

 48 Int. J. Functional Informatics and Personalised Medicine, Vol. 3, No. 1, 2010

 Copyright © 2010 Inderscience Enterprises Ltd.

Non-Rigid Registration for brain MRI: faster and
cheaper

Yixun Liu*
Department of Computer Science,
College of William and Mary,
Williamsburg, VA 23185, USA
E-mail: yixun@ieee.org

Andriy Fedorov and Ron Kikinis
Surgical Planning Laboratory,
Brigham and Women’s Hospital,
Boston, MA 02115, USA
E-mail: fedorov@bwh.harvard.edu
E-mail: kikinis@bwh.harvard.edu

Nikos Chrisochoides*
Department of Computer Science,
College of William and Mary,
Williamsburg, VA 23185, USA
E-mail: nikos@cs.wm.edu
*Corresponding authors

Abstract: We study the problem of Non-Rigid Registration (NRR) for
intra-operative recovery of brain shift during image-guided neurosurgery.
Time-critical nature of the tumour resection procedure presents a major
obstacle to the routine clinical use of many available NRR approaches.
In this paper, we utilise the resources of a single multicore workstation
with an advanced graphics card to parallelise and evaluate an end-to-end
implementation of a clinically validated NRR method. The results on clinical
brain MRI data show the parallel NRR can reach real-time clinical requirement.

Keywords: non-rigid registration; GPU; multicore; real-time; brain shift.

Reference to this paper should be made as follows: Liu, Y., Fedorov, A.,
Kikinis, R. and Chrisochoides, N. (2010) ‘Non-Rigid Registration for brain
MRI: faster and cheaper’, Int. J. Functional Informatics and Personalised
Medicine, Vol. 3, No. 1, pp.48–57.

Biographical notes: Yixun Liu is a PhD Candidate. Currently, he is doing
his PhD in the Center for Real-time Computing of Computer Science
Department at William and Mary. His areas of interest are medical image
computing, brain shift in image-guided neurosurgery, and parallel computing.

Andriy Fedorov received his PhD Degree in Computer Science from
The College of William and Mary in 2009. He is currently a Research Fellow
within Surgical Planning Laboratory at Brigham and Women’s Hospital and

 Non-Rigid Registration for brain MRI: faster and cheaper 49

Harvard Medical School. His research interests are in medical image
computing with the focus on the development of practical methods and
software tools for clinical research applications.

Ron Kikinis, MD, is the founding Director of the Surgical Planning Laboratory,
Department of Radiology, Brigham and Women’s Hospital, Harvard
Medical School, and a Professor of Radiology at Harvard Medical School.
He is the Principal Investigator of the National Alliance for Medical Image
Computing and of the Neuroimage Analysis Center. He is also the Research
Director of the National Center for Image Guided Therapy. His activities
include technological research (segmentation, registration, visualisation,
high performance computing), software system development (most recently the
3D Slicer software package), and biomedical research in a variety of
biomedical specialties.

Nikos Chrisochoides is Full Professor, John Simon Guggenheim Fellow in
Medicine and Health, Founder and Director of the Center for Real-Time
Computing, and Co-founder of the Medical Imaging Software Technologies
LLC. His research interests are in medical image computing and parallel
scientific computing, specifically, parallel mesh generation on both theoretical
and implementation aspects. His research is application-driven. Currently,
he is working on real-time mesh generation for biomedical applications
like non-rigid registration for Image Guided Neurosurgery.

1 Introduction

Local deformations of soft tissue during image-guided clinical interventions (e.g., tumour
resection, ablation and biopsy) compromise the accuracy of targeting in the cases
when the decisions are made based solely on the preoperative data. NRR is an
image-processing technique that allows accounting for such deformation by utilising
some form of intraoperative imaging. Estimation of the transformations that recover these
deformations is a computationally intensive task, which is often prohibitive for its
intraoperative application.

