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SUMMARY

We present the results of an evaluation study on the re-structuring of a latency-bound mesh generation
algorithm into a latency-tolerant parallel kernel. We use concurrency at a �ne-grain level to tolerate long,
variable, and unpredictable latencies of remote data gather operations required for parallel guaranteed
quality Delaunay triangulations. Our performance data from a 16 node SP2 and 32 node Cluster of
Sparc Workstations suggest that more than 90% of the latency from remote data gather operations can
be masked e�ectively at the cost of increasing communication overhead between 2 and 20% of the
total run time. Despite the increase in the communication overhead the latency-tolerant mesh generation
kernel we present in this paper can generate tetrahedral meshes for parallel �eld solvers eight to nine
times faster than the traditional approach. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: mesh generation; parallel computing; Delaunay triangulation; guaranteed quality; latency
tolerant algorithms

1. INTRODUCTION

In this paper we focus on the re-structuring and the evaluation of a basic parallel Delaunay
triangulation algorithm which is known as the Bowyer–Watson (BW) kernel [1, 2]. The BW
kernel has been used successfully during the last twenty years for unstructured (tetrahedral)
mesh generation on sequential machines [3–6]. The BW kernel is latency-bound because its
computations are tightly coupled and memory intensive. The communication and synchroniza-
tion latencies associated with the parallel execution of the BW kernel are long, variable, and
unpredictable, because they involve data gather operations which use searching methods based
on complicated �oating-point operations; the number of �oating-point operations required for
searching the mesh is input dependent.
Parallel mesh generation programs, like any other parallel programs, should minimize

communication overhead (cycles spent by a processor to push or pull messages from the
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network interface) and tolerate the latency of remote service requests (cycles spent by a pro-
cessor waiting for messages or remote requests to be serviced by other processors); throughout
this paper we call this communication latency. Parallel mesh generation programs in addition
should maintain stability i.e. parallel meshes should retain the quality of elements and par-
tition properties of the sequentially generated and partitioned meshes. Mesh stability is an
important requirement for the accuracy and cost e�ectiveness of parallel partial di�erential
equation (PDE) solvers.
Therefore, in this paper, we focus on the design, implementation, and evaluation of a

stable; latency-tolerant; and scalable Delaunay mesh generation kernel. The communication
overhead is minimized by maintaining low surface-to-volume ratio of the submeshes as they
are generated. The communication latencies are masked by overlapping communication with
computation. The performance data we present are from an end-to-end application—parallel
Delaunay mesh (PDM) for polyhedral domains—that considers the complete problem of gen-
erating, partitioning, and placing on the nodes of a parallel platform a tetrahedral mesh which
is ready for parallel �nite element analysis modules [7]. Our performance evaluation data
suggest that it is possible to restructure the latency-bound BW algorithm and tolerate more
than 90% of communication latencies at the cost of increasing the communication overhead
between 2% (in the best case) and 20% (in the worst case). This is the �rst successful e�ort
(to the best of our knowledge) in developing parallel and stable mesh generation methods by
re-structuring scalar mesh generation kernels for tolerating communication latencies using a
speculative execution model.
The rest of the paper is organized as follows: after providing an overview of the sequential

BW kernel and parallel Delaunay mesh generation methods in Section 2, in Section 3 we
describe our approach for parallelizing the BW kernel and we present a detailed latency
tolerant element creation procedure which guarantees the stability and e�ciency of the parallel
BW kernel. In Section 4 we present a detailed performance evaluation and we conclude with
Section 5 which summarizes our �ndings and our future work.

