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DELAUNAY DECOUPLING METHOD FOR PARALLEL
GUARANTEED QUALITY PLANAR MESH REFINEMENT∗

LEONIDAS LINARDAKIS† AND NIKOS CHRISOCHOIDES†

Abstract. Creating in parallel guaranteed quality large unstructured meshes is a challenging
problem. Parallel mesh generation procedures decompose the original mesh generation problem
into smaller subproblems that can be solved in parallel. The subproblems can be treated as either
completely or partially coupled, or they can be treated as completely decoupled. In this paper we
present a parallel guaranteed quality Delaunay method for 2-dimensional domains which is based on
the complete decoupling of the subproblems. As a result the method eliminates the communication
and the synchronization during the meshing of the subproblems. Moreover, it achieves 100% code
reuse of existing, fine-tuned, and well-tested sequential mesh generators. The approach we describe
in this paper presents for the first time an effective way to create in parallel guaranteed quality
meshes with billions of elements in a few hundreds of seconds, and at the same time demonstrates
that these meshes can be generated in an efficient and scalable way. Our performance data indicate
superlinear speedups.
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1. Parallel Delaunay mesh generation. Parallel mesh generation methods
decompose the original meshing problem into smaller subproblems that can be solved
(i.e., meshed) in parallel. The requirements for the parallel and distributed solution
of the subproblems are (1) stability—distributed meshes should retain the same level
of quality of elements as the sequentially generated ones, (2) efficiency, and (3) code
reuse, in order to leverage the ever-evolving basic sequential meshing techniques and
software.

In [20, 25] parallel mesh generation methods for distributed memory computers
or clusters of workstations (CoWs) are classified in terms of the way and the order the
artificial boundary surfaces (interfaces) of the subproblems are meshed. Specifically,
existing parallel methods are classified into three categories: (i) a priori methods,
which first mesh (either in parallel [34] or sequentially [41]) the interfaces of the
subproblems and then mesh in parallel the individual subproblems; (ii) a posteriori
methods, which first solve the meshing problem in each of the subproblems in par-
allel and then mesh the interfaces [20] so that the global mesh is conforming; (iii)
simultaneous mesh generation and partitioning (SMGP) methods, which simultane-
ously mesh and improve the quality of the interfaces1 as they mesh the individual
subproblems [19, 13, 17, 36].
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In this paper we present an a priori method that contributes to the state-of-
the-art parallel mesh generation in the following three ways: (1) it guarantees the
same level of quality of the mesh with the sequentially generated ones, (2) it elimi-
nates communication and synchronization during the meshing of the subproblems and
achieves superlinear speedups with respect to the best (to our knowledge) sequential
guaranteed quality mesh generator, Triangle [43], and (3) achieves 100% code reuse,
providing the ability to use the best sequential Delaunay mesh generators with no
modifications. This is the first method (to the best of our knowledge) that eliminates
communication and synchronization, and at the same time is based on a 100% code
reuse of sequential codes. It is the only, so far, parallel guaranteed quality method
that can achieve superlinear speedups, when compared to the best sequential mesh
generation codes, and the first to create over 1 billion (B) elements. The decoupling
method we propose can also be used for sequential mesh generation, in order to create
larger meshes in less time on one processor.

In [24] Galtier and George present a parallel projective Delaunay meshing (P 2DM)
method which guarantees the quality of the elements and eliminates communication
and synchronization, but, depending on the geometry, it might suffer from setbacks
which affect its efficiency. The setbacks are in the form of discarding completely
the triangulation because the separators are not always Delaunay admissible as new
points are inserted. The problem of computing Delaunay admissible separators in the
context of parallel Delaunay mesh refinement is solved in this paper successfully for
2-dimensional domains.

A 2-dimensional divide-and-conquer Delaunay triangulation (DCDT) algorithm
and its parallel implementation are presented in [6]. The DCDT is based on finding
a Delaunay path, through a projection to a paraboloid, that separates the initial set
into two equal-sized subsets. Although this is an elegant and efficient procedure for
Delaunay triangulation, it cannot be used for parallel mesh generation and refinement,
which require new point insertion in the mesh without significant extensions like the
ones presented in [29], which introduce communication.

SMGP parallel guaranteed quality Delaunay mesh (PGQDM) generation methods
appeared in [36] and in [18]. The PGQDM is communication intensive, and despite the
fact that it tolerates (masks) up to 90% of communication, its speedup is about 6 for 16
processors [18]. The second SMGP method, the constrained Delaunay mesh (PCDM)
generation [13], is based on constrained Delaunay triangulation [10]. It substantially
reduces the communication and eliminates synchronization, but the speedup is still
5.75 for 8 processors [13]. The PCDM implementation, as the PGQDM, does not reuse
existing sequential Delaunay mesh generators, due to additional care for cavities that
are constrained by internal boundaries.

The method we present here requires high-quality domain decompositions that (1)
satisfy certain geometric constraints [44] regarding the angles and (2) do not introduce
significant constraints that will affect the efficiency of the mesh generator and the
quality of the final mesh. In this paper we propose a novel domain decomposition
method for 2-dimensional geometries based on the medial axis of the domain. This
method satisfies (1) and (2) above, but it has the disadvantage of being difficult to
extend to 3 dimensions.

In the rest of the paper, we present in section 3 the medial axis domain decom-
position method. In section 4 we proceed to decouple the mesh generation process of
the individual subdomains, by defining and preprocessing a zone around the internal
boundaries of the subdomains. Contrary to past work [34, 24], we prove that the pre-
processing of the zone completely decouples the subdomains. Finally, in section 7 we
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present the complete parallel mesh generation procedure, and in section 9 we provide
experimental results that demonstrate the efficiency of our method.

2. The domain decomposition problem. Guaranteed quality mesh genera-
tion algorithms [11, 12, 40] and software [44, 43] generate elements with good aspect
ratio and good angles. These algorithms require that the initial boundary angles be
within certain good bounds. For example, Ruppert’s algorithm [40] requires bound-
ary angles (the angles formed by the boundary edges) no less than 60◦ in order to
guarantee the termination. Since the separators are treated as external boundary,
the domain decomposition should create separators that meet the requirements of the
mesh generation algorithm. Therefore, the constructed separator should form angles
no less than a given bound Φo, which is determined by the sequential mesh generation
procedure that will be used to mesh the individual subdomains.

The domain decomposition is used in parallel mesh generation to explore data-
parallelism, as in many other areas of scientific computing. The three fundamental
issues in data-parallel computations are communication, synchronization, and load
balancing. The parallel mesh generation method we propose eliminates communica-
tion and synchronization, using a proper decoupling (see section 4) of the subdomains.
However, we achieve the decoupling at the cost of some over-refinement, which is anal-
ogous to the size of the separators of the subdomains. Therefore, one of our objectives
in the domain decomposition step is to minimize the size of the separators relative to
the area of the subdomains. Then the over-refinement we introduce is insignificant
(see section 11).

The third important issue that affects parallel program performance is the good
balance of the workload among the processors. The equidistribution of processors’
workload is achieved by over-decomposing [5] the domain, i.e., N � P , where N is the
number of subdomains and P is the number of processors. The created subdomains
are distributed on the processors using an a priori estimation of the workload, based
on the area of the subdomains. This static, ab initio distribution approach gives
good results for uniform cluster environments (see section 8). However, a dynamic
load-balancing approach can be adopted using general purpose runtime systems, like
the ones presented in [2, 35], to migrate at runtime subdomains from overloaded
processors to ones that have completed their work. The area criterion for estimating
the work load appears to be a good measure in the case of our method, for the
following reason: the decomposition procedure, as we will see, creates “good” angles
and small separators, and the created subdomains tend to have similar shapes after
the over-decomposition of the domain; since the geometries are similar, the work of
the mesher is approximately proportional to the area of the subdomains. The above
intuition is confirmed by the results in section 8.

In summary, the domain decomposition criteria for parallel mesh generation are
the following.

C1. Create good angles, i.e., angles no smaller than a given tolerance Φo. The
value of Φo is determined by the sequential, guaranteed quality, mesh gener-
ation algorithm.

C2. The subdomains should have approximately equal size (areawise).
C3. The size of the separator should be relatively small, i.e., minimize the ratio

max{|H|/|Ωi|}, where |H| is the length of the separator and |Ωi| is the area
of the subdomains.

The first condition is essential, since it is the one that guarantees the termination
of the mesh generation procedure and at the same time prevents the creation of new
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features that will lower the quality of the final mesh. Criteria 2 and 3 are not required,
but are desired for the efficiency of the parallel computations.

