N )
Input:M is a Delaunay mesh computed in previous phase(s)

X is a planar straight line graph which defines the domain ofM
∆̄ and ρ̄ are desired upper bounds on triangle area

and circumradius-to-shortest edge ratio, respectively

P is the total number of processors (
√

P is integer)
p is the index of the current processor, 1 ≤ p ≤ P

N2 is the total number of subdomains (N/
√

P is integer)
Output: a (partially) refined Delaunay meshMp which conforms to X

and respects (in certain regions) ∆̄ and ρ̄
0 Calculate row(p) and col(p) of the current processor

// 1 ≤ row(i), col(i) ≤
√

P, 1 ≤ i ≤ P
1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) ×N + n as local meshMp

4 if n 6= 0 and col(p) = 1
5 Receive cells {ci,1 | 1 ≤ i ≤ 4} of local meshMp

6 endif
7 Mp ← PDRrefinement(Mp, ∆̄, ρ̄, P , p)
8 Mp ← PDRshifts(Mp, ∆̄, ρ̄, P , p)

9 if col(p) =
√

P and n 6= N
10 Send cells {ci,4 | 1 ≤ i ≤ 4} to processor in (row(p), 1)
11 endif
12 Store local meshMp as block p of subdomain (m− 1)×N + n
13 endfor
14 endfor
15 returnMp

The diagonal shift is more complex, because the corner cell shifts both horizontally
and vertically and both groups of side cells shift into their respective directions (see
Figure 6):

ODPDR.DIAGONALSHIFT(M,X , ∆̄, ρ̄, P , p, N )
Input: same as in ODPDR.HorizontalShift
Output: a (partially) refined Delaunay meshMp which conforms to X

0 Calculate row(p) and col(p) of the current processor

// 1 ≤ row(i), col(i) ≤
√

P, 1 ≤ i ≤ P
1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) ×N + n as local meshMp

4 if n 6= 0 and col(p) = 1
5 Receive cells {ci,1 | 1 ≤ i ≤ 3} of local meshMp

6 endif

7 Mp ← PDRrefinement(Mp, ∆̄, ρ̄, P , p)
8 Mp ← PDRshifts(Mp, ∆̄, ρ̄, P , p)

9 if col(p) =
√

P and n 6= N
10 Send cells {ci,4 | 1 ≤ i ≤ 3} to processor in (row(p), 1)
11 endif

12 if row(p) =
√

P and m 6= N
13 Send cells {c4,i | 1 ≤ i ≤ 3} to processor in (1, col(p))
14 endif
15 if p = P and n 6= N and m 6= N
16 Send cell c4,4 to processor in (1, 1)
17 endif
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18 if row(p) = 1 and m < N
19 Receive cells {b1,i | 1 ≤ i ≤ 3} of local buffer B
20 Overwrite cells {c1,i | 1 ≤ i ≤ 3} of block p in subdomain m ×N + n with B content
21 endif
22 if n < N and m < N
23 Receive cell b1,1 of local buffer B
24 Overwrite cell c1,1 of block p in subdomain m×N + n + 1 with B content
25 endif
26 Store local meshMp as block p of subdomain (m − 1)×N + n
27 endfor
28 endfor
29 returnMp

4.3. Out-of-core Hybrid Memory PDR

To take full advantage of current hardware trend of having multiple processors / cores
per node we designed and implemented the Out-of-core Hybrid memory PDR (OH-
PDR). Indeed, our experimental study (see Section 5) showed that the OHPDR method
is faster than the ODPDR on nodes with more than one processor / core. We made the
same design assumptions as in the case of the ODPDR, additionally, processors of the
same node have equal access time to its local disk.

The mesh is stored on disks as a collection of subdomains generated from the block
decomposition (using the auxiliary lattice). Part of the code responsible for meshing is
taken from the OSPDR, but the assignment of cells to processors is different. We use
an interleaving partition similar to the one used in the ODPDR (see Figure 5, right).
The mesh is divided into N2 subdomains, where N is a number related to the size
of the mesh and the amount of available RAM. Each subdomain is then subdivided
into ppn × K blocks, where K is the number of SMP nodes and ppn is the number of
processors per node. The value of N is chosen in the same way we chose the number of
subdomains for the ODPDR method.

