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Abstract: We study the problem of Non-Rigid Registration (NRR) for  
intra-operative recovery of brain shift during image-guided neurosurgery. 
Time-critical nature of the tumour resection procedure presents a major 
obstacle to the routine clinical use of many available NRR approaches.  
In this paper, we utilise the resources of a single multicore workstation  
with an advanced graphics card to parallelise and evaluate an end-to-end 
implementation of a clinically validated NRR method. The results on clinical 
brain MRI data show the parallel NRR can reach real-time clinical requirement.
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1 Introduction 

Local deformations of soft tissue during image-guided clinical interventions (e.g., tumour 
resection, ablation and biopsy) compromise the accuracy of targeting in the cases  
when the decisions are made based solely on the preoperative data. NRR is an  
image-processing technique that allows accounting for such deformation by utilising 
some form of intraoperative imaging. Estimation of the transformations that recover these 
deformations is a computationally intensive task, which is often prohibitive for its 
intraoperative application. 

Several groups made an attempt to use GPU to accelerate NRR. Levin et al. (2004) 
implemented a high-performance Thin Plate Spline (TPS) volume-warping algorithm by 
combining hardware-accelerated 3D textures, vertex shaders and trilinear interpolation. 
Ruiz et al. (2008) used polynomial mapping as non-rigid transformation and achieved a 
factor of 4.11 speedup with a single GPU and 6.68 with a GPU pair over CPU-based 
NRR. A more complex physics-based registration method, previously developed and 
evaluated in Clatz et al. (2005), Chrisochoides et al. (2006) and Archip et al. (2007), has 
been parallelised by Chrisochoides et al. (2006) within 5 minutes on a distributed 
computing infrastructure with hundreds of computing nodes. However, the use of such 
distributed computing resources is often difficult or not feasible in clinical environment 
owing to network firewalls, lack of available resources, or lack of network connectivity 
in the Operating Room (OR). 

In this paper, we present a new approach to parallelise NRR method in  
Chrisochoides et al. (2006). Specifically, in order to improve the overall performance we 
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• Use new fine-grain parallel approach for the efficient execution of the
Block Matching (BM) component on GPU 

• Introduce a parallel finite element discretisation and indexing scheme  
(Chrisochoides et al., 1994) that can minimise expensive gather/scatter operations  
in the linear iterative solver 

• Employ an efficient public domain parallel linear solver, PETSc 
(http://www.mcs.anl.gov/petsc/petsc-as/). 

Our work makes the following contributions: 

• Reduce the end-to-end response time of an accurate and clinically tested NRR 
method by more than three times to better meet real-time clinical requirements for 
image-guided neurosurgery 

• Use 10 times less-expensive computing platform (compared with traditional CoWs) 
by taking advantage of disruptive and inexpensive technologies like GPUs with 
limited if not zero systems administration support 

• Increase reliability and flexibility by bringing, for the first time, the solution closer  
to the OR. 

Our overall goal is acceleration of transitioning research results in NRR into the  
clinical use. 

2 Methods 

2.1 Non-Rigid Registration approach 

The objective of NRR is to find a transformation of the preoperative (floating)  
image so that it is aligned with the intraoperative (reference) image. The approach is 
based on the concept of energy minimisation. A sparse set of registration points  
within the preoperative brain MRI is identified. The displacement between the pre- and 
intraoperative images is estimated using BM (Bierling, 1988) at each such point.  
On the basis of these displacements, the deformation field defined at mesh nodes is 
estimated under the constraint of a biomechanical model. Registration is formulated as a 
minimisation problem of the energy: 

( ) ( )T TW = − − +HU D S HU D U KU  (1) 

where K is the stiffness matrix, H is the linear interpolation matrix from the 
displacements recovered by BM and those at the mesh vertices, S is the BM weight 
matrix, D contains BM displacements, and U is the unknown displacement vector at the 
mesh vertices. 

Regularisation of the solution using the biomechanical energy unavoidably contains 
approximation error (Clatz et al., 2005). We address this problem by iterative estimation 
of the displacement 
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This iterative method reduces the approximation error at each iteration, while rejecting 
outlier registration points. In the remainder of the paper, we call equation (2) incremental 
solver owing to its incremental improvement of the accuracy. Such formulation is  
robust to outliers and allows to reduce the approximation error at the expense of longer 
execution time. 