2. BACKGROUND AND RELATED WORK

The Delaunay criterion has been used successfully for sequential mesh generation of
complex geometries since the late 1980s. There are many di�erent Delaunay triangulation
methods based on divide-and-conquer and gift-wrapping methods [6]. However, the most
popular Delaunay meshing techniques are incremental methods. Incremental methods start
with an initial mesh (usually a boundary conforming mesh) which is re�ned incrementally by
inserting new points (one at a time) using a spatial distribution technique. Each new point
is re-connected with the existing points of the mesh in order to form a new triangulation
or a new mesh. The di�erence between the various Delaunay incremental algorithms in the
literature is due to: (1) di�erent spatial point distribution methods for creating the points and
(2) di�erent local reconnection techniques for creating the triangles or tetrahedra.
The two most popular local re-connection methods are the �ip edge=face methods [8] which

are di�cult and expensive to parallelize and the Bowyer–Watson (BW) kernel [1, 2]. The BW
kernel is an iterative procedure: at each iteration, an existing Delaunay mesh, Mi is re�ned
and a new mesh Mi+1 is generated by inserting a new point pi into Mi after recovering the
Delaunay property of the mesh through the local transformation: Mi+1 =Mi − Ci + Bi. This
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Figure 1. Point insertion and element creation steps of the BW algorithm; initial and �nal meshes at
each iteration shown at the leftmost and the rightmost columns, respectively.

process is known as the BW kernel, it is described below.

Algorithm 1 (BW (Mo; LB; Fd))

1. begin
2. Input: Mo Delaunay mesh, LB bad tets, Fd spatial distrib. function
3. i← 0
4. while LB �= ∅ do
5. t←Get(LB)
6. Insert pi =∈Mi using Fd
7. Ci←{t; t ∈Mi that violate the Delaunay property}
8. Bi←{t; t a new tet �: t =∈Mi and includes pi}
9. Set Mi+1 =Mi − Ci + Bi
10. Insert in LB the new tetrahedra t ∈Bi which are ‘bad’
11. i← i + 1
12. endwhile

Figure 1 depicts the ith iteration of the BW kernel. The e�ciency of the Delaunay meshing
methods depends on: (i) the e�ciency of the searching algorithm that is used to identify the
�rst triangle in con�ict for each new point insertion, and (ii) the position in which the new
points are inserted. Certain point insertion orders avoid the formation of short edges and
thus the creation of bad‡ triangles that would need to be improved again. Latency-aware
algorithms for addressing such e�ciency issues are out of the scope of this paper. In this
paper we focus on a latency tolerant implementation of the element creation step (lines 7, 8
and 9) whose computation is tightly coupled with variable and unpredictable calculation and
communication behaviour.
Parallel mesh generation is a relatively new area and only very few papers are pub-

lished so far. A very good overview of parallel mesh generation papers can be found in
Reference [9]. Practical parallel Delaunay triangulation methods relevant to the parallel BW
kernel we present here are: (1) the Data-Parallel Delaunay Triangulation technique [10],
(2) the Divide-and-Conquer Delaunay Triangulation method [11], (3) the Parallel Projective

‡There are many criteria to evaluate the quality of mesh elements. In this paper we use the circumradius to
shortest-edge ratio. An element is ‘bad’ if this ratio is large.
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Delaunay method [12], and (4) the Parallel Constrained Delaunay Mesh method [13]. None of
the existing parallel Delaunay methods attempt to tolerate communication and synchronization
latencies. Most of the parallel methods are designed to cope with the load imbalance problem.

3. PARALLEL BOWYER–WATSON KERNEL

In this section we present a stable and latency-tolerant parallelization of the BW kernel. While
the sequential implementation of the BW kernel is relatively simple, its latency tolerant imple-
mentation is much more challenging. In order to e�ciently tolerate communication latencies,
one needs to explore concurrency at a �ne-grain level which a�ects the stability of the
Delaunay triangulation method. For example, if two points p and q are inserted concurrently
and their cavities intersect (i.e. Cp ∩Cq �= ∅), then the resulting cavities share faces and=or tetra-
hedra. Retriangulating intersecting cavities can lead to an inconsistent§ and=or a non-Delaunay
triangulation.
In the rest of this section we present the latency tolerant BW (LTBW) kernel and focus

on its correctness, for three-dimensional Delaunay triangulations. Without loss of generality,
we assume that the input to the LTBW kernel is a set of submeshes Mi; i=1; : : : ; Ns that
partition the Delaunay triangulation To in the interior of a domain �. Also, we assume that
∀pi ∈

⋃Ns
i=1Mi; Ci ∩#�= ∅, where #� is the external boundary of �. In Reference [14], we

present an extension of the LTBW which allows meshing of the regions near the boundary
of polyhedral domains.