The domain decomposition that we propose here is independent of the decoupling
procedure described in section 4, and it can be used in other parallel mesh generation
methods, like PCDM, that require good quality domain decompositions.

3. Medial axis domain decomposition method. The medial axis domain
decomposition (MADD) method we propose is based on an approximation of the
medial axis (MA) of the domain. The MA was introduced by Blum [7] as a way
to depict the shape of an object and has been studied extensively during the last
two decades [9, 8, 14, 33, 42, 48]. In the context of mesh generation the medial axis
has been used in [1, 23, 26, 39, 45]. The existing domain decomposition methods
aim mostly to solve the load-balancing problem and to minimize the communication
[21, 30, 46]. For the first time in parallel mesh generation the medial axis was proposed
as a domain decomposition technique in [15].

One of the contributions of this paper is that, in addition to the load-balancing
goal, the MA is used to guarantee domain decompositions with separators which
form good angles between them and the external boundary. Like existing methods
our decomposition method also aims for separators whose size is small relatively to
the areas of the subdomains.

In the rest of the paper we define as a domain Ω the closure of an open connected
bounded set in R2, and the boundary ∂Ω is defined by a planar straight line graph
(PSLG), which forms a set of (nonintersecting) line segments connecting pairs of
points. A circle C ⊆ Ω is said to be maximal in Ω, if there is no other circle C ′ ⊆ Ω
such that C � C ′. The closure of the locus of the circumcenters of all maximal circles
in Ω is called the medial axis Ω and will be denoted by MA(Ω). The intersection of
a boundary of Ω and a maximal circle C is not empty. The points C ∩ ∂Ω, where a
maximal circle C intersects the boundary, are called contact points of c, where c is
the center of C. Every point c ∈ MA(Ω) \ ∂Ω has at least two contact points.

The domain decomposition method we propose is based on the following simple
geometric property.

Lemma 3.1. Let b be a contact point of c ∈ MA(Ω). The angles formed by the
segment cb and the tangent of the boundary ∂Ω at b are at least π/2.

Proof. We prove the lemma in the general case when Ω has a piecewise C1

boundary. Suppose that the proposition is not true. Then there is a point c ∈ MA(Ω)
of the medial axis and a contact point b ∈ ∂Ω of c, such that cb forms an angle φ < π/2
with the boundary at b (see Figure 3.1). Take c to be the origin of the axes and cb to
define the y axis. Without loss of generality, we assume that φ is formed by the tangent
from the right. Let (x(s), y(s)) be locally the normal parametric representation of the
curve, with b = (x(0), y(0)) = (0, y(0)) and x(s) ≥ 0. We have y(0) > 0. Since
φ < π/2, we have y′(0) < 0. Let R(s) = x2(s) + y2(s) be the square of the distance
between c and the points of the curve. Because b is a contact point of c, it must
be R(s) ≥ R(0) = |cb|2. We have R′(0) = 2y(0)y′(0) < 0. This means that locally
R(s) < R(0), which is a contradiction.

The medial axis of Ω can be approximated by Voronoi points of a discretization of
the domain [9, 8]. We make use of the property of Lemma 3.1 to construct separators
that consist of linear segments which connect the Voronoi points to the boundary.
The approximation of the MA(Ω) is achieved in two steps: (1) discretization of the
boundary, and (2) computation of a boundary conforming Delaunay triangulation
using the points from step (1). The circumcenters of the Delaunay triangles are the
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Fig. 3.1. The angle cbd cannot be less than 90◦, where c is a point of the medial axis and b its
contact point. In some cases the angle is greater that 90◦, as in the case c′b′.

Fig. 3.2. Left: The Delaunay triangulation of the pipe intersection. The circumcenters of the
triangles approximate the medial axis. Right: The circumcenters are the Voronoi points. The sepa-
rator is formed by selecting a subset of the Voronoi points and connecting them with the boundary.

Voronoi points of the boundary vertices. The separators will be formed by connecting
these circumcenters to the vertices of the Delaunay triangles. Figure 3.2 depicts the
boundary conforming mesh of the cross section of a rocket (left), and the media axis
approximation and a 2-way separator for the same geometry (right).

The level of the discretization of the boundary determines the quality of the
approximation of the medial axis. However, our goal is not to approximate accurately
the medial axis, but to obtain good angles from the separator. Therefore our criteria
for the discretization of the domain will be determined from the quality of the angles
formed between the separators and the boundary ∂Ω. We achieve our goal by defining
a new set of triangles (see Figure 3.3).

Definition 3.2. Let D be a Delaunay triangulation of a discretization D of the
boundary ∂Ω. We call a triangle t ∈ D a junction triangle if

1. it includes its circumcenter c,
2. at least two of its edges are not in D,
3. at least two of the segments defined by the circumcenter and the vertices of t

form angles ≥ Φo, both with the boundary and with each other.
The first criterion is set only for the simplicity of the MADD algorithm (see sec-

tion 3.1.2) in order to avoid negative weights and guarantee that at least two angles be-
tween the segments are good. The second criterion prevents a decomposition that will
create very small subdomains. The third criterion guarantees the quality of the angles.
Let a1a2a3 be the vertices of t. Then the third criterion demands the existence of at
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Fig. 3.3. Triangle a1a2a5 is a junction triangle, while a1a5a6 has two edges on the boundary
and a2a4a5 does not include its cicrcumcenter, so they are not junction triangles.
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Fig. 3.4. On the left, the two Delaunay triangles, A1, A2, do not have common vertices. On
the right, the triangles share one common vertex; the case of two common vertices reduces to these.

least one pair of segments aicaj , where c is the circumcenter of a1a2a3, so that all the
angles formed with these segments are greater than or equal to Φo. Such pairs aicaj
are called partial separators and they will be the candidates to form a complete sep-
arator. A complete separator decomposes a domain into two connected subdomains.

Let m be the number of holes of Ω. The level of refinement D we require for ∂Ω
has to satisfy the following two conditions.

(i) In the Delaunay triangulation D of D there are at least m + 1 junction tri-
angles.

(ii) Every segment on the boundary D has an empty diametral circle.
The first condition in Definition 3.2 requires the existence of at least m+1 junction

triangles. This ensures, as we will see in section 3.2, that there is at least one complete
separator formed by partial separators. The second condition guarantees that all the
segments of D will appear as edges in D. It also guarantees that all the circumcenters
of the triangles of D are contained in Ω [44]. This in turn guarantees the existence of
at least one triangle that includes its circumcenter (see Lemma 3.4).

Lemma 3.3. Let A1, A2 be two triangles of a Delaunay triangulation, such that the
circumcenter c1 of A1 is in the triangle A2 and they do not have the same circumcircle.
Let c2 be the circumcenter of A2 and r1, r2 be the radii of the circumcircles of A1 and
A2, respectively. Then we have r1 < r2.

Proof. Let r be the smaller distance of c1 from the vertices of A2; see Figure 3.4.
Then r ≥ r1. So we have r2 > r, and consequently r2 > r1.

Lemma 3.4. If all segments in D have empty diametral circles, then there is at
least one triangle in the Delaunay triangulation D of D that includes its circumcenter.
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Proof. We know that, when the boundary segments have empty diametral circles,
all the circumcenters of the triangles of D are in D [44]. We assume that the points
are in general position; i.e., there are no cocircular points. We will prove the lemma
by contradiction.

Suppose that the lemma is not true. Then for every triangle Ai there is another
triangle Ai+1 �= Ai, such that the circumcenter ci of Ai is included in Ai+1. Let ri
be the radius of the circumcircle of Ai. Since we assumed that no triangle includes
its circumcenter, the sequence 〈Ai〉 is infinite. On the other hand, the set {ti} of
all triangles in D is finite, so the sequence 〈Ai〉 includes an element tk twice. Then
Al = Am = tk for some l < k. From the previous lemma we have rl < rl+1 < · · · < rm,
which contradicts the fact that rl and rm are the radii of the same circle, and thus
equal. So the lemma must hold.

The discretization of the boundary is determined by the number of junction tri-
angles we want to create, which in turn is determined by the geometry of the domain
Ω. As we increase the refinement, the Voronoi points approximate the points of the
medial axis and the formed angles with the boundary tend to be close to π/2. If
we construct more junction triangles, and thus more partial separators, we have more
choices to form a better separator, in terms of the quality of the angles, the size of
the separator, and the balance of the areas of the subdomains. In our experiments
a rather small refinement (less than 700 additional points for the 2-dimensional ge-
ometries we tried so far) gives satisfying results. Again this of course depends on the
geometry, and a way to predefine the refinement level of the boundary of the domain
is a subject of further research.