The OHPDR also (as the ODPDR) uses the same two levels of data movements.
However, a shift can be either shared (between processors of an SMP) or distributed,
over the network (between nodes). Similarly, there are two distinct types of top-level
shifts: horizontal/vertical and diagonal. We will only focus on the horizontal shift to
the right and the diagonal shift to the right and down (the rest is done by analogy).

A top-level horizontal shift is performed in the following steps (see Figure 7):

OHPDR.HORIZONTALSHIFT(M,X , ∆̄, ρ̄, K, ppn, p, N )
Input: ppn is the number of processors per node (the same number of

processors on all nodes)
K is the number of nodes (we assume

√
K ∗ ppn is integer and,

for simplicity of the presentation, K = ppn)
p is the index of the current processor, 1 ≤ p ≤ ppn×K
M, X , ∆̄, ρ̄ and N are the same as in ODPDR.HorizontalShift

Output: a (partially) refined Delaunay meshMp which conforms to X
and respects (in certain regions) ∆̄ and ρ̄

0 Calculate node(p) and proc(p) of the current processor
// 1 ≤ node(i) ≤ K, 1 ≤ proc(i) ≤ ppn, 1 ≤ i ≤ ppn×K

1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m− 1)×N + n as local meshMp

4 if n 6= 0 and proc(p) = 1
5 Read cells {ci,1 | 1 ≤ i ≤ 4} of local meshMp from shared-memory buffer
6 endif

7 Mp ← SPDRrefinement(Mp, ∆̄, ρ̄, ppn, K, p)
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8 Mp ← SPDRshifts(Mp, ∆̄, ρ̄, ppn, K p)
9 if proc(p) = ppn and n 6= N

10 Write cells {ci,4 | 1 ≤ i ≤ 4} into shared-memory buffer
11 endif
12 Store local meshMp as block p of subdomain (m− 1)×N + n
13 endfor
14 endfor
15 returnMp

The top-level diagonal shift to the right and down is performed in the following
steps (see Figure 7):

OHPDR.DIAGONALSHIFT(M,X , ∆̄, ρ̄, K, ppn, p, N )
Input: same as in OHPDR.HorizontalShift
Output: a (partially) refined Delaunay meshMp which conforms to X

0 Calculate node(p) and proc(p) of the current processor
// 1 ≤ node(i) ≤ K, 1 ≤ proc(i) ≤ ppn, 1 ≤ i ≤ ppn×K

1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) ×N + n as local meshMp

4 if n 6= 0 and proc(p) = 1
5 Read cells {ci,1 | 1 ≤ i ≤ 3} of local meshMp from shared-memory buffer
6 endif

7 Mp ← SPDRrefinement(Mp, ∆̄, ρ̄, ppn, K, p)
8 Mp ← SPDRshifts(Mp, ∆̄, ρ̄, ppn, K, p)
9 if proc(p) = ppn and n 6= N

10 Write cells {ci,4 | 1 ≤ i ≤ 3} into shared-memory buffer
11 endif
12 if node(p) = K and m 6= N
13 Send cells {c4,i | 1 ≤ i ≤ 3} to node node(p)
14 endif
15 if proc(p) = ppn and node(p) = K and n 6= N and m 6= N
16 Send cell c4,4 to node 1
17 endif
18 if node(p) = 1 and m < N
19 Receive cells {b1,i | 1 ≤ i ≤ 3} of local buffer B
20 Overwrite cells {c1,i | 1 ≤ i ≤ 3} of block p in subdomain m×N + n with B content
21 endif
22 if n < N and m < N
23 Receive cell b1,1 of local buffer B
24 Overwrite cell c1,1 of block p in subdomain m ×N + n + 1 with B content
25 endif
26 Store local meshMp as block p of subdomain (m− 1)×N + n
27 endfor
28 endfor
29 returnMp

5. PERFORMANCE EVALUATION

For the evaluation of all PDR algorithms we used the cluster of Center for Real-time
Computing7 at the College of William and Mary. The cluster consists of four, four-
way SMP IBM OpenPower720 compute nodes, with IBM Power5 processors clocked at
1.62 GHz and 8 GB of physical memory on every node. The IBM Power5 is a dual-core
processor, and each one of its cores is organized as a simultaneous multi-threading ex-
ecution engine, running two concurrent threads of control from the same or different
address spaces. The processor has a large L2 cache (1.9 MB organized in three banks)
which is shared between the cores via a crossbar switch, and a very large (36 MB) ded-
icated L3 cache, which is also shared between the processor’s cores and threads. The

7http://crtc.wm.edu/
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Fig. 6. Out-of-core schemes of top-level shifts for ODPDR: along axis (left) and diagonal (right). Setup: 4
processors, 9 subdomains, distributed memory and disk storage.
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Fig. 7. Out-of-core schemes of top-level shifts for OHPDR: along axis (left) and diagonal (right). Setup: 2
nodes, 2 processors with shared memory per node, 9 subdomains, disk storage.
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Table I. Parallel Delaunay refinement for a mesh of a unit square using the IBM
cluster. The OSPDR, the ODPDR and the OHPDR use 4 processors; the PDR uses 4,
9, 16 and 25 processors.