Several groups made an attempt to use GPU to accelerate NRR. Levin et al. (2004)
implemented a high-performance Thin Plate Spline (TPS) volume-warping algorithm by
combining hardware-accelerated 3D textures, vertex shaders and trilinear interpolation.
Ruiz et al. (2008) used polynomial mapping as non-rigid transformation and achieved a
factor of 4.11 speedup with a single GPU and 6.68 with a GPU pair over CPU-based
NRR. A more complex physics-based registration method, previously developed and
evaluated in Clatz et al. (2005), Chrisochoides et al. (2006) and Archip et al. (2007), has
been parallelised by Chrisochoides et al. (2006) within 5 minutes on a distributed
computing infrastructure with hundreds of computing nodes. However, the use of such
distributed computing resources is often difficult or not feasible in clinical environment
owing to network firewalls, lack of available resources, or lack of network connectivity
in the Operating Room (OR).

In this paper, we present a new approach to parallelise NRR method in
Chrisochoides et al. (2006). Specifically, in order to improve the overall performance we

 50 Y. Liu et al.

• Use new fine-grain parallel approach for the efficient execution of the
Block Matching (BM) component on GPU

• Introduce a parallel finite element discretisation and indexing scheme
(Chrisochoides et al., 1994) that can minimise expensive gather/scatter operations
in the linear iterative solver

• Employ an efficient public domain parallel linear solver, PETSc
(http://www.mcs.anl.gov/petsc/petsc-as/).

Our work makes the following contributions:

• Reduce the end-to-end response time of an accurate and clinically tested NRR
method by more than three times to better meet real-time clinical requirements for
image-guided neurosurgery

• Use 10 times less-expensive computing platform (compared with traditional CoWs)
by taking advantage of disruptive and inexpensive technologies like GPUs with
limited if not zero systems administration support

• Increase reliability and flexibility by bringing, for the first time, the solution closer
to the OR.

Our overall goal is acceleration of transitioning research results in NRR into the
clinical use.

2 Methods

2.1 Non-Rigid Registration approach

The objective of NRR is to find a transformation of the preoperative (floating)
image so that it is aligned with the intraoperative (reference) image. The approach is
based on the concept of energy minimisation. A sparse set of registration points
within the preoperative brain MRI is identified. The displacement between the pre- and
intraoperative images is estimated using BM (Bierling, 1988) at each such point.
On the basis of these displacements, the deformation field defined at mesh nodes is
estimated under the constraint of a biomechanical model. Registration is formulated as a
minimisation problem of the energy:

() ()T TW = − − +HU D S HU D U KU (1)

where K is the stiffness matrix, H is the linear interpolation matrix from the
displacements recovered by BM and those at the mesh vertices, S is the BM weight
matrix, D contains BM displacements, and U is the unknown displacement vector at the
mesh vertices.

Regularisation of the solution using the biomechanical energy unavoidably contains
approximation error (Clatz et al., 2005). We address this problem by iterative estimation
of the displacement

0 1 1

1

0,

[] .
i i

T T
i i

− −

−

= =

+ = +

F F KU

K H SH U H SD F
 (2)

 Non-Rigid Registration for brain MRI: faster and cheaper 51

This iterative method reduces the approximation error at each iteration, while rejecting
outlier registration points. In the remainder of the paper, we call equation (2) incremental
solver owing to its incremental improvement of the accuracy. Such formulation is
robust to outliers and allows to reduce the approximation error at the expense of longer
execution time.

The NRR method contains two computationally intensive components: BM and the
finite element solver. Our parallel NRR framework is shown in Figure 1. We use GPUs,
which are designed to perform bulk computations of a kernel code on different input data,
for BM. The finite element solver operates on irregular data structures requiring
synchronisation and communication. Such computations cannot fully benefit from the
GPU architecture (http://www.intel.com/research/), therefore we develop a multicore
implementation of the solver. Both GPU and multicore processors can be found on
current and emerging high-performance computing platforms.