3.1. Latency tolerant cavity creation

Each processor reads and ‘owns’ the data structure of one or more submeshes which will
be re�ned further until stopping criteria like volume and quality criteria such as circumra-
dius to shortest-edge ratio of tetrahedra are satis�ed. The submeshes are treated as mobile
objects [15] and they can move anytime in any processor for load balancing purposes. The
MOL library [15] is responsible for maintaining a distributed directory and for e�ciently
forwarding messages to them. The partition of Mo into submeshes induces a separator, Il; k ,
between submeshes, Sl and Sk if there exists at least one common face between them. Il; k
consists of triangular interface faces; edges; and vertices which are replicated in all submeshes
sharing them. Two submeshes Sl and Sk are called adjacent if Il; k �= ∅.
Each processor concurrently re�nes the mesh by inserting new points and re-triangulating

their cavities. When tetrahedra in one of the submeshes Sl are non-Delaunay with respect to a
point insertion in an adjacent submesh Sk , the cavity expands across the interface Il; k and it is
called an interface cavity. Otherwise, the cavity is called local or interior and it is created and
re-triangulated ‘atomically’. Interface cavities remain active much longer than local cavities,
because their expansion is interrupted and remote cavity expansion (remote data gather) is
requested from other processors. Processors tolerate the long remote data gather operations
by trying in the meantime to expand new cavities which are mostly local. Figure 2 depicts
the partition of a triangulation and an interface cavity expanding along three subdomains.

§A mesh M is called consistent if the intersection of any two elements is either an empty set or a vertex in M , or
an edge in M or a face (for 3-dimensional meshes).
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Figure 2. (Left) Submeshes of a triangulation and their inter-submesh interfaces. (Right) Cavity ex-
pansion over more than one submesh. The tetrahedra t ∈M1 and t∗ ∈M2 are non-Delaunay w.r.t. point
P ∈M0; thus the cavity CP is an interface cavity. Dashed lines show the inter-submesh interfaces.
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Figure 3. Left: Time diagram that depicts two overlapping cavities expanding concurrently while a
remote request is serviced from the submesh M1 for the expansion of the cavity AFBCA. Right:
A new cavity ABCDEA is expanding concurrently in the submesh Mo. The two cavities share an
element (shaded triangle ABC) and thus one of the cavities will free its elements (role-over or setback)

and will expand at some point later.

After the completion of cavity expansion and re-triangulation, the data structure of the
current triangulation is updated using the local transformation: Mi+1 =Mi −Ci + Bi (line 9 of
BW kernel). Local data structure updates are atomic; some message passing is required to
update connectivity information in the case of interface cavities. The distributed data structure
and the new triangulation are consistent as long as, for any pair of points p and q, either
Cp ∩Cq= ∅ or Cp ∩Cq �= ∅ and the points are inserted into the mesh one after the other—the
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speci�c order does not matter [5]. The BW algorithm terminates when all processors �nish
with the re�nement of the mesh.
The BW kernel uses a simple list, LB, to store ‘bad’ tetrahedra and two queues, QL and

QR to store the interrupted local and remote active interface cavities, respectively. Adj(t) is
the list of adjacent tetrahedra to t. The data structure for the faces are augmented so that
the interface faces can store the mobile pointer [15] of the submesh that owns and maintains
a second copy. The submeshes (or the processors) communicate to each other with remote
service requests. Remote service requests are one sided messages that upon arrival of the
message, a user de�ned handler is executed [16].