3.1. The MADD algorithm. The MADD algorithm uses as a starting point
the approximation of the medial axis by the Delaunay triangulation D, as described
in the previous section. The complete separator is formed by partial separators, i.e.,
segments inserted in junction triangles of D; these segments connect the circumcenter
of the triangles to two of their vertices. Figure 3.2 (right) depicts a complete separator
for a 2-way decomposition of the pipe.

The partial separators connect two points of the boundary, since D is a boundary
conforming triangulation. The properties of junction triangles permit the construc-
tion of good angles between the partial separators and the external boundary of the
geometry. The MADD algorithm will select to insert a set of partial separators that
will guarantee the decomposition of the domain into two subdomains. The selection
of the partial separators is based on the minimization of the ratio of the size of the
separators to the areas of the subdomains.

The MADD algorithm maps the Delaunay triangulation D into a graph GD which
encapsulates the required information about the candidate partial separators. This
information includes (1) the topology of D, which is used to guarantee that the in-
serted partial separators form a complete separator and (2) the length of the partial
separators and the area of the subdomains that will be created, which is used to
optimize the ratio of the length of separators to the subdomains area. After GD is
constructed, the graph is contracted, so that only the junction triangles of D are
represented. Then the contracted graph is partitioned; the graph partitioning can be
obtained by using any of the well-known algorithms [32, 4, 27, 28, 30, 47] that decom-
pose a connected graph into two connected subgraphs and minimize the ratio of the
cut cost to the weights of the subgraphs. Finally the graph partition is translated into
insertions of partial separators, which result into a 2-way decomposition. In summary
the key steps of the algorithm are the following:
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Fig. 3.5. An example of creating the MADD graph. Left: a part of the Delaunay triangulation
and the creation of the corresponding initial graph GD. Middle: the procedure of contracting the
graph by combining the nodes of GD. The nodes connected by dashed lines are combined. Right: the
final graph G′

D that corresponds to this part.

1. Create a graph GD from the Delaunay triangulation D.
2. Contract GD into the graph G′

D, so that only the partial separators in the
junction triangles are represented as edges of G′

D.
3. Partition the graph G′

D, optimizing the cut cost to subgraph weight ratio.
4. Translate the cuts of the previous partition into partial separators.

3.1.1. Construction of the graph GD. In this step the Delaunay triangula-
tion D is represented as a weighted graph, the dual graph of the edges of the triangles.
Two nodes of the graph are adjacent if their corresponding edges belong to the same
triangle. The length of the radius of the circumcircle of this triangle will be the weight
of the graph edge. The weights of the nodes are set to zero in this step, and they will
be computed in the graph construction step (see section 3.1.2).

Figure 3.5 (left) depicts the step for constructing the graph GD. One graph node
is created for each edge of the triangulation, and two nodes are connected if they
belong to the same triangle. Let dij be the node corresponding to the edge aiaj . The
weight of the edge connecting dij , djk is the length |claj |, where cl is the circumcenter
of the triangle. For example, the edge that connects d12 and d25 has weight the length
|c1a2|. The above procedure is described by the following algorithm.

Algorithm 1.

1. for all the edges aiaj in D do
2. Add node dij to the graph GD, with zero weight
3. endfor
4. for all triangles t ∈ D do
5. for the three pairs (aiaj , ajak) of edges of t do
6. Create a graph edge between the corresponding nodes dij , djk,

with weight the length of the circumradius of t
7. endfor
8. endfor
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3.1.2. Graph contraction. In this step the graph GD produced from the pre-
vious step is contracted into a new graph G′

D, so that only the edges of junction
triangles are represented as nodes in G′

D. The nodes of GD that correspond to edges
of nonjunction triangles of D are contracted in G′

D.

In order to contract the graph GD, first we iterate through all the triangles that
are not junction triangles. The nodes of GD that correspond to the three edges of a
nonjunction triangle are combined into a single node and the new node replaces the
initial nodes in the external graph edges, while the edges between the three initial
nodes are deleted. The weight of the new node is the sum of the weights of the initial
ones, plus the area of the triangle.

The remaining nodes correspond to the edges of junction triangles. Junction
triangles contain candidate partial separators, whose number may vary from one to
three. From the three possible partial separators we keep the one that forms the
greater minimum angle. Since in junction triangles there is at least one partial sep-
arator that forms angles no less than Φo, the selected partial separator forms angles
≥ Φo. We establish this partial separator by combining the two of the three nodes
that correspond to edges of the triangle. Let a1a2a3 be a junction triangle and c its
circumcenter. Let dij be the corresponding node to the edge aiaj , then the weight of
the node dij is updated by adding the weight of the area included by the triangle caiaj .
Let ajcak be the partial separator that forms the greater minimum angle. Then the
nodes dji and dki are contracted into a single node, where ai is the remaining vertex.
The procedure is illustrated by the following example.

Example. Figure 3.5 (center) illustrates the procedure of contracting the graph.
The bold lines indicate the external boundary. The triangles are part of the boundary
conforming Delaunay triangulation of the domain. As above, we denote by dij the
graph node that corresponds to the segment aiaj . We demonstrate four different cases.

Case I. The triangle a1a5a6 has two edges on the boundary, so it is not a junction
triangle, and the three corresponding nodes are combined in one. The edges connect-
ing the new node d′15 are the external ones, i.e., the edges that connect d15 to d12 and
d15 to d25. The weight of d′15 is equal to the area of the triangle a1a5a6.

Case II. The triangle a2a4a5 does not include its circumcenter and so it is not a
junction triangle. We follow the same procedure as in Case I. The nodes d25, d24, d45

are contracted into a new node d′25. The new node has weight equal to the area of
the triangle a2a4a5 and is connected to the nodes d12, d

′
15, d23, d34.

Case III. The triangle a1a2a5 is a junction triangle. The areas of the triangles
formed by its circumcenter c1 and its corners are added to the weight of the corre-
sponding nodes. For example, the area |a2c1a1| is added to the node d12, similarly the
areas |a2a5c1| and |a1c1a5| are added to the nodes d′25 and d′15, respectively. Suppose
that the partial separator a1c1a2 is the one that forms the greater minimum angle.
Then the nodes d′15 and d′25 are contracted into a new node d′25 with its weight to
be equal to the sum weights of the two previous nodes. The graph edge connecting
the nodes d′15 and d′25 is deleted, while the two other graph edges are contracted into
one edge connecting d′25 to d12; the new edged weight is equal to the sum of the two
previous edge weights, which is equal to the length of the partial separator a1c1a2.

Case IV. The triangle a2a3a4 is also a junction triangle. As for the previous
triangle, first we add the areas of the triangles formed by the circumcenter c2 and
the vertices. The areas |a2c2a4|, |a2c2a3|, and |a3c2a4| are added to the weight of the
nodes d′25, d

′
23, and d′34, respectively. However, suppose in this case that the angle θ,

formed by the segment c2a3 and the external boundary segment a3b, is less than Φo.
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Fig. 3.6. A partition of the graph and the corresponding separator, on the right, depicted with
dashed lines.

Then the two partial separators that include this segment are rejected and we keep
the separator a2c2a4, which is the one that forms the greater minimum angle. The
nodes d23 and d34 are combined into the node d′34. The new node is connected to d′25
by an edge with weight equal to the sum of the two previous edge weights, which is
the length of the partial separator a2c2a4. Figure 3.5 (right) shows the final graph.

The above procedure is described by the following algorithm.
Algorithm 2.

1. for all nonjunction triangles t ∈ D do
2. Combine the three nodes that correspond to the edges of t,

generating a new node d′

3. Add the area of t to the weight of d′

4. endfor
5. for all junction triangles t ∈ D do
6. Let c be circumcenter of t
7. for all edges aiaj of t do
8. Add the area of the triangle aicaj to the weight

of the corresponding node dij
9. endfor

10. Find the partial separator aicaj in t forming a max min angle
11. Combine the nodes dik and djk, where ak is the remaining vertex
12. endfor

3.1.3. The construction of the separator. After contracting the graph, the
constructed graph G′

D is partitioned. The number of the edges of the graph is less than
or equal to the number of junction triangles; thus the size of the graph partitioning
problem is significantly smaller than the elementwise dual graph of the boundary
conforming Delaunay triangulation D. Graph partitioning can be very expensive and
has been an active area for several years [32, 4, 27, 28, 30, 47]. Any of the algorithms
that give a partition of the graph into two connected subgraphs, with good cut cost
to subgraph weight ratio, can be used as the graph partitioner for G′

D. For algorithms
that give nonconnected subgraphs, a check step must take place (see section 10).

After partitioning G′
D, the final step of the MADD is to construct the separator

of the geometry. From the previous step we have a partition of the graph G′
D into

two connected subgraphs. This partition will give a corresponding separator for the
geometry. Each edge of the graph corresponds to a partial separator of the form aicaj ,
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where c is a circumcenter of a junction triangle and ai, aj are two of its vertices. For
every graph edge that is cut by the partition we will insert the related partial separator
in the geometry. In our example above (see Figure 3.6) the partial separator a2c2a4

is created in the case that the graph partitioner chooses to cut the edge e2.
The construction of the separator is described in the following algorithm.
Algorithm 3.