The NRR method contains two computationally intensive components: BM and the 
finite element solver. Our parallel NRR framework is shown in Figure 1. We use GPUs, 
which are designed to perform bulk computations of a kernel code on different input data, 
for BM. The finite element solver operates on irregular data structures requiring 
synchronisation and communication. Such computations cannot fully benefit from the 
GPU architecture (http://www.intel.com/research/), therefore we develop a multicore 
implementation of the solver. Both GPU and multicore processors can be found on 
current and emerging high-performance computing platforms. 

Figure 1 Parallel NRR framework (see online version for colours) 

2.2 GPU implementation of 3D Block Matching 

The NVIDIA Compute Unified Device Architecture (CUDA) (NVIDIA, 2008) abstracts 
GPU as a general-purpose multithreaded SIMD (single instruction, multiple data) 
architectural model, offering a C-like interface supported by a compiler and a runtime 
system for GPU programming. CUDA programming model organises threads in a grid, 
which is an array of blocks and each block is an array of threads, see Figure 2. All blocks 
in a grid have the same number of threads. Each thread block can be uniquely identified 
using two-dimensional coordinates given by the CUDA-specific keywords: blockIdx.x,
blockIdx.y. Each thread block is in turn organised as a three-dimensional array of threads. 
The coordinates of threads in a block are uniquely defined by three thread indices: 
threadIdx.x, threadIdx.y and threadIdx.z.

BM is a well-known technique used originally for recovering motion from images 
(Bierling, 1988). BM is based on the assumption that a complex non-rigid transformation 
can be approximated by point-wise translations of small image regions. Such a translation 
can be recovered at a point of the floating image by selecting a block of voxels B(Ok)
centred around a point Ok, and searching for such a position of the block that maximises 
some similarity metric M(B(Oa), B(Ob)) with respect to the corresponding part of the 
target image window Wk. The similarity metric depends on the application, with 
Normalised Cross Correlation (NCC) suitable for registering mono-modal data. 

The key to efficient GPU implementation is in the mapping of a sequential code to 
CUDA programming model, which is demonstrated in Figure 2. For each registration 
point and the corresponding block in the floating image, we assign a separate CUDA 
thread to calculate its similarity with a different portion of the search window. The size of 
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the portion depends on the size of the thread block and the search window. For instance, 
if the thread block is 4 × 4 × 4 and search window is 8 × 8 × 8, each thread will be 
responsible for the calculation of the similarity within a 2 × 2 × 2 portion. The maximum 
similarity can be evaluated by parallel reduction of the computed similarity values. 

Figure 2 Mapping of sequential BM to GPU programming model. Left: Sequential BM and 
Right: GPU BM (see online version for colours) 

Once the mapping of the sequential algorithm to the CUDA architecture is identified, the 
challenge is in the selection of the implementation parameters. The two parameters in our 
GPU implementation are the image block size and thread block size. The former affects 
the precision of BM, whereas the latter, also known as GPU execution configuration, can 
significantly impact the performance of the code. As an example, 6 out of 7 benchmarks 
from NVIDIA SDK gain speedup ranging from 1.5 to 6.6 times when execution 
configuration is optimised (Liu et al., 2009). 

The size of the execution configuration search space is so large that it is not practical 
to find the optimal parameter by manual tries. The details on tuning these parameters 
were described in Liu et al. (2009). We summarise the optimal settings for thread block 
given the sizes of the image block and search window in Figure 3. 

Figure 3 Optimal GPU execution configuration for <imageblocksize, windowsize>

2.3 Multicore implementation of incremental solver 

The matrices used by the formulation of the incremental solver in equation (3) are 
derived from the finite element mesh and registration points. The objective of the 
parallelisation is to distribute the mesh and registration points among cores, and derives 
the solution to the linear system of equations in parallel. 