Algorithm 2 (Latency Tolerant BW(Mcurrent ; LB; Fd))

1. begin
2. repeat
3. Poll network
4. Service non-local remote interface cavity expansions stored in QR
5. Service local interface cavity expansions stored in QL
6. while LB �= ∅ do
7. t←Get(LB)
8. Insert pi =∈Mcurrent using Fd
9. if ∃to ∈Mcurrent, where to contains p then set Cp←{to}
10. else request remote expansion for Cp endif
11. if expand cavity(Cp;p)=True then
12. Bp←{t; t =∈Mcurrent and includes p}
13. Mcurrent =Mcurrent − Cp + Bp
14. ∀t ∈Bi that is ‘bad’ insert t ∈LB
15. else QL←Cp endif
16. Poll network
17. Service non-local remote interface cavity expansions stored in QR
18. Service local interface cavity expansions stored in QL
19. endwhile
20. if (QR= ∅ & QL= ∅ & LB= ∅) then set for termination state endif
21. endrepeat when termination signal is received
22. end

The routine expand cavity(C;p) (line 11, Algorithm 2) for cavity expansion is a
source of communication overhead and communication latencies due to remote data gather
operations. Figure 3 shows pictorially the latency of remote cavity expansion. However,
expand cavity(C;p), which is described in Algorithm 3, is designed to tolerate these
communication latencies. Contrary to existing parallel mesh generation methods we have
listed in Section 2, the expand cavity permits the BW kernel to cross submesh interfaces.
In order to tolerate the communication costs the LTBW kernel interrupts the computation
of interface cavities. The interface cavities remain in a blocking and active state (i.e. hold
their local elements) until all of their remote expansion requests are serviced and all elements
that violate the Delaunay criterion are accumulated or until at least one of remote expansion
requests is terminated—because it tries to expand on locked elements that already participate
in another active cavity.
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Algorithm 3 (expand cavity(C;p))

1. begin
2. while there are unmarked tets t ∈C do
3. for t′ ∈Adj(t) do
4. mark(t′)
5. if Mpid(t′)=Pid then
6. if t’ is not locked and fails the empty-sphere criterion then
7. lock(t′)
8. C←C ∪{t′}
9. else
10. send a rsr expand(Mpid; t′; p)
11. return False
12. endif
13. end while
14. return True
15. end

The concurrent triangulation of active cavities is a source of mesh inconsistencies and
instabilities (i.e. non-Delaunay triangulations). Because it is possible for processors to handle
more than one active cavities at a time. The LTBW kernel begins the expansion of new cavities
due to new point insertions and it services other remote active interface cavity expansions
while is waiting for active cavities to complete and triangulate. A pair of active cavities are
related to each other in two possible ways:

Case I:

Cp ∩Cq= ∅; p �= q (1)

The cavities do not intersect and thus they can be re-triangulated concurrently. Without loss of
generality consider an initial Delaunay mesh, Mo, and two new points p; q within the convex
hull of Mo such that Cp ∩Cq= ∅. Then by the BW kernel and the fundamental Delaunay
Lemma [6] we have that the new meshes Mp;q and Mq;p that result from either:

Mp;q=Mp − Cq + Bq=(Mo − Cp + Bp)− Cq + Bq (2)

or

Mq;p=Mq − Cp + Bp=(Mo − Cq + Bq)− Cp + Bp (3)

are Delaunay triangulations. From (1), (2) and (3) and the uniqueness [6] of Delaunay
triangulation—as long as the points of M are in general position¶—we have that Mp;q=Mq;p

and thus the points p and q can be inserted concurrently.

Case II:

Cp ∩Cq �= ∅; p �= q (4)

¶In practice it is not necessary to guarantee the general position of the points of M. Mp; q and Mq;p will be
still consistent Delaunay meshes but maybe slightly di�erent. In practice all we need is to maintain the Delaunay
property.
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Figure 4. Time diagram of two adjacent cavities that expand concurrently. While the cavity
AFGHBCA of the point Pi is expanding on one processor, the cavity ACEIA completes its
expansion (on another processor) unaware of the new point Pi which violates the Delaunay

criterion (shaded circle on the right).

The cavities intersect and have to be re-triangulated in a way that, for every pair of adjacent
tetrahedra in the new triangulation, the empty sphere criterion holds and thus the fundamental
Delaunay Lemma [6] can be applied. Otherwise the following inconsistency and correctness
issues rise:

Case 1: ∃t ∈Cp ∪Cq such that t ∈Cp ∩Cq
In this case the cavities share at least one tetrahedron and are called overlapping cavi-

ties. The concurrent re-triangulation of overlapping cavities results in an inconsistent mesh.
Figure 3 depicts two cavities AFGHBCA and ABCDEA which overlap (share the triangle
ABC). Their concurrent triangulation will lead to an inconsistent mesh, where the edges PjB
and CPi will intersect in a point not in the mesh.