1. for all triangles t ∈ D do
2. if one of the edges aiaj of t belongs to a different

subgraph from the other two edges then
3. Insert the partial separator aicaj ,

where c is the circumcenter of t
4. endif
5. endfor

The algorithm traverses the list of all triangles and identifies those triangles whose
edges correspond to disconnected nodes after the graph partition. In these triangles
the partial separators are inserted, separating the edges that do not belong to the same
subgraph. In Figure 3.6 the partial separator a2c2a4 separates the edge a2a4 from
the edges a2a3 and a3a4. The set of all these inserted partial separators establishes a
(complete) separator for the domain, as we will see in section 3.2.

The ratio of the cost of the cut to the weight of the subgraphs is translated to
the ratio of the total length of the separator to the area of the subdomains. Provided
that the graph partitioner gives a good cut cost to subgraph weight ratio, the ratio
of length of the separator to the area of the subdomains is also good. This way
we obtain separators of relatively small size, and the areas of the subdomains are
balanced. Moreover, since all the partial separators, by the construction of G′

D,
form good angles, the constructed separator forms good angles. In summary, the
constructed separator meets the decomposition criteria C1–C3 in section 2.

3.2. Proof of correctness. In this subsection we prove that the MADD algo-
rithm decomposes the domain Ω into two connected subdomains. We recall that the
domain Ω is the closure of an open connected bounded set and the boundary ∂Ω is
a PSLG that formed a set of linear segments which do not intersect. A separator
H ⊆ Ω is a finite set of simple paths (a continuous 1-1 map h : [0, 1] → Ω) that do
not intersect and define a decomposition A1, A2 of Ω in the following way: A1 and A2

are connected sets, with A1 ∪ A2 = Ω, and U ∩ H �= ∅ for every path U ⊂ Ω which
connects a point of A1 to a point of A2.

Lemma 3.5. Let m be the number of holes in Ω and n the number of junction
triangles. If n > m, then there is a separator for Ω formed by partial separators.

Proof. We will prove the lemma by induction on m. If m = 0, then n ≥ 1,
and there is at least one partial separator. In this case, every partial separator is
a separator for Ω, since every simple path f : [a, b] → Ω, with f(a), f(b) ∈ ∂Ω and
f(a, b) ⊂ Ω◦, is a separator for Ω.

Suppose the lemma is true for m = q, we will prove it is true for m = q + 1. We
have that n > q+1. If for a partial separator acb, where a, b ∈ ∂Ω, we have that both
a and b do not belong to the boundary of a hole; then acb forms a separator, as in
the case m = 0. In the case that one of the points a, b belongs to the boundary of a
hole O, then by inserting the partial separator acb we eliminate O. The new domain
has q holes and n − 1 > q junction triangles. Thus, by the inductive hypothesis, it
can be decomposed by partial separators. Therefore there is a separator formed by
partial separators, when the conditions of the lemma are satisfied.
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Theorem 3.6. Let m be the number of holes in Ω and n the number of junction
triangles. If n > m, then the MADD algorithm decomposes Ω into two subdomains.

Proof. Let ei, i = 1, . . . , n, be the edges of the contracted graph G′
D created by

MADD. Each of these edges corresponds to a partial separator hi, i = 1, . . . , n. We
will show that every decomposition of the graph G′

D corresponds to a decomposition
of Ω formed by partial separators, and vice versa.

Let E = {ei, i ∈ I} be the set of edges that the graph partitioner cuts, creating
two subgraphs G1, G2. Let H = {hi, i ∈ I} be the set of partial separators that
correspond to these edges. Finally, let A1, A2 ⊂ Ω be the two corresponding areas
to the subgraphs G1, G2. Obviously A1 ∪ A2 = Ω. From the construction of the
graph we have that the connected subgraphs correspond to path-connected areas of Ω.
Assuming that the graph partitioner decomposes G′

D into two connected subgraphs,
then G1, G2 are connected, and so A1, A2 are also connected. Every path U ⊂ Ω from
a point of A1 to a point of A2 corresponds to a path U ′ in G′

D and forms a node of
G1 to a node of G2. Since the edges E separate G1 from G2, we have U ′ ∩ E �= ∅.
Let ej ∈ U ′ ∩ E. Then we have U ∩ hj �= ∅, and the path U intersects H. Thus H is
a separator for Ω. Working backwards we see that a separator for Ω corresponds to
a partition of the graph. The existence of such a separator is proved in Lemma 3.5,
and this completes the proof.

The algorithm always terminates, but the existence of a separator, according to
the above theorem, depends on the number of junction triangles that we construct. If
this number is greater than the genus of the domain, then a separator exists; there are
cases though where fewer junction triangles are sufficient, depending on their position
(for example, if none of their edges are on a hole). On the other hand, in order to
achieve a better quality of the formed angles, as well as a better decomposition in
terms of load-balancing, we would like to have as many junction triangles as possible,
since this will increase the number of choices for partial separators. The number of
junction triangles depends on the boundary refinement we will use, and two major
parameters come into play: (a) the number of subdomains we wish to create, which
largely depends on the size of the mesh we want to create; (b) the geometry of the
domain. It is hard to define what a difficult geometry would be to decompose, since
geometries that look complicated may form areas where “natural” cuts can be made,
while geometries that look simple may lack these natural cuts. Small features of the
geometry, which usually present a problem in the mesh generation, are not a problem
for the decomposition, because they can be discarded (for example, they will form no
junction triangles). In our experiments a small refinement (700 additional points) of
the boundary produces enough junction triangles to form good separators (with an
angle bound of Φo = 60◦); see Figure 10.1. Still an open problem, though, is a theory
that would predefine the level of refinement (depending on the geometry) that would
guarantee the creation of enough junction triangles and provide a good separator.

3.3. N-way decomposition. So far we have described the MADD procedure
for a 2-way decomposition. In the following section we will describe a decoupling pro-
cedure which is applied on multiple subdomains and decouples the mesh generation
procedure for all the given subdomains. In order to create more than two subdomains
we can apply the MADD in a divide and conquer way (see Figure 3.7). When a 2-way
separator is created, it is discretized and then every subdomain is decomposed inde-
pendently. The resulting decomposition shows good adaptivity to the geometry. This
approach requires one to recalculate the Delaunay triangulation of the subdomains.
We can do that by just inserting the segments of the separator in the existing triangu-
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a
b

Fig. 3.7. N-way partitions, where N = 2, 4, 8, 16, by the MADD divide and conquer method.
METIS [31] was used as the graph partitioner and Triangle [43] produced the Delaunay triangulation.

lation. These segments should be refined, and possibly the edges of the boundary also,
so that the empty diametral circle property of the boundary, including the separators,
is maintained.

Since every subdomain is decomposed independently, the discretization of the
separators, which form the internal boundary, should be permanent. In practice, the
size of the segments created by the discretization of the domain is much larger than
the ones created by the mesh generation procedure. Here we should take into account
that the level of decomposition is proportional to the size of the mesh we want to
create. Thus, in the general case, the discretization does not create actual artificial
constraints to the mesh. Figure 3.7 depicts that no new artifacts are introduced, given
that segments like ab will be refined further.

In our method we refine even further the internal boundaries in order to decouple
the subdomains, and our results show that the size and the quality of the mesh are
not affected. For a more detailed experimental analysis see section 11.

An advantage of the divide and conquer approach is that it is easy to implement
in parallel. In our implementation we have followed a parallel MADD divide and
conquer strategy to create multiple subdomains. The method is described in detail in
section 7.