We employ the ParMETIS library (http://glaros.dtc.umn.edu/gkhome/metis/ 
parmetis/overview) to implement balanced parallel partitioning of the tetrahedral mesh 
among the processing cores. This procedure is illustrated in Figure 5. By following this 
partitioning strategy, we minimise the number of the interface elements to reduce 
communication, which is done via MPI. ParMETIS starts with an initial partitioning of 
the input mesh as shown in Figure 5(a). In this example, there are two cores, with the 
assigned mesh elements marked by green and red colours. Initially, ‘green’ core holds 
elements 0, 1 and 2 and ‘red’ core holds element 3, 4 and 5. 
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On the basis of the initial partitioning, ParMETIS generates a mapping between the 
elements and the cores to minimise the number of the interface elements. In Figure 5, this 
mapping assigns elements 0, 1 and 3 to the ‘green’ core, and elements 2, 4 and 5 to the 
‘red’ core. On the basis of the produced mapping, mesh elements along with the 
corresponding registration points will be reassigned to the corresponding cores, as shown 
in the final partitioning. An example of the 4-way partitioned mesh (the number of cores 
on a typical workstation) is given in Figure 4. 

Figure 4 4-way partitioned mesh and registration points (see online version for colours) 

Figure 5 Partitioning and renumbering: (a) partitioning; (b) renumbering and (c) arrowhead 
pattern matrix and its distribution across cores: P0, P1 and P2 (see online version
for colours) 

Following the partitioning, vertices in each sub-mesh must be renumbered contiguously.  
We use local numbering strategy and let each core keep a mapping table to relate the 
local numbering with the global numbering. In Figure 5(b), the numbers in blue circles 
define global numbering, and the numbers in white circles correspond to local 
numbering. The advantage of this approach is that the sub-mesh can be considered  
as a separate mesh on each of the cores, while the communication with the non-local  
sub-meshes is facilitated by the mapping table. After partitioning and renumbering,  
we can construct a desirable arrowhead matrix, as shown in Figure 5(c), which is efficient 
in evaluating matrix-vector products – a major computation component of CG  
solver (Saad, 2003). The reason is that most computations can be performed locally, and 
only the submatrix marked with red colour need to communicate with the other cores 
(Chrisochoides, 1995). 

On the basis of equation (3), we need to assemble the matrices K and HTSH.
Construction of the stiffness matrix K has been well documented elsewhere (Bathe, 
1996). To improve the performance of assembling stiffness matrix HTSH, we directly set 
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the values at its corresponding entries instead of assembling H and multiplying its 
transpose with S and H. Each registration point k (i.e., one block centre Ok) contained in 
tetrahedron with vertex (v0, v1, v2, v3) will contribute to HTSH at position (vi, vj), i, j ∈
[0 : 3] with the submatrices S ,

j

T
vi k v i k jh h= × ×H S H  in which Sk are 3 × 3 confidence 

submatrix and hj, j ∈ [0 : 3] are linear interpolation factors (Clatz et al., 2005).
After assembling the matrices, we have a linear system AU = b, where A, U, b are 

distributed across cores as shown in Figure 5(c). A is a semi-positive definite matrix, and 
we use Conjugate Gradient (CG) solver to find the solution. This component is also 
computed in parallel, facilitated by the PETSc implementation of the CG solver 
(http://www.mcs.anl.gov/petsc/petsc-as/). 

3 Results 

3.1 Block Matching results 

We compare the performance of the BM on a typical modern workstation equipped with 
NVIDIA GeForce 8800 GT GPU with its MPI implementation running on an 8-node 
cluster (each node is Dell PowerEdge SC1435, 2 x dual-core Opteron 2218, 2.6 GHz 
CPU). The results were collected for computations on 6 retrospective brain tumour 
resection cases.1

Figure 6 shows the comparison of performance for the considered implementations. 
Compared with the 4-node cluster (16 cores), the minimum speedup is 3.9 (case 1) and 
the maximum speedup is 7.7 (case 5). Compared with the 8-node cluster (32 CPUs),  
the minimum speedup is 1.9 (case 1) and the maximum speedup is 3.8 (case 5). 

Figure 6 Performance evaluation using six existing retrospective data from Brigham and 
Women’s hospital. Image block: 9 × 9 × 9, search window: 11 × 11 × 19, optimal thread 
block (obtained from Figure 3): 4 × 4 × 4 (see online version for colours) 

3.2 Incremental solver results 

The processor used for the experiment is 2 × Intel(R) Core(TM)2 Duo CPU E8500 @ 
3.16 GHz. The runtime of the solver depends on the size of the mesh. Three different 
sizes of the mesh ranging from small, middle to large were generated based on case 6 
using sequential mesh generator RGM (Fedorov et al., 2005) developed in our group.  
A thoroughly evaluated biconjugate gradient solver implemented within Gmm++ library 
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(http://home.gna.org/getfem/gmm_intro), which was used in Clatz et al. (2005), 
Chrisochoides et al. (2006) and Archip et al. (2007), is used for comparison with our 
parallel incremental solver. The runtime required for partitioning, matrix and vector 
assembling, and incremental solver is listed in Table 1. 