Case 2: @t ∈Cp ∪Cq such that t ∈Cp ∩Cq
In this case the two cavities share a face, an edge or vertex on their boundary surfaces.

In the case that they share face (in three-dimensions) or an edge (in two-dimensions) they
are called adjacent. The concurrent re-triangulation of adjacent cavities may result in a non-
Delaunay mesh. Figure 4 depicts two cavities AFGHBCA and ACEIA which are adjacent
(share the edge AC). Their concurrent triangulation will lead to a non-Delaunay triangulation,
because the circumscribed circle of the new triangle APiC contains the point Pj. The invariant
of the empty-sphere criterion does not hold after the transformation of line 13.

Both cases can be treated by locking all tetrahedra in the closure �Cp of a cavity Cp:

�Cp=Cp ∪{t; t ∩#Cp �= ∅}; #Cp= is the boundary surface of Cp (5)

If any other cavity Cq tries to acquire a locked tetrahedron in �Cp, then the cavity Cq terminates
and its elements are freed. The point q is queued and it is inserted in the mesh later.
Finally, upon the re-triangulation of cavities, each processor updates the data structure

(triangulation) using the local transformation: Mcurrent =Mcurrent − Cp + Bp. These updates are
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Table I. Breakdown of the total execution time (in seconds) using the traditional approach
on a 16 processor SP.

Sequential Parallel

Mesh size Mesh gen. CSR tran. I=O ParMetis Data move. Total time

1M tets 255.9 24.28 217.8 5.46 85.0 588.5
2M tets 461.8 50.53 471.0 8.58 173.3 1165.2

completed ‘atomically’ and their data structures and the new triangulation are both consistent.
The new elements are ‘owned’ by the processor that is responsible for their creation. Sub-
sequently, some of the submeshes may end up with many more elements depending on the
initial distribution of the geometry (i.e. ‘bad’ elements). This approach might lead to workload
imbalance that can a�ect the performance of the mesh generation.
Balancing the processors’ workload in the LTBW kernel as well as in the case of the tradi-

tional parallel mesh generation methods is a source of synchronization and expensive memory
access operations. The traditional explicit load balancing schemes use global synchronization
in order to get all processors to the point that they can re-distribute the elements. Element
re-distribution can take place either at the end of the mesh generation phase or in between the
parallel mesh generation phases [17–19]. Table I breaks down the cost involved in element
re-distribution. Although the solution of the element partition problem is inexpensive [20] the
cost of moving the elements and updating the data structures is 94% of the load balancing
step. This cost is expected to be much higher on large CoWs and the Grid [21] due to higher
network latencies and lower bandwidth. In Reference [22] we have presented a partitioning
method, SMGP, which distributes the new elements generated by the LTBW kernel as they
are generated. This method eliminates the global synchronization, minimizes the I=O and data-
movement overhead by eliminating redundant memory operations (loads=stores) from and to
cache, local & remote memory, and disk.

4. PERFORMANCE EVALUATION

Experimental set-up: We have used as a Model Problem, �, a unit cube, within which is
suspended a regular octahedral hole centred on the centroid of the cube. The vertices of the
octahedron are positioned 0.25 units from the cube’s centroid along the perpendicular bisectors
of the cube’s faces, such that vertices along the same bisector are 0.5 units apart. The domain
� is discretized with two di�erent meshes of 1 000 000 (1M) to 16 000 000 (16M) tetrahedral
(tests) each. We have generated the same meshes sequentially on a Wide SP node. A Wide SP
node is a 135MHz Power2 SuperChip (P2SC) with 2GB memory, 128K cache, and 256 bit
memory bus. For the parallel mesh generation we have used 16 Thin SP nodes and a cluster
of 32 Sparc workstations (CoW). A Thin SP node is a 120 MHz P2SC with 1 GB memory,
128 K cache, 256 bit memory bus. The Thin SP nodes are connected via the SP switch;
the SP switch is a TB3 switching fabric with 150 MB=s peak hardware bandwidth. The SP
machine was located at Cornell Theory Center. The Solaris performance data were collected
on a network of Sun Ultra 5 machines with 333 MHz processors connected by a 100 Mb=s
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Table II. Total execution time (in seconds) for the sequential and traditional approach as
well as the parallel mesh generation using the LTBW, its SMGP implementation, and the
SMGP implementation post-processed by ParMetis for further improving the quality of the

partitions on a 16 processor SP.