Mesh size, PDR OSPDR ODPDR OHPDR
# elements execution time,
×106 sec
23.8 121(4) 249 276 264
58.8 105(9) 438 486 444
109.3 116(16) 631 639 578
175.4 114(25) 1136 1236 1257

Table II. Parallel Delaunay refinement for a mesh of a unit square using the IBM
cluster. The OSPDR, the ODPDR and the OHPDR use 4 processors; the PDR uses 4,
9, 16 and 25 processors.

Mesh size, PDR OSPDR ODPDR OHPDR
# elements normalized speed
×106 (×103 triangles per sec per proc)
23.8 49.10(4) 23.87 21.52 22.53
58.8 62.01(9) 33.56 30.24 33.12
109.3 58.67(16) 43.28 42.76 47.26
175.4 61.67(25) 38.61 35.47 34.89

nodes are interconnected with Gigabit Ethernet and the cluster is accessible from the
outside world via Gigabit lines as well. The main 16-processor, 32-core, 64-thread com-
pute infrastructure, is stored in one rack along with one dual-processor OpenPower720
storage server and one dual-processor OpenPower720 management and software de-
velopment node.

All algorithms are independent of the geometry of the domain, however, for our per-
formance evaluation we used a square geometry to eliminate other parameters like
work-load imbalance. This and other issues of the in-core algorithm are addressed in
non-uniform Parallel Delaunay Refinement algorithm [Chernikov and Chrisochoides
2004] and are out of scope of this paper. However, is should be noted that over-
decomposition introduced by out-of-core algorithms somewhat improves the work-load
imbalance. We tested it with a mesh of a cross section of a pipe model that is part of
a rocket fuel system (see Figure 1, left). This test geometry shows that the impact of
load imbalances is much less severe to the out-of-core PDR algorithms.

In order to compare the performance of the in-core and the OoC PDR methods which
run on differing number of nodes, we use normalized speed. This measure computes
the number of elements generated by a single processor over a unit time period, and
it is given by V = N

T×P , N is the number of elements generated, P is the number of

processors in the configuration and T is the total execution time.
Tables I and II shows the performance of all three out-of-core methods on a single

4-way SMP node from the workstation. The PDR performance is also included for com-
parison. However, the PDR has to use 9, 16 and 25 processors, respectively from the
second problem and on since they would not fit in the aggregate memory of fewer pro-
cessors. As expected, OSPDR and OHPDR show the best performance (not including
the PDR). The ODPDR does not take advantage of shared memory and thus is slower.
These data show that for some cases, the OHPDR method is only 19% slower, usually,
it is about twice as slow (which is acceptable) as its counterpart in-core PDR method
for the mesh sizes that fit completely in the core of the CoWs.
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Table III. Parallel Delaunay refinement for the unit square. The ODPDR and the
OHPDR1 use 16 processors (4 nodes, 4 CPU per node); the OHPDR2 uses 16 proces-
sors (2 nodes, 8 CPUs per node) of the IBM cluster; the PDR uses up to 121 processors
of the SciClone cluster. In parentheses on the PDR column are the corresponding val-
ues from running the in-core PDR on up to 32 processors of the IBM cluster (there
are only 32 computing processors total in IBM cluster). Wait-in-queue time is included
when computing normalized speed for the in-core algorithm.