4. The decoupling zone. The separators and the subdomains created by the
MADD procedure have good quality in terms of the shape and size. Our goal though
is to be able to create Delaunay meshes independently for each subdomain, and the
previous procedure cannot guarantee this. In order to create the mesh independently
in each subdomain we have to ensure that the final mesh will be Delaunay conforming.
In the context of parallel Delaunay triangulation, a Delaunay conforming separator
can be found using a projective method, presented in [6]. A study of conditions for
a priori conformity for constrained Delaunay triangulations is presented in [37]. A
method for independent mesh generation in each subdomain using a projective separa-
tor is presented in [24], but it does not always guarantee a priori Delaunay conformity.

In order to ensure the Delaunay conformity in the mesh generation context we
will refine the separators using conditions derived from the mesh refining algorithm.
A special “zone” around the segments of the separators (see Figure 4.1) will guarantee
that the mesh generation procedure can be applied independently on each subdomain,
giving a Delaunay conforming mesh for the whole domain, formed by the union of all
the submeshes.
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H P

Fig. 4.1. A fraction of the pipe intersection. Left: Part of the separators H inserted by MADD.
Middle: Refining H gives a decoupling path P; the decoupling zone ZP is depicted. Right: Ruppert’s
algorithm was applied on the subdomains with an element area restriction; ZP is empty and P is
invariant. The final mesh is Delaunay conforming.

Let M be a Delaunay mesh generation procedure. Let D = ∂Ω be a PSLG, where
Ω is a domain as described in the previous section. Let P be a set of piecewise linear
separators that decompose the domain Ω in n subdomains Ωi and let Di = ∂Ωi be
the boundaries of the subdomains.

Definition 4.1. The set of the open diametral circles of all the segments that
form P is called the decoupling zone of P and is denoted by ZP.

Definition 4.2. P is a decoupling path with respect to M, if after applying M
independently on the subdomains Ωi, i = 1, . . . , n, the decoupling zone ZP is empty.

Proposition 4.3. Let Mi be the mesh produced by M on the subdomain Ωi. If P
is a decoupling path with respect to M, then the union ∪Mi is a conforming Delaunay
triangulation.

Proof. Let M be the Delaunay triangulation of the vertices VM = ∪VMi of ∪Mi.
We will prove that M = ∪Mi, by showing that the set of edges S of M are identical
to the set of edges ∪Si of ∪Mi, thus the two triangulations are the same and ∪Mi is
a conforming Delaunay triangulation.

First we observe that P is a subset of both S and ∪Si, because its decoupling
zone is empty. For any edge ab ∈ S there are two cases. (i) Both end points a, b
belong to the same subdomain Mj , a, b ∈ VMj . (ii) a ∈ Mi and b ∈ Mj \Mi.

Case (i). Suppose a, b ∈ VMj . From the local Delaunay property, there is an
empty circumcircle C of ab which does not include any points in VM . Because VMj ⊆
VM , C must be empty in the set VMj . Thus ab ∈ Sj and ab ∈ ∪Si.

Case (ii). We will show that this case cannot occur, there is no edge ab ∈ S such
that a ∈ Mi and b ∈ Mj \Mi. Suppose we have such an edge ab. Then ab ⊂ D and
since the subdomains Mi and Mj are separated by P, a and b are separated by P. So
ab ∩ P �= ∅. On the other hand, we have P ⊆ S, which means that two edges of the
triangulation M intersect. This contradicts the definition of a triangulation [23].

Since case (ii) cannot occur, we conclude from case (i) that S ⊆ ∪Si. The two
triangulations M and ∪Mi must have the same number of edges, so we have S = ∪Si,
and thus M = ∪Mi. This proves the proposition.

Proposition 4.4. If the algorithm M is a mesh refinement algorithm, then the
decoupling path P is invariant during the steps of M in which the Delaunay property
is maintained.

Proof. Suppose that during the procedure M an edge s ∈ P is destroyed. That
means that the diametral circle Cs of s includes some point. Since M does not
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remove points, Cs will not be empty after the termination of M. This contradicts the
definition of the decoupling path.

Proposition 4.3 proves that, provided that we have constructed a decoupling path,
the subdomains can be meshed independently and the final mesh will be Delaunay
conforming. Our next step will be to construct a decoupling path from the separators
created by MADD.

The decoupling path is defined with respect to a mesh generation procedure and,
in many cases [11, 40], the stopping conditions of the mesh generation algorithm
allow us to compute the length of the edges of the separators, so that these edges will
form a decoupling path. Then we only have to refine the segments of the separators,
acquiring this predefined length.

5. Ruppert’s algorithm. For the mesh procedure we will consider Ruppert’s
algorithm [40]. This is a mesh refinement algorithm for 2 dimensions that guarantees
the quality of the elements. It creates an initial triangulation and follows an incre-
mental approach to refine the mesh. Triangles which have circumradius to shortest
edge ratio greater than

√
2 are split, by inserting points in their circumcenters and

constructing a new Delaunay triangulation. If a point to be inserted encroaches the
diametral circle of a boundary edge, then, instead of inserting this point, the bound-
ary edge is split in half. The algorithm maintains the Delaunay property after the
insertion of each point. In order to guarantee the termination of this procedure the
boundary angles should be at least 60o.

Let D be a PSLG, as defined above. An entity is either a vertex or a segment
of the boundary; two entities are incident when they share a common point. The
minimum local feature size of D is defined as the minimum distance between two
nonincident entities [44];2 it will be denoted by lfsmin(D).

The following proposition holds [44].

Proposition 5.1. Suppose that any two incident segments of D are forming an
angle no less than 60◦. Ruppert’s algorithm terminates when applied on D, giving a
mesh of triangles with circumradius to shortest edge ratio at most

√
2 and with no

triangulation edge shorter than lfsmin(D).

The only requirement for Ruppert’s algorithm is that the boundary angles must
be at least 60◦. Provided that our initial boundary D satisfies this criterion, we
can apply MADD to decompose Ω using an angle bound Φo = 60◦. So, both the
constructed separators and the external boundaries form angles ≥ 60◦. Consequently
the created subdomains are acceptable for this mesh generation algorithm.

6. The construction of the decoupling path. Let D = ∂Ω be the boundary
of the domain Ω, and H the set of separators in Ω created by the MADD method
using an angle bound of Φo = 60◦. Let Di = ∂Ωi be the boundaries of the created
subdomains and DH = D ∪H.

In order to construct a decoupling path P from the separators H we will refine H
by inserting points along its edges, obtaining a desirable segment length. The calcula-
tion of this length is based on a parameter k. Let L = min{|s|/ s is a segment of H}.

2For a PSLG domain the minimum local feature size will be the minimum distance between two
vertices, or a vertex and a segment [44]. In our implementation we use a simple brute force approach,
checking all the distances. This approach is satisfactory for relatively simple domains with few initial
vertices. For more complicated geometries better algorithms should be used, similar to the ones for
finding the two closest pair of a set of points (see [38]), which have O(n logn) complexity.
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Let k be a real constant parameter, such that

0 < k ≤ min(lfsmin(DH), L/4).(6.1)

The parameter k will be calculated from the conditions of the algorithm, so that it
can be guaranteed that no edge will be created with length less than k.

The following lemma describes the refining procedure of H.
Lemma 6.1. Let s be a segment of H. Then there is ν ∈ N such that, after

inserting ν − 1 points bi on s, we have 2√
3
k ≤ |bibi+1| < 2k for any two consequent

points bi, bi+1.
Proof. Let l be the length of the segment s; there is ν ∈ N such that 2(ν − 1)k ≤

l < 2νk. Then, by dividing the s into ν equal subsegments, we have for the length

l′ of the subsegments: 2(ν−1)
ν k ≤ l′ < 2k. For ν ≥ 3, we have 2(ν−1)

ν > 2√
3
, and this

proves the lemma.
Let P be the separators H after we have inserted the points bi, as described in

the previous lemma, and let DP = D ∪ P. The following lemmata hold.
Lemma 6.2. Let bi, bi+1 be two consequent points inserted on a segment s of H.

Then the diametral circle of bibi+1 is empty.
Proof. The diametral circle C of bibi+1 is contained in the diametral circle of s,

which by the MADD construction does not include any of the points of DH.
The remaining points to be examined are the inserted points bj . We have that

all the angles are greater than 60◦ and, from Lemma 6.1, no created segment is less
than half of any other created segment. Consequently, C cannot contain a point bj
created by the refining procedure.

Lemma 6.3. The following inequality holds: lfsmin(DP) ≥ k.
Proof. We have from relation (6.1) that lfsmin(DH) ≥ k. We will examine the

distances created by the inserted points.
Let bi be a point inserted in a segment s of H. For the distance d of bi from

a nonincident to s segment we have d ≥ lfsmin(DH) ≥ k. The same holds for the
distance d′ from points that are not incident to s, because we have d′ ≥ d ≥ k.