Seq. Traditional LTBW SMGP SMGP + ParMetis
Mesh size 1 Proc. 16 Proc. 16 Proc. 16 Proc. 16 Proc.

1M tets 255.9 588.5 38.63 71.10 71.54
2M tets 461.8 1165.2 85.15 87.46 126.57

fast-ethernet network and with 256MB memory. The meshes were generated both sequentially
and in parallel using the following two quality criteria: (1) minimize the maximum element
volume, and (2) minimize the largest element circumradius-to-shortest-edge ratio (AR). The
maximum element volume criterion controls the size of the mesh, while the AR weakly bounds
the quality of the worst element in the mesh.
Overall evaluation: The parallel Delaunay mesh (PDM) generator [14] which uses the

LTBW kernel and its SMGP implementation is eight to nine times faster than the traditional
approach (see Tables I and II) without compromising the quality of partitions and elements
of the mesh (see Figure 6 and Table III).
Table I shows a breakdown of the total execution time for generating, partitioning and

placing the data structures of one million and two million tetrahedral meshes on the nodes
of an SP machine for parallel �eld solvers [7]. The total execution time of the traditional
approach in Table I is given by the sum of execution times: (1) for sequentially generating
the mesh, (2) for transforming the mesh data structures into the CSR format—a widely
used format for e�ciently storing sparse graphs—that generic graph partitioning libraries like
Parallel Metis [20] (ParMetis) require as input, (3) for loading the mesh data structure and the
CSR data on the processors, (4) for partitioning in parallel the mesh-graph using ParMetis,
(5) for migrating elements as dictated by ParMetis and updating the data structures so that
re-partitioned meshes can be used by FE formulators. Despite the recent progress in parallel
partitioning libraries and I=O hardware and software technology, it is still very expensive to
sequentially generate unstructured meshes for parallel �eld solvers. The I=O overhead many
times prevents engineers from using more e�cient solvers which can adapt the mesh based
on the needs of the analysis (or solution) phase [23].
Figure 5(left) shows a breakdown of computation and overheads like communication and

load balancing for generating a half, one, and two million element meshes on a 16 node
SP machine. The communication overhead is 33% for a half million and decreases to 31%
and 26% for one and a two million element mesh, respectively. This is the time spent by the
processor to push, pull, set-up remote service requests and cannot be hidden. The overhead due
to decision making and data movement for load balancing is between 5 and 6%; it increases
as the problem size increase. However, the communication and load balancing overhead of
the parallel Delaunay mesh (PDM) code is between 8 and 20 times lower than the I=O and
load balancing overheads of the traditional approach for the same size meshes. Figure 5(right)
shows the execution times for di�erent size meshes for LTBW and its SMGP implementation
on 2, 4, 8, and 16 nodes of an SP machine. This �gure suggests that the �xed speedup of
the PDM code is O(logP), where P is the number of processors.
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Figure 6. Quality of the mesh measured in terms of angles.

Finally, the PDM code for polyhedral domains retains the same quality of elements
with the sequential mesh generator. Figure 6(left) shows the distribution of the elements
in terms of their dihedral angles for a half million mesh generated on a 16 node SP; the
discretized geometry is the gear-like geometry on the right. This �gure depicts the quality
of the elements generated by PDM using two di�erent algorithms [5, 24] for meshing the
geometry near by boundary [16], for the gear-like geometry. Moreover the LTBW kernel
and its SMGP implementation generate partitions with very good quality i.e. the generated
submeshes have very good equi-distribution of tetrahedra and surface-to-volume (S=V ) ratio
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Table III. Quality of submeshes measured in terms of the maximum surface-to-volume ratio
(S=V ) and imbalance on a 16 node SP.