Mesh size, PDR ODPDR OHPDR1 OHPDR2
# elements normalized speed
×106 (×103 triangles per sec per proc)
109.3 23.24 (98.1) 53.33 53.01 45.23
175.4 23.78 (96.74) 52.24 47.61 43.24
255.0 24.01 (98.32) 42.12 48.54 44.51
352.6 24.23 (97.84) 39.8 40.9 38.45
470.7 25.1 (100.2) 52.1 46.24 43.18
587.8 24.6 49.8 50.23 47.12
738.9 24.63 47.27 50.43 46.88
873.5 24.55 51.2 49.67 45.81
1284.1 23.11 50.6 48.72 44.14
1967.2 24.23 49.82 50.01 46.12

Table III shows the performance of distributed memory out-of-core PDR methods
along with the in-core PDR using up to 121 processors. The unit square is used as
a test case. The OHPDR is tested on two slightly different configurations: (1) using
16 nodes with a single processor per node, listed as OHPDR1 and (2) using 8 nodes
with two processors per node, listed as OHPDR2. The OSPDR being designed solely
for shared memory cannot run on these configurations.

The performance of both OoC methods is similar on the same configuration which is
expected since the OHPDR does not take advantage of shared-memory. On SMP nodes
the OHPDR (listed as OHPDR2) performs slightly worse. This is the opposite of the
results we have seen on another system [Kot et al. 2006]. It is likely due to smaller
cache (per core) and/or different implementations of MPI and OpenMP.

The normalized speed of the parallel OoC methods is approximately constant for all
large problem sizes we ran. This suggests that the parallel OoC methods scale very
well with respect to the problem size.

The total execution time for just under 2 billion elements is a little over one hour and
a half (one hour and 37 minutes) using parallel OoC methods and 16 processors. How-
ever, the wait-in-queue delays for parallel jobs with more than 100 processors (they are
required to generate the same size mesh using the in-core PDR) in our cluster is on
average about five hours. However, on the same cluster the waiting time for 16 proces-
sors is less than half an hour. This makes the OHPDR2 response time 3.3 times shorter
than the response time of the in-core PDR, for mesh sizes close to a billion elements.

Moreover, many scientific computing groups can afford to own a dedicated 8 to 16
processor cluster which means zero waiting time. Thus, the parallel OoC methods are
much more effective and even faster if one uses the total “wall-clock” time.

Table IV shows the performance of distributed and shared memory OoC methods
along with the PDR on large configurations for an irregular geometry, the pipe model.
The uniform block data decomposition we used for the pipe model results in an un-
even distribution of work to processors. This load imbalance on average reduces the
speed for both the in-core method (by 61%) and the OoC method (by 27%). In the
case of OoC methods, at every point of time processors refine only a portion of over-

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: YYYY.



Effective OoC Parallel Delaunay Mesh Refinement A:19

Table IV. Parallel Delaunay refinement for a mesh of the pipe model. The ODPDR
and the OHPDR use 16 processors (4 nodes, 4 CPUs per node); the PDR uses vary-
ing number of processors (16-121). Wait-in-queue time is included when computing
normalized speed for the in-core algorithm.

Mesh size, PDR ODPDR OHPDR
# elements normalized speed
×106 (×103 triangles per sec per proc)
58.3 16.12(16) 36.38 36.96
91.1 15.18(25) 35.21 35.85
131.2 14.29(36) 36.12 37.02
178.6 14.35(49) 35.78 36.65
233.3 13.3(64) 36.35 36.88
295.3 14.08(81) 35.10 36.03
364.6 15.72(100) 35.61 36.83
441.1 17.2(121) 35.89 37.12

Table V. I/O rates for reading and writing shown as percentages of maximum sus-
tained I/O rates; Parallel Delaunay refinement for a mesh of a unit square using 4
nodes of the IBM cluster.

Method / IO rate for large problem sizes (×106 elements)
operation 587.8 738.9 873.5 1284.1 1967.2
ODPDR read 21.56 21.97 22.11 22.1 22.06
ODPDR write 18.02 17.72 18.03 17.98 18.22
OHPDR read 23.21 23.07 23.54 23.48 23.76
OHPDR write 21.06 20.92 21.48 21.44 21.34

decomposed [Barker et al. 2004] mesh, with all processor working in close proximity of
each other. As a result, the workload is implicitly balanced because by far all proces-
sors have to perform approximately the same amount of computation.

Table V shows the I/O rates we achieved for large problem sizes. We computed these
values by measuring the amount of data read or written and then subdividing it by
the total execution time. We list the rates as percentages of the maximum sustained
I/O rates on this machine. These rates are taken as sustained throughput of local
disks (measured by reading/writing large files with Unix dd command), and are equal
to 25.51 MB/s for reading and 18.02 MB/s for writing.