Figure 1 Parallel NRR framework (see online version for colours)

2.2 GPU implementation of 3D Block Matching

The NVIDIA Compute Unified Device Architecture (CUDA) (NVIDIA, 2008) abstracts
GPU as a general-purpose multithreaded SIMD (single instruction, multiple data)
architectural model, offering a C-like interface supported by a compiler and a runtime
system for GPU programming. CUDA programming model organises threads in a grid,
which is an array of blocks and each block is an array of threads, see Figure 2. All blocks
in a grid have the same number of threads. Each thread block can be uniquely identified
using two-dimensional coordinates given by the CUDA-specific keywords: blockIdx.x,
blockIdx.y. Each thread block is in turn organised as a three-dimensional array of threads.
The coordinates of threads in a block are uniquely defined by three thread indices:
threadIdx.x, threadIdx.y and threadIdx.z.

BM is a well-known technique used originally for recovering motion from images
(Bierling, 1988). BM is based on the assumption that a complex non-rigid transformation
can be approximated by point-wise translations of small image regions. Such a translation
can be recovered at a point of the floating image by selecting a block of voxels B(Ok)
centred around a point Ok, and searching for such a position of the block that maximises
some similarity metric M(B(Oa), B(Ob)) with respect to the corresponding part of the
target image window Wk. The similarity metric depends on the application, with
Normalised Cross Correlation (NCC) suitable for registering mono-modal data.

The key to efficient GPU implementation is in the mapping of a sequential code to
CUDA programming model, which is demonstrated in Figure 2. For each registration
point and the corresponding block in the floating image, we assign a separate CUDA
thread to calculate its similarity with a different portion of the search window. The size of

 52 Y. Liu et al.

the portion depends on the size of the thread block and the search window. For instance,
if the thread block is 4 × 4 × 4 and search window is 8 × 8 × 8, each thread will be
responsible for the calculation of the similarity within a 2 × 2 × 2 portion. The maximum
similarity can be evaluated by parallel reduction of the computed similarity values.

Figure 2 Mapping of sequential BM to GPU programming model. Left: Sequential BM and
Right: GPU BM (see online version for colours)

Once the mapping of the sequential algorithm to the CUDA architecture is identified, the
challenge is in the selection of the implementation parameters. The two parameters in our
GPU implementation are the image block size and thread block size. The former affects
the precision of BM, whereas the latter, also known as GPU execution configuration, can
significantly impact the performance of the code. As an example, 6 out of 7 benchmarks
from NVIDIA SDK gain speedup ranging from 1.5 to 6.6 times when execution
configuration is optimised (Liu et al., 2009).

The size of the execution configuration search space is so large that it is not practical
to find the optimal parameter by manual tries. The details on tuning these parameters
were described in Liu et al. (2009). We summarise the optimal settings for thread block
given the sizes of the image block and search window in Figure 3.

Figure 3 Optimal GPU execution configuration for <imageblocksize, windowsize>

2.3 Multicore implementation of incremental solver

The matrices used by the formulation of the incremental solver in equation (3) are
derived from the finite element mesh and registration points. The objective of the
parallelisation is to distribute the mesh and registration points among cores, and derives
the solution to the linear system of equations in parallel.

We employ the ParMETIS library (http://glaros.dtc.umn.edu/gkhome/metis/
parmetis/overview) to implement balanced parallel partitioning of the tetrahedral mesh
among the processing cores. This procedure is illustrated in Figure 5. By following this
partitioning strategy, we minimise the number of the interface elements to reduce
communication, which is done via MPI. ParMETIS starts with an initial partitioning of
the input mesh as shown in Figure 5(a). In this example, there are two cores, with the
assigned mesh elements marked by green and red colours. Initially, ‘green’ core holds
elements 0, 1 and 2 and ‘red’ core holds element 3, 4 and 5.