For the distance d between bi and an incident segment we have d ≥ sin 60◦ ·
2√
3
k = k. Finally, the distance between bi and a point that belongs to an incident

segment is greater than the distance d of the previous relation, and this completes the
proof.

The previous lemma demonstrates the property that will be used to prove that
P is a decoupling path. Our next step will be to calculate the parameter k.

Ruppert’s algorithm can be applied using either the quality criterion for the cir-
cumradius to shortest edge ratio, or by adding a criterion for the maximum area of
the created elements. We will calculate k for these two cases separately. We will
prove that P is a decoupling path for the two cases: (I) when Ruppert’s algorithm is
applied with only the quality criterion of the circumradius to shortest edge ratio; (II)
when it is applied with an additional criterion for the maximum triangle area.

6.1. Case I: The ratio criterion. In this case we are interested only in the
circumradius to shortest edge ratio. Since k gives a bound for the size of the cre-
ated segments, we would like k to be as big as possible and at the same time
satisfy relation (6.1). Proposition 5.1 and Lemma 6.3 indicate that we can define
k = min{lfsmin(DH), L/4}.

Proposition 6.4. Define k = min{lfsmin(DH), L/4} and let P be the piecewise
linear separators as constructed in Lemma 6.1. Then P is a decoupling path with
respect to Ruppert’s algorithm.
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Proof. According to Proposition 5.1, Ruppert’s algorithm when applied to a
subdomain Di, will not create segments less than lfsmin(Di). We will show ad absurdo
that the decoupling zone ZP is empty after the termination of the algorithm.

Suppose that ZP is not empty after the mesh procedure and some points have been
inserted in it. That means that some boundary segments of P have been encroached
and thus have been split in half. From Lemma 6.1 the length of the segments of P
is less than 2k and by splitting them the created segments will have length less than
k. This contradicts Proposition 5.1 because, from Lemma 6.3, we have lfsmin(Di) ≥
lfsmin(DP) ≥ k.

Thus the decoupling zone ZP is empty after applying Ruppert’s algorithm, and
P is a decoupling path with respect to this algorithm.

Corollary 6.5. P remains invariant during Ruppert’s algorithm execution.

Proof. Ruppert’s algorithm does not remove points and maintains the Delaunay
property after inserting a point. The corollary is a direct consequence of the previous
proposition and of Proposition 4.4.

Proposition 6.4 states that we can process the subdomains independently, using
Ruppert’s algorithm, and the final mesh will be Delaunay conforming and of guaran-
teed quality. Next we will examine the case where we have an additional condition
for the area of the triangles.

6.2. Case II: The ratio and maximum area criteria. In this case, besides
the circumradius to shortest edge ratio condition, we have an additional criterion for
the maximum triangle area. In many cases we want to construct Delaunay meshes,
not only with good quality of angles, but also of a desired maximum size. Let A be
a bound to the maximum triangle area, then all the triangles of the final mesh will
have an area at most A. To achieve this, the mesh generation algorithm will split the
triangles in two cases: (a) because of the bad circumradius to shortest edge ratio; (b)
because the area of the triangle is greater than A.

We will calculate k so that the previous results will remain valid.

Lemma 6.6. Let l be the smallest edge of a triangle with area greater than A and

circumradius to shortest edge ratio at most
√

2. Then l >
√

A√
2
.

Proof. Let r be the circumradius of the triangle. Then r
l ≤

√
2 and A < r · l. So,

A < r · l ≤ l2√
2
⇒ l >

√
A√
2
.

We want to define k in such a way that the mesh generation procedure will not
create edges smaller than k. The previous lemma indicates that we should have

k ≤ 1
2

√
A√
2
. We will take k = min{lfsmin(DH), L/4, 1

2

√
A√
2
}. Then Lemma 6.3

holds, and we have the following theorem.

Theorem 6.7. Let k = min{lfsmin(DH), L/4, 1
2

√
A√
2
} be the parameter for the

point insertion procedure in Lemma 6.1, and P the produced set of separators. Then P
is a decoupling path with respect to Ruppert’s algorithm with the criteria of maximum
circumradius to shortest edge ratio

√
2 and maximum triangle area A.

Proof. There are two cases for splitting a triangle: (a) because of its circumradius
to shortest edge ratio or (b) because of its area.

When Ruppert’s algorithm splits a triangle because of its circumradius to shortest
edge ratio it does not create edges smaller than lfsmin(DP) ≥ k. If a triangle is split
because of its size, then from Lemma 6.6 we have that the smaller created edge will

be no less than 1
2

√
A√
2
≥ k. In both cases no edge smaller than k will be created.
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It is easy to see now that the decoupling zone ZP will be empty, after Ruppert’s
algorithm has been applied on the subdomains Di with the additional condition of
a maximum triangle area A. If this was not so, then some edge of P would be
encroached and split. From Lemma 6.1 the new edges will be smaller than k, which
is a contradiction.

In summary, the procedure of preprocessing the separators created by MADD,
as described in Lemma 6.1, creates a decoupling path with respect to Ruppert’s
algorithm, in both cases of the quality and the size criteria. In the first case, the
construction is based on the minimum local feature size, while in the second the
maximum area of the triangles is taken into account.

The size optimality (times a constant) of the mesh produced by Ruppert’s algo-
rithm, when only the angle criterion is used, is based on the local feature size [40, 44].
The size optimality, combined with the angle quality, provides the basis of the adap-
tivity to the geometry, that the Delaunay mesh displays. On the other hand, the
insertion of separators by itself changes the geometry to be meshed, and the uniform
refinement of the separators alternates the local feature size of the geometry. After
applying the decoupling procedure, the size optimality of the mesh is not any more
guaranteed. The use of the local feature size, instead of the global minimum, in creat-
ing the decoupling path, would improve the gradation and mesh size, especially when
there are big differences in the local feature size. In cases, though, where the geometry
is very simple but h-refinement is important [22], we would like to limit the area of
the triangles, and in these cases the optimality of the mesh size is not based on the
local feature size. The meshes produced using the area restriction are usually much
larger, and thus more prompt for parallel processing. The experiments that we ran
show that the over-refinement imposed by the decoupling procedure is insignificant
(see section 11) when the area criterion is used.

The creation of the decoupling path allows us to generate Delaunay meshes, inde-
pendently for each subdomain, with good angle quality and of the desired size. The
final mesh, formed by the union of the submeshes, is Delaunay conforming. As a
result, this procedure decouples the domain and enables us to parallelize the mesh
generation procedure, while eliminating the communication between the processors.

7. The parallel Delaunay decoupling procedure. The procedure for the
parallel mesh generation consists of two steps.

1. The parallel MADD (PMADD) phase: In this step the domain is decomposed
using the divide and conquer MADD method.

2. The mesh generation phase: This step is performed independently for each
subdomain and includes two substeps.
(a) The decoupling of the subdomains by refining the interfaces, as described

in section 6.
(b) The mesh generation on the subdomains. In this step the sequential

mesh generator is used as a library and is applied independently on each
subdomain.

During the PMADD phase the domain is over-decomposed (i.e., we create N � P
subdomains, where P is the number of processors), in order to achieve good load
balancing (see section 8). The PMADD method is implemented using a master/worker
model. Processor 0 is used as the master processor, while all the processors, including
processor 0, are used as worker processors. The master processor maintains a sorted
list of the areas assigned to each processor. In each iteration of the PMADD procedure
a decomposition request is sent from the master processor to the processors assigned
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with larger total areas. The processors that receive such requests decompose their
larger subdomain into two subdomains using MADD. One of the two new subdomains
is sent to a processor with small total assigned area. The procedure is repeated until
all N subdomains are created. Observe that the MADD is sequential and it includes
a Delaunay triangulation procedure. The resulting triangulations are discarded, since
they cannot be used in the next phase. The decomposition gradually creates simple
geometries (see Figure 10.1) so that the cost to triangulate them is small. Nevertheless,
the cost of the initial Delaunay triangulation remains but is small related to the cost
of creating big meshes.

The area of the subdomains is used to estimate the workload for the mesh pro-
cedure (see section 8). The goals of the PMADD is to minimize the larger area and
to distribute the subdomains uniformly to the processors. Once the PMADD phase
is finished, no data movement takes place. This is an approximate criterion for the
load balance, other means [2] for dynamic load balancing can be used.

After the requested number of subdomains have been created, the master proces-
sor sends requests to all processors to mesh the subdomains assigned to them. Each
processor iterates through its subdomains and performs two steps.