Table 1 Performance comparison between sequential and parallel solver 

Mesh  Sequential (time: second)  Parallel (time: second)
Vertices Tetras Assemblage Solver Partition Assemblage Solver Speedup

1607 7272 6.780 23.560 0.040 0.450 2.500 10.15 
3526 17137 7.500 31.280 0.10 0.43 3.10 10.68 
6737 33931 8.040 43.520 0.12 0.49 4.66 9.78 

Compared with the sequential solver, our parallel solver needs additional partitioning 
time, but the overall gain in performance is significant. 

The above-mentioned results demonstrate the desirable speedup brought by this 
parallel solver, but they cannot truly reveal the performance of the parallel solver. 
Obviously, simply comparing with the number of the cores is not reasonable too. 
Salomon et al. (2005) proposed a reasonable method to evaluate the performance by 
comparing the relative speedup with its upper bound given by Amdahl’s law.  
The sequential parts in FE solver are mesh loading, ParMETIS initiation (including 
partitioning initiation and element graph creation), which accounts for about 9% of the 
total computation. It can be calculated from Table 2. The upper bound for 4 cores can be 
calculated as: 100/9+91/4 = 3.2. The relative speedup is about 2.2 for large mesh, which 
is obtained by calculating the ratio between the execution time on one core and four cores 
from the data in Table 2. As we can see, the relative speedup is close to its upper bound. 

Table 2 Performance evaluation for parallel solver on large mesh. Mesh loading  
and ParMETIS initiation are performed using one core 

No. of Cores Mesh load InitMetis Partition Assemble Solve Total time 
1 Core 1.02 0.04 0.14 1.05 11.25 13.5 
4 Cores 1.00 0.03 0.09 0.49 4.66 6.27 

4 Discussion 

In this paper, a parallel NRR technique is developed by making full use of the 
computation power of a single multicore server or desktop. As confirmed by our 
experimental evaluation on real data, by using the multicore and GPU of a conventional, 
highly affordable workstation, we can deliver the result of the computation within 36 s 
(case 6). In comparison, the time required for NRR of the same data on an 8-node cluster 
with 32 cores is about 135 s. 

The important consideration in developing efficient GPU implementation is the 
optimal execution configuration. Our initial selection of the thread block 8 × 8 × 2 proved 
to be four times slower than the optimal 4 × 4 × 4 thread block. The speedup of the 
parallel solver tends to decrease with larger meshes. This is due to the increasing 
overhead of the mesh partitioning. This overhead can be eliminated (in the future) by 
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fully parallelising the finite element mesh generation phase (Chrisochoides, 2005).  
Large finite element meshes are required to satisfy the accuracy requirements in  
the clinic. 

We note that because we use GPU for BM and multicore for solver, the numerical 
solution is not identical to the one derived with the original code. The differences are  
due to the lack of real support for double precision in the available GPUs (only new G280 
supports double precision in hardware), and due to very small round-off errors introduced 
when computations in the parallel linear solver (due to concurrency) are performed in a 
different order. As we show in Figure 7, these differences are negligible. 

Figure 7 Precision evaluation for different mesh. Middle figure shows the zoom in of iteration 
from 15 to 20 (see online version for colours) 

Overall, as confirmed by our study, complex physics-based NRR methods are now ready 
for wide application in the OR without requiring distributed or cluster computing 
resources. However, to achieve this performance, careful design of GPU mapping and 
optimisation of the GPU execution environment is required. In our future work, we can 
further improve the performance of the solver by achieving better load balancing and 
apply transformation that will completely eliminate expensive gather/scatter operations 
by augmenting the linear system without increasing redundant computations.  
In addition, the current and future improvements in the execution time of the finite 
element solver will allow for dynamic mesh refinement, which will adjust the mesh based 
on the rejection of outliers. 
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