 Non-Rigid Registration for brain MRI: faster and cheaper 53

On the basis of the initial partitioning, ParMETIS generates a mapping between the
elements and the cores to minimise the number of the interface elements. In Figure 5, this
mapping assigns elements 0, 1 and 3 to the ‘green’ core, and elements 2, 4 and 5 to the
‘red’ core. On the basis of the produced mapping, mesh elements along with the
corresponding registration points will be reassigned to the corresponding cores, as shown
in the final partitioning. An example of the 4-way partitioned mesh (the number of cores
on a typical workstation) is given in Figure 4.

Figure 4 4-way partitioned mesh and registration points (see online version for colours)

Figure 5 Partitioning and renumbering: (a) partitioning; (b) renumbering and (c) arrowhead
pattern matrix and its distribution across cores: P0, P1 and P2 (see online version
for colours)

Following the partitioning, vertices in each sub-mesh must be renumbered contiguously.
We use local numbering strategy and let each core keep a mapping table to relate the
local numbering with the global numbering. In Figure 5(b), the numbers in blue circles
define global numbering, and the numbers in white circles correspond to local
numbering. The advantage of this approach is that the sub-mesh can be considered
as a separate mesh on each of the cores, while the communication with the non-local
sub-meshes is facilitated by the mapping table. After partitioning and renumbering,
we can construct a desirable arrowhead matrix, as shown in Figure 5(c), which is efficient
in evaluating matrix-vector products – a major computation component of CG
solver (Saad, 2003). The reason is that most computations can be performed locally, and
only the submatrix marked with red colour need to communicate with the other cores
(Chrisochoides, 1995).

On the basis of equation (3), we need to assemble the matrices K and HTSH.
Construction of the stiffness matrix K has been well documented elsewhere (Bathe,
1996). To improve the performance of assembling stiffness matrix HTSH, we directly set

 54 Y. Liu et al.

the values at its corresponding entries instead of assembling H and multiplying its
transpose with S and H. Each registration point k (i.e., one block centre Ok) contained in
tetrahedron with vertex (v0, v1, v2, v3) will contribute to HTSH at position (vi, vj), i, j ∈
[0 : 3] with the submatrices S ,

j

T
vi k v i k jh h= × ×H S H in which Sk are 3 × 3 confidence

submatrix and hj, j ∈ [0 : 3] are linear interpolation factors (Clatz et al., 2005).
After assembling the matrices, we have a linear system AU = b, where A, U, b are

distributed across cores as shown in Figure 5(c). A is a semi-positive definite matrix, and
we use Conjugate Gradient (CG) solver to find the solution. This component is also
computed in parallel, facilitated by the PETSc implementation of the CG solver
(http://www.mcs.anl.gov/petsc/petsc-as/).

3 Results

3.1 Block Matching results

We compare the performance of the BM on a typical modern workstation equipped with
NVIDIA GeForce 8800 GT GPU with its MPI implementation running on an 8-node
cluster (each node is Dell PowerEdge SC1435, 2 x dual-core Opteron 2218, 2.6 GHz
CPU). The results were collected for computations on 6 retrospective brain tumour
resection cases.1

Figure 6 shows the comparison of performance for the considered implementations.
Compared with the 4-node cluster (16 cores), the minimum speedup is 3.9 (case 1) and
the maximum speedup is 7.7 (case 5). Compared with the 8-node cluster (32 CPUs),
the minimum speedup is 1.9 (case 1) and the maximum speedup is 3.8 (case 5).

Figure 6 Performance evaluation using six existing retrospective data from Brigham and
Women’s hospital. Image block: 9 × 9 × 9, search window: 11 × 11 × 19, optimal thread
block (obtained from Figure 3): 4 × 4 × 4 (see online version for colours)

3.2 Incremental solver results

The processor used for the experiment is 2 × Intel(R) Core(TM)2 Duo CPU E8500 @
3.16 GHz. The runtime of the solver depends on the size of the mesh. Three different
sizes of the mesh ranging from small, middle to large were generated based on case 6
using sequential mesh generator RGM (Fedorov et al., 2005) developed in our group.
A thoroughly evaluated biconjugate gradient solver implemented within Gmm++ library

 Non-Rigid Registration for brain MRI: faster and cheaper 55

(http://home.gna.org/getfem/gmm_intro), which was used in Clatz et al. (2005),
Chrisochoides et al. (2006) and Archip et al. (2007), is used for comparison with our
parallel incremental solver. The runtime required for partitioning, matrix and vector
assembling, and incremental solver is listed in Table 1.