(a) It refines the interfaces, where the separators created by the MADD are refined
by inserting vertices, as described in the decoupling procedure in section 6, according
to the given mesh quality criteria. The parameter k, that determines the refinement
of the separators, is computed before the mesh generation phase begins, and is used
to refine the internal boundaries of all the subdomains, independently for each subdo-
main. Although each interface is refined independently for the two subdomains where
it belongs, the result is conforming, because the same parameter k is used, the same
orientation for the interfaces, and of course the same algorithm.

(b) The mesh generation procedure is applied on the subdomains independently.
The sequential mesh generator is used as is, in the form of a library. The interfaces,
since they are refined from the decoupling procedure, will not be further refined form
the mesh generation procedure and they will remain unchanged, as proved in section 4.
So, no communication is required, and the created meshes are Delaunay conforming.

The procedure terminates when all the meshes for subdomains have been created.
The parallel procedure is described next.

Algorithm 4.

Master processor:

1. Read the definition of the domain Ω
2. Initialize and maintain a sorted list of the areas of the subdomains
3. while the current number of subdomains is less than N do
4. send decompose requests to processors that are assigned

large area of subdomains
5. receive replies about decoupling and area information
6. endwhile
7. send requests to processors to mesh their subdomains
8. receive replies until all processors completed meshing
9. send requests for termination

Worker processors:

10. while not terminate do
11. receive request from Master and/or other workers
12. if request is to decompose then
13. Apply MADD on the largest subdomain
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14. send reply to Master
15. send a new subdomain to other processor
16. endif
17. if request is to receive a subdomain then
18. Add the new subdomain to this worker’s mesh-queue
19. send reply to Master
20. endif
21. if request is to start meshing then
22. for each assigned subdomain do
23. Refine the separators according to the decouple procedure
24. Apply the sequential mesh generator on the subdomain
25. endfor
26. send completion message to master
27. endif
28. endwhile
During the PMADD phase, the first P subdomains are created in lg(P ) iterations.

The total number of iterations for the parallel MADD phase is N−P
P/2 +lg(P ) = 2(M −

1) + lg(P ), where M is the average number of the final subdomains per processor.
Typical values for M in our experiments vary between 12 and 20. The procedure is
using in average N−1

2(M−1)+lg(P ) = PM−1
2(M−1)+lg(P ) processors per iteration.

This divide and conquer approach is not optimal, but the cost is very small (see
section 12) with respect to the cost for the mesh generation. On the other hand, it
achieves a good load balance among the processors, which is a more significant factor
for the total performance of the parallel mesh generation (see section 12.2). In the
next section we present in detail the load balance attained using the parallel MADD.

8. Load balancing. Our experiments show that more than 99% of the total
time is spent in the meshing phase (see section 12), which does not suffer from com-
munication or synchronization cost. Thus, the workload balance among the processors
is the main parameter that affects the performance of the method. The load-balancing
problem for mesh refinement is a difficult problem, because of the unpredictable com-
putational behavior of the meshing procedure. The problem becomes more approach-
able by the use of the PMADD for over-decomposing the domain. The resulting
subdomains have similar geometric shapes, and their area is proved to be a good
measure for estimating the workload for the mesh generator.

Our experimental data show, for the geometries we tested so far, that the parallel
MADD procedure creates subdomains with similar “good” shape (see Figure 10.1),
when the number N of subdomains is large. Figure 8.1 shows that, as we increase
N and thus decrease the area of the subdomains, the meshing time converges, with
very small differences between subdomains of similar size. This result demonstrates
that the area of the subdomain can be used to estimate the workload of the mesher
for this subdomain. Of course this depends on the geometry of the original domain,
which is one of the parameters that determine the level of required decomposition.
An adaptive to the geometry approach for the PMADD would optimize the results,
and this is a subject of future work.

The load balance among the processors is achieved by balancing the total area
of the subdomains assigned to each processor. The first effort to create subdomains
with similar sizes takes place during the graph partition. This result, though, is
not guaranteed, and the obtained subdomains can have differences in size. By over-
decomposing we have the ability to distribute the subdomains, so that each processor
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is assigned approximately the same total size. Moreover, the random distribution of
the subdomains gives a more uniform assignment of subdomains that differ from the
average in terms of size and geometry. The results of this simple approach are good.
Figure 8.2 depicts the load balance among 64 processors for the pipe geometry, for
1024 subdomains and 50 M mesh size. This picture is typical in most cases. However,
we have observed that the load balance depends not only on the geometry and the
size of the subdomain but also on the size of the created mesh.

Figure 8.3 shows the load balance for the same decomposition of the pipe, as in
Figure 8.2, this time for a mesh size of 2 billion elements. We see that the good load
balance of Figure 8.2 is destroyed. The reason for this is that the time for creating
larger meshes is much more sensitive to area and geometry differences. The answer
to this problem is to increase N . In this way we improve two parameters: (i) the size
of the mesh for each subdomain is decreased, and thus the time to create it is less
sensitive to the differences, and (ii) a more uniform assignment of the subdomains
can be accomplished. Figure 8.4 shows the balance for the same mesh size, 2 billion
elements, by decomposing it into 1280 subdomains. This small increase of the number
of subdomains gives an impressive improvement, the load balance is satisfactory and
the total time is decreased to less than half; the reasons are described in sections 11
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and 12.1.

The previous example shows that the load balance is sensitive to the size of
the final mesh. The level of the required decomposition depends not only on the
geometry and the number of processors, but mainly on the size of the final mesh. Let
E be an estimation for the final size of the mesh in millions of elements. From our
experiments we found that, for our setup, the number of subdomains should be at
least N = E

1.6 . This means that on average 1.6 M elements will be created for each
subdomain. A higher decomposition has, of course, higher time cost, but this cost is
insignificant against the gain, Figures 8.3 and 8.4, as well as the results in the next
section demonstrate it.

9. Performance evaluation. We evaluate the parallel Delaunay decoupling
(PDD) method with respect to three requirements listed in the introduction: (1)
stability, (2) parallel efficiency, and (3) code reuse. Our experimental data indicate
that the PDD method is stable; i.e., the elements of the distributed mesh retain the
same good quality of angles as the elements generated by the Triangle (see Figures 11.3
and 12.3 (right)); at the same time it is very efficient as our fixed and scaled speedup
data (see Figures 12.2 and 12.3 (left)) indicate. Finally it is based on 100% code
reuse; i.e., existing sequential libraries like METIS and Triangle are used without any
modifications for the parallel mesh generation.

10. Experimental setup. We have used two model domains (see Figure 10.1),
with relatively simple geometries:3 The Pipe, a cross section of a rocket from a NASA
model problem where the peripheral pipes are used to cool the main cylinder in
the center that contains combustion gases, and the Key, a domain provided with
Triangle. We ran three sets of experiments: (1) to observe the behavior of the MADD
and decoupling method in sequential execution for small meshes, 4–5 million (M)
elements, (2) to calculate the fixed speedup for fixed size meshes of the order of 40–50
M elements, and (3) to compute the scaled speedup for meshes whose size range from
12 M to 2 billion (B) elements.

The programming language for our implementation was C++ and DMCS [3] was
used as the communication substrate. The Triangle [43] library was used for the mesh
generation procedure as well as for the creation of the Delaunay triangulation during
the MADD procedure. The parameters passed to Triangle for the mesh generation
were two: (a) for the quality of the elements (Ruppert’s algorithm is used to achieve
circumradius to shortest edge ration less then

√
2) and (b) for the maximum area of

the generated elements. Also, METIS [31] was used for the graph partitioning step
in the MADD procedure. The cases where METIS returned nonconnected subgraphs
were recognized and discarded. All the libraries were used without modifications,
minimizing the cost for the parallel implementation and achieving 100% code reuse.

The experiments ran on SciClone, a high-performance computing environment
in the College of William and Mary. SciClone is a heterogeneous cluster of Sun
workstations which use the Solaris 7 operating system. For our experiments we have
used a subcluster of 32 dual-CPU Sun Ultra 60 workstations 360 MHz, with 512 MB
memory and 18.2 GB local disk. Networking was provided by a 36-port 3Com Fast
Ethernet switch (100Mb/s).

3The complexity of the geometry will challenge the PMADD and in particular the Delaunay
triangulation procedure. Provided the efficiency of Triangle, this shouldn’t be a problem. The mesh
refinement procedure will be applied on the created subdomains, which have simple geometries.
However, for three dimensional cases the complexity of the geometry is a much more serious issue.
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Fig. 10.1. Left: The Pipe domain divided into 1200 subdomains. Right: The Key domain
divided into 768 subdomains.