6. SUMMARY

We presented three OoC methods for parallel guaranteed quality Delaunay mesh gen-
eration. The OoC Shared memory PDR (OSPDR) method allows to generate compar-
atively large meshes on a single computing node with limited memory. The method
takes advantage of multiple processors of an SMT/SMP but is only limited to a single
node. The Out-of-core Distributed memory PDR (ODPDR) method allows to generate
much larger meshes. Alternatively, it is faster to generate the same size mesh with
the ODPDR if more processors are available. Finally, a combination of the OoC shared
and distributed memory PDR (OHPDR) method is efficient for CoWs with k-way SMP
nodes. The OoC methods are cost-effective in terms of response time. The total wall-
clock time including wait-in-queue delays and total execution time for the OoC meth-
ods is 3.3 times shorter than the total wall-clock time for the in-core generation of the
same meshes using more than one hundred processors. Our out-of-core methods are
19% to 56% slower than its counterpart in-core method for mesh sizes that fit com-
pletely in the core of the CoWs. This is a modest performance penalty for savings of
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Table VI. Preliminary evaluation of PDR on BlueDrop using pipe model. SMT1 shows
execution time with 1 threads enable per core and SMT4 shows execution time with 4
threads per core (consequently 4 times more computing threads).

Mesh size, Cores / Time, sec
×106 elems Threads SMT1 SMT2

14.6 4 / 16 101 30
233.3 16 / 64 238 110
441.1 16 / 64 409 207

many hours in response time. Moreover, all three OoC codes use the fastest to our
knowledge off-the-shelf sequential Delaunay mesh generator and thus leverage from
on-going improvements in terms of quality, speed, and functionality of the sequential
in-core Delaunay mesh generation methods.

Although the data we presented are from 2D geometries, the contribution of this
paper is still important for two reasons: (1) the memory movement and communica-
tion patterns for 3D remains the same and thus the overheads for the 3D geome-
tries will be much smaller since the 3D sequential meshers (e.g., Pyramid [Shewchuk
1997]) are more computationally intensive than their 2D counterpart (Triangle) which
is the in-core mesh generation kernel we use and (2) 2D mesh generation is still impor-
tant for some 3D simulations like direct numerical simulations of turbulence in cylin-
der flows (“drag” crisis simulations) with very large Reynolds numbers [Dong et al.
2004] and coastal ocean modeling for predicting storm surge and beach erosion in real-
time [Walters 2005]. In both cases, 2D mesh generation is taking place in the xy-plane
and it is replicated in the z-direction in the case of cylinder flows or using bathymetric
contours in the case of coastal ocean modeling applications. With the increase of the
Reynolds number (Re), the size of the mesh (in drag crisis simulations) grows in the
order of Re9/4 [Karniadakis and Orszag 1993], which motivates the use of parallel out-
of-core mesh generation algorithms. Similarly, we have seen the few inches difference
in damages (in the z-direction) made in two recent hurricanes in the Gulf Coast, this
suggests very high resolution (and thus generation of very large meshes) for predicting
storm surge and beach erosion.

We had a chance to evaluate PDR performance on BlueDrop, a representation of a
single node of the emerging BlueWaters supercomputer (see Table VI). It shows very
good utilization of hardware threads (speedup of 2 with 4 threads per core) which
means the limiting resource for PDR will continue to be memory. We will look into
using BlueWaters parallel disk storage (unfortunately it has not been made available
yet) as well as partitioning a set of nodes into computing and storage. The storage
nodes would only hold out-of-core data and in case of a complex application which uses
PDR as a building block can be utilized to perform additional computations.

7. FUTURE WORK

Our primary focus is a PDR-based OoC method for 3D geometries now that the in-
core method is available[Chernikov and Chrisochoides 2008b]. Additionally, we will
research the possibility of using external memory libraries as “smart” storage systems
for out-of-core data to relieve the programmer from the burden of developing a custom
I/O subsystem. Another problem we want to solve is high level of load imbalance in-
herent to the uniform PDR methods. One possible solution is to adapt existing in-core
non-uniform PDR method[Chernikov and Chrisochoides 2004] which does not suffer
from this problem by design. Alternatively, we are developing the Multi-layered Run-
time System (MRTS) that is designed to provide implicit out-of-core support as well
as implicit load-balancing on multiple layers: inside a process between lightweight
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threads, inside a multiprocessor node between processes and between nodes. The codes
will need to be migrated to the MRTS which should be straightforward.
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