Table 1 Performance comparison between sequential and parallel solver

Mesh Sequential (time: second) Parallel (time: second)
Vertices Tetras Assemblage Solver Partition Assemblage Solver Speedup

1607 7272 6.780 23.560 0.040 0.450 2.500 10.15
3526 17137 7.500 31.280 0.10 0.43 3.10 10.68
6737 33931 8.040 43.520 0.12 0.49 4.66 9.78

Compared with the sequential solver, our parallel solver needs additional partitioning
time, but the overall gain in performance is significant.

The above-mentioned results demonstrate the desirable speedup brought by this
parallel solver, but they cannot truly reveal the performance of the parallel solver.
Obviously, simply comparing with the number of the cores is not reasonable too.
Salomon et al. (2005) proposed a reasonable method to evaluate the performance by
comparing the relative speedup with its upper bound given by Amdahl’s law.
The sequential parts in FE solver are mesh loading, ParMETIS initiation (including
partitioning initiation and element graph creation), which accounts for about 9% of the
total computation. It can be calculated from Table 2. The upper bound for 4 cores can be
calculated as: 100/9+91/4 = 3.2. The relative speedup is about 2.2 for large mesh, which
is obtained by calculating the ratio between the execution time on one core and four cores
from the data in Table 2. As we can see, the relative speedup is close to its upper bound.

Table 2 Performance evaluation for parallel solver on large mesh. Mesh loading
and ParMETIS initiation are performed using one core

No. of Cores Mesh load InitMetis Partition Assemble Solve Total time
1 Core 1.02 0.04 0.14 1.05 11.25 13.5
4 Cores 1.00 0.03 0.09 0.49 4.66 6.27

4 Discussion

In this paper, a parallel NRR technique is developed by making full use of the
computation power of a single multicore server or desktop. As confirmed by our
experimental evaluation on real data, by using the multicore and GPU of a conventional,
highly affordable workstation, we can deliver the result of the computation within 36 s
(case 6). In comparison, the time required for NRR of the same data on an 8-node cluster
with 32 cores is about 135 s.

The important consideration in developing efficient GPU implementation is the
optimal execution configuration. Our initial selection of the thread block 8 × 8 × 2 proved
to be four times slower than the optimal 4 × 4 × 4 thread block. The speedup of the
parallel solver tends to decrease with larger meshes. This is due to the increasing
overhead of the mesh partitioning. This overhead can be eliminated (in the future) by

 56 Y. Liu et al.

fully parallelising the finite element mesh generation phase (Chrisochoides, 2005).
Large finite element meshes are required to satisfy the accuracy requirements in
the clinic.

We note that because we use GPU for BM and multicore for solver, the numerical
solution is not identical to the one derived with the original code. The differences are
due to the lack of real support for double precision in the available GPUs (only new G280
supports double precision in hardware), and due to very small round-off errors introduced
when computations in the parallel linear solver (due to concurrency) are performed in a
different order. As we show in Figure 7, these differences are negligible.

Figure 7 Precision evaluation for different mesh. Middle figure shows the zoom in of iteration
from 15 to 20 (see online version for colours)

Overall, as confirmed by our study, complex physics-based NRR methods are now ready
for wide application in the OR without requiring distributed or cluster computing
resources. However, to achieve this performance, careful design of GPU mapping and
optimisation of the GPU execution environment is required. In our future work, we can
further improve the performance of the solver by achieving better load balancing and
apply transformation that will completely eliminate expensive gather/scatter operations
by augmenting the linear system without increasing redundant computations.
In addition, the current and future improvements in the execution time of the finite
element solver will allow for dynamic mesh refinement, which will adjust the mesh based
on the rejection of outliers.