Traditional LTBW SMGP SMGP+ParMetis

Mesh size S=V Imbal. S=V Imbal. S=V Imbal. S=V Imbal.

1M tets 0.042 1298 0.101 11194 0.064 3058 0.044 883
2M tets 0.038 2009 0.090 23059 0.061 6578 0.037 1529

Table IV. Breakdown of the number of successfully completed cavities for the
processor which is the least e�ective (�rst row) and most e�ective (last row)
in tolerating latency for generating 16M element mesh for the Cube-in-Cube

geometry on a 32 node (Sparc) CoW.

Total number No Act. Cav. Act. Cav.

Mesh size Local Interf Local Interf Local Interf

16M 77640 20577 32840 2893 44800 17684
16M 73270 20495 29826 2907 43444 17588

(see Table III) compared to the traditional state-of-the-art partitioners like Parallel Metis
(ParMetis). Table III compares four di�erent partitions of one and two million element meshes
in terms of partitioning criteria like the S=V ratio, which is measured in terms of faces, and
the imbalance, which is measured in terms of the di�erence between the submesh with the
maximum number of tetrahedra and the submesh with the minimum number of tetrahedra.

4.1. Cost for tolerating latencies

Hiding latencies of remote service requests with throughput is not free! The LTBW in its
e�ort to tolerate long latencies of remote interface cavity expansions, it inserts new points
and it expands their cavities while it is waiting for the completion of other remote cavity
expansions (see Figures 3 and 4). However, for stability reasons, some cavities terminate
before they re-triangulate and free all of their elements. We call this form of a roll-back
in the cavity computation a setback in the progress of the LTBW kernel. It is out of the
scope of this paper to identify and analyze the relationship between setbacks and parameters
like degree of concurrency, S=V ratio, and network latency. This study is complicated and
will appear elsewhere. In this section we focus on two important questions: (1) What’s the
impact of setbacks in the e�ectiveness of the LTBW kernel to tolerate long latencies? (2)
Are there any other costs for tolerating latencies other than setbacks? Next, we present
statistics from the ‘Cube-in-Cube’ geometry with which we calculate the e�ectiveness and
overheads of the LTBW to perform useful computations that overlap with the communication
latency. We perform the rest of the analysis on the CoWs.
Table IV shows a breakdown of the number of successfully completed and triangulated

cavities during the execution of LTBW. The percentage of cavities that are completed suc-
cessfully in the presence of active interface cavities varies between 63 and 65% for the 16M

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:161–176



PARALLEL DELAUNAY MESH GENERATION KERNEL 173

Table V. Total run time for the processor with the worst latency tolerance. Also total time spend in
expanding and triangulating cavities (meshing time), total time spent in expanding and triangulating
cavities in the presence of active interface cavities i.e. meshing time in presence of active cavities (Act.
Cavs), the number in parenthesis depict the time spend in meshing interface cavities, total setback time
and percentage of latency the LTBW kernel utilizes e�ectively on a 32 node CoW for meshing the

Cube-in-Cube geometry with 8 and 16 million elements. All times are in seconds.

Total compl. Meshing time Setback Latency
Mesh size Run time meshing time presence of Act. Cavs time tolerance

8M 201.30 107.37 54.78 (41.43) 4.18 0.96
16M 388.36 235.45 107.40 (42.39) 9.98 0.94

element mesh. This implies that the LTBW kernel during the time that waits for the com-
pletion of remote service requests, it completes more than 60% of the mesh re�nement. The
rest of the mesh re�nement takes place while there are no active interface cavities present
(see third and fourth columns of Table IV).
It is not easy to accurately measure the latency of all remote service requests in the LTBW

kernel. However we can easily calculate the latency from the work that was accomplished
during the presence of active cavities (cavities that are waiting for completion of remote
service requests) and the work that has been lost due to the speculative nature of the LTBW
kernel (i.e. setbacks). Our calculations from Table V show that the LTBW kernel e�ectively
utilizes more than 90% of the total communication latency. Clearly the LTBW kernel is very
e�ective in tolerating the communication latency. However, this is possible at a cost which
we analyse next.
There are two options to increase the e�ectiveness of the LTBW. (1) Uncouple the sub-

meshes and schedule point insertions and cavity creation in way that local cavities and active
interface cavities do not intersect. The description of this option is out of the scope of this
paper and is addressed elsewhere. (2) Reduce the number of local setbacks by reducing
the ‘life-time’ and number of active interface cavities. The LTBW reduces the ‘life-time’
and number of active interface cavities by assigning the highest priority to all remote tasks
(remote service requests) that are related to the completion of either local or remote inter-
face cavity expansions. Since remote cavity expansions are unpredictable, the only way we
can guarantee that remote expansion requests are serviced with the highest priority is to poll
the network frequently for remote service requests. However, frequent polling of the net-
work can result in overpolling. Figure 7 suggests that the communication overhead (cost of
receiving remote service requests as soon as possible) for e�ectively tolerating the latency
varies from processor to processor. Table VI suggests that between 2% (in the best case) and
14% (in the worst case) of the total run time is spent in unsuccessfully polling the net-
work (i.e. although we poll the network there are no incoming messages). The percentage of
unsuccessful polling increases as we decrease the size of the problem—for mesh sizes be-
tween 1 and 2M elements the unsuccessful polling varies between 8 and 20% of the total run
time—and imbalance increases (see Table VI). A more careful design and scheduling (load
balancing) of the application will reduce this overhead. However because the computation
and communication patterns in parallel Delaunay meshing are variable and unpredictable, we
believe it will be very di�cult to substantially reduce this overhead.
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Figure 7. Breakdown in percentages of cavity computation occurred by a paral-
lel mesh generator based on the LTBW kernel, for one and two million element

meshes of the Tee geometry on 16 nodes of a CoW.

Table VI. Total run time, imbalance time due to variable and unpredictable nature of the BW kernel,
and communication overhead (receive side) for the processor with least useful polling (�rst four rows)
and maximum useful polling (last four rows). All times are in seconds, and were generated on a

32 node (Sparc) CoW.

Polling time Poll count

Mesh size Run time Imbal. time Total Useful Total Useful Message count

8M 201.30 33.95 58.63 30.11 861388 43292 200684
16M 388.26 49.38 93.15 51.19 1330290 71205 343375

8M 201.30 2.51 57.75 53.95 157744 50546 380254
16M 388.35 4.93 102.30 94.10 289530 91451 643776

5. CONCLUSIONS

In this paper we presented the results of an evaluation on the re-structuring of the latency-
bound BW kernel into a latency-tolerant one. The task of tolerating the latencies of remote
data gather operations with throughput using speculative execution and without introducing
additional overheads is di�cult because the latencies are long; variable; and unpredictable.
Also, we analysed the overall performance of the LTBW kernel. Our data suggest that the
LTBW kernel e�ectively tolerates more than 90% of the latency, which is equivalent to more
than 60% of the total run time. The cost of tolerating latency varies between 2 and 20% of
the total execution time and it is due to additional communication overhead (poll the net-
work frequently in order to give high priority to remote service request handlers). However,
despite these overheads the PDM code which is based on the LTBW kernel and its SMGP
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implementation is eight to nine times faster than the traditional approach of generating, par-
titioning, and placing the data structures of unstructured meshes on the nodes of parallel
platforms for parallel �eld solvers.
The main problem of the approach we presented here is the code complexity for retaining

stability in the context of concurrency nearby the boundary of three-dimensional domains. A
detailed description of a guaranteed quality and latency tolerant extension of the BW kernel
for polyhedral domains is described elsewhere [14]. The kernel presented here is one of the
three options for e�ciently generating stable meshes on parallel platforms, today! The other
two viable options which do not mathematically guarantee the quality of the elements but
generate good quality meshes are a parallel octree based method [17] and a master-worker
approach [19].
Our future work is focusing on investigating scheduling techniques that minimize com-

munication overhead by using a combination of Delaunay admissible domain decomposition
methods [12] and the SMGP implementation of the LTBW kernel.
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