Acknowledgement

This work is supported in part by NSF grants: CCF-0916526, CCF-0833081,
and CSI-719929 and by the John Simon Guggenheim Foundation. Andriy Fedorov was
partially supported by NIH grant R01AA016748. Ron Kikinis was partially supported by
RR13218, EB005149.

References
Archip, N., Clatz, O., Whalen, S., Kacher, D., Fedorov, A., Kot, A., Chrisochoides, N.,

Jolesz, F., Golby, A., Black, P. and Warfield, S. (2007) ‘Non-rigid alignment of preoperative
MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation
in image-guided neurosurgery’, Neuroimage, Vol. 35, No. 2, pp.609–624.

Bathe, K. (1996) Finite Element Procedure, Prentice-Hall, New Jersey.

 Non-Rigid Registration for brain MRI: faster and cheaper 57

Bierling, M. (1988) ‘Displacement estimation by hierarchical block matching’, Proc. SPIE Vis.
Comm. and Image Proc., Vol. 1001, pp.942–951.

Chrisochoides, N. (1995) Multithreaded Model for Dynamic Load Balancing Parallel Adaptive
PDE Computations, Technical Report.

Chrisochoides, N. (2005) ‘Parallel mesh generation’, in Bruaset, M., Bjorstad, P. and
Tveito, A. (Eds.): Numerical Solution of Partial Differential Equations on Parallel
Computers, Vol. 51, pp.237–259.

Chrisochoides, N., Elias, H. and John, R. (1994) ‘Mapping algorithms and software environment
for data parallel PDE iterative solvers’, J. Parallel Distrib. Comput., Vol. 21, No. 1, pp.75–95.

Chrisochoides, N., Fedorov, A., Kot, A., Archip, N., Black, P., Clatz, O., Golby, A., Kikinis, R. and
Warfield, S. (2006) ‘Toward real-time image guided neurosurgery using distributed and Grid
computing’, Proc. of IEEE/ACM SC06, Tampa, Florida.

Clatz, O., Delingette, H., Talos, I.F., Golby, A., Kikinis, R., Jolesz, F., Ayache, N. and Warfield, S.
(2005) ‘Robust non-rigid registration to capture brain shift from intra-operative MRI’,
IEEE Trans. Med. Imag., Vol. 24, No. 11, pp.1417–1427.

Fedorov, A., Chrisochoides, N., Kikinis, R. and Warfield, S.K. (2005) ‘Tetrahedral mesh
generation for medical imaging’, 8th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI 2005), Palm Springs, California, USA.

Levin, D., Dey, D. and Slomka, P. (2004) ‘Acceleration of 3d, nonlinear warping using standard
video graphics hardware: implementation and initial validation’, Comput. Med. Imaging
Graph, Vol. 28, pp.471–483.

Liu, Y., Zhang, E.Z. and Shen, X. (2009) ‘A cross-input adaptive framework for GPU programs
optimization’, 23rd IEEE IPDPS, Rome, Italy, pp.1–10.

NVIDIA (2008) Cuda Programming Guide 2.0.
Ruiz, A., Ujaldon, M., Cooper, L. and Huang, K. (2008) ‘Non-rigid registration for large sets of

microscopic images on graphics processors’, J. Sign Process Syst., Vol. 55, Nos. 1–3, April,
pp.229–250.

Saad, Y. (2003) Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

Salomon, M., Heitz, F., Perrin, G.R. and Armspach, J.P. (2005) ‘A massively parallel approach
to deformable matching of 3d medical images via stochastic differential equations’,
Parallel Computing, Vol. 31, No. 1, pp.45–71.

Note
1http://www.spl.harvard.edu/publications/item/view/541

Websites
Gmm++: http://home.gna.org/getfem/gmm_intro
Intel: Ct: A flexible parallel programming model for tera-scale architectures http://www.intel.com/

research/
ParMETIS: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
PETSc: http://www.mcs.anl.gov/petsc/petsc-as/