11. Sequential experiments. We ran a set of sequential experiments in order
to compare the sequential Delaunay decoupling method, where we over-decompose the
domain, with Triangle, the best known publicly available sequential guaranteed quality
Delaunay mesh generation code for 2-dimensional domains. In these experiments we
examine the affects of the decoupling procedure with respect to the performance of the
mesh procedure, the size of the final mesh, which indicates that the over-refinement
we introduce is insignificant, and the quality of the elements in terms of the angle
distribution. The size of the meshes we created is limited by the size (5.5 M) we
were able to generate with Triangle due to memory limitations. However, using the
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Delaunay decoupling method we were able to generate more than 30 M on a single
processor.

Figure 11.1 shows the ratio of the size of the decoupled meshes over the size of
the nondecoupled mesh, which is a measure of the over-refinement we introduce when
we decouple the domains.

Similarly, Table 11.1 presents the number of elements for different levels of de-
coupling. The over-refinement is insignificant; it is less than 0.4%, despite the intense
over-decomposition (less than 90 K elements per subdomain).

The overhead of the sequential MADD method is approximately linear with re-
spect to the number of subdomains; see Figure 11.2. This overhead is small compared
to the mesh generation time. The total execution time using the sequential decoupling
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Table 11.1

The number of elements and the total time (in seconds) for the same mesh generation param-
eters and for different levels of decoupling. The times do not include the mesh merging procedure.

Subdomains 1 8 16 32 48 64

Key elements 5,193,719 5,197,066 5,200,395 5,203,023 5,208,215 5,210,857
Total time 46.146 38.414 38.204 37.590 37.322 37.333

Pipe elements 5,598,983 5,602,668 5,605,819 5,607,055 5,609,404 5,613,624
Total time 59.263 41.342 41.046 40.370 40.352 40.147
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procedure is decreased up to 68% of the time it takes for Triangle to generate a mesh
with the same quality (Figure 11.4). As the size of the mesh increases, the perfor-
mance of the decoupling procedure compared to Triangle is improving even further,
because the size of the working set for each subdomain is smaller and the Delaunay
mesh algorithm used in Triangle has a nonlinear time complexity [43].

The quality of the elements produced after the decoupling of the domain into
subdomains is evaluated by comparing the distribution of angles. We compare the
angles of the elements from both the nondecoupled mesh generated by Triangle and the
decoupled ones generated by our method. Figure 11.3 shows that the distribution is
the same. The above results hold as we scale the mesh size in our parallel experiments.

In summary, the decoupling method demonstrates merits even for sequential mesh
generation. The gains in the performance from the better memory utilization cover
the small overheads due to decoupling and over-refinement, while the element quality
is independent of the decoupling, which shows that our method is stable regarding
the quality of the mesh.

12. Parallel experiments. We performed two sets of experiments in order to
calculate the fixed and scaled speedup using 8, 16, 32, and 64 processors. With 64
processors we were able to generate 2.1 billion (B) high quality elements for the Pipe
in less than 3.5 minutes, while using Triangle [43] on a single workstation we were
able to generate 5.5 million (M) elements in about one minute (see Tables 11.1 and
12.2).

In the rest of the section we present performance data for both the parallel medial
axis domain decomposition (PMADD) method and the parallel mesh generation. The
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PMADD procedure is evaluated in terms of its total parallel execution time which
includes some communication and idle time and the maximum computation time
spent on a single processor. The parallel mesh generation phase does not require
communication and its performance is measured in terms of maximum and average
computation time of processors. The ratio of these two numbers is used to measure
the load imbalance of the parallel meshing phase.

Finally, we evaluate the scalability of the method in terms of two performance
criteria: (1) the average time that it takes for one element to be created on a single
processor, over all the processors and elements that are created, and (2) the overhead
cost (due to decomposition and parallelism) for each processor we use. Both criteria
indicate that the parallel mesh generation method we present here is scalable and that
we can generate billions of elements with insignificant overhead (see Table 12.2).
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12.1. Fixed size mesh experiments. In the fixed size set of parallel experi-
ments we used a mesh of 40 M elements for the Key domain and 50 M for the cross
section of the Pipe. For the Key domain we created 12 subdomains for each processor
while for the Pipe we created 16 subdomains. The maximum triangle area is fixed
throughout the experiments for each domain.

Table 12.1

Performance data for the Key and the Pipe geometry for a fixed maximum element area. All
times are in seconds and mesh sizes are in millions (M).

No of processors 1 8 16 32 48 64
The domain
No of subdomains 12 96 192 384 576 768
Mesh size (M) 43.32 43.34 43.37 43.41 43.43 43.45
PMADD time 0.20 0.37 0.44 0.60 0.83 1.05
Meshing time 386.32 42.35 20.72 10.12 6.79 4.96
Total time 386.52 42.72 21.16 10.72 7.62 6.01
The Pipe domain
No of subdomains 16 128 256 512 768 1024
Mesh size (M) 50.93 50.97 51.00 51.05 51.08 51.11
PMADD time 0.27 0.51 0.60 0.89 1.07 1.47
Meshing time 374.15 48.80 24.03 11.80 7.93 5.74
Total time 374.42 49.29 24.63 12.69 9.00 7.21

The results are presented in Table 12.1. The data again indicate an unimportant
increase in the number of elements for the different levels of over-decomposition, which



DELAUNAY DECOUPLING METHOD 1419

shows that the over-refinement we introduce is insignificant. The total execution time
and the computation time for the actual mesh generation are depicted in Figure 12.1.
These times are very close, because the PMADD overhead cost is very small. This cost
is neutralized by the effect of over-decomposition, which, along with the good load
balancing and zero communication during the parallel meshing, leads to superlinear
speedup; see Figure 12.2. The speedup is calculated against the total time it takes to
create the mesh on one processor, as is presented in Table 12.1.

12.2. Scaled size mesh experiments. A more practical way to evaluate the
scalability and true performance of a parallel algorithm and software is to scale the
size of the problem in proportion to the number of processors used. In the following
experimental data we use the same level of decomposition for every configuration of
processors, i.e., we keep the average number of subdomains per processor constant,
and thus we eliminate the effect of over-decomposition in the resulting performance
data. Theoretically we should be able to achieve the same creation time per ele-
ment per processor for all the parallel configurations independently of the number of
processors used. However, this is not feasible for the following two reasons: (1) the
decomposition overhead, which increases very slowly but nevertheless there is an in-
crease in the overhead as the number of processors increases and (2) load imbalances
due to unpredictable and variable computation of the mesh generation kernel.

Table 12.2 shows some performance indicators for the two model problems we use,
the Key and the Pipe geometry. In the experiments for the Key model we created 12
subdomains per processor and generated on average 1.6 M elements per subdomain,
i.e., a total of 20 M per processor. For the Pipe model we created 20 subdomains
per processor and generated on average 1.6 M elements per subdomain, i.e., a total
of 32 M per processor. Small differences exist in the size of the mesh because our
stopping criteria are based on the quality and size of elements, and thus the mesh
size cannot be exactly predefined. It is clear from Table 12.2 that for larger processor
configurations, like 64 processors, 99.5% of the total execution time is spent in the
meshing phase by the Triangle. This suggests that for realistic problems the PMADD
overhead is about 0.5% of the total execution time.

We observe that, while the maximum PMADD time on one processor remains
almost constant, the time for PMADD phase increases as the number of processors
increases. This is in agreement with the analysis in section 7. As the number of pro-
cessors increases, the number of PMADD iterations increases, although the number of
the subdomains per processor is constant. In each PMADD iteration all the proces-
sors finish the decomposition before the next iteration begins. This synchronization
imposes an additional cost in the PMADD time. Moreover, the communication during
this phase increases, as the number of processors increases. Fortunately, the commu-
nication and synchronization cost is less than 0.02 s per processor. In comparison
with the total execution time this cost is very small.

The load imbalance is measured by the ratio of the maximum meshing time on
one processor and the average meshing time for all the processors. In Table 12.2 we
observe that the load balance for the Pipe is very good, 1.14 for 64 processors, while
for the Key it is a satisfactory 1.25. The load balance is based on over-decomposing
the domain and equi-distributing the areas, and although it depends on the size of
the mesh as we saw in section 8, it also depends on the geometry and the number of
the processors. Further improvement in the load balance can be achieved by using
parallel runtime software systems that address load-balancing problems, as the one
presented in [2].
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Table 12.2

Performance data for the Key and the Pipe geometry. The meshing time includes the time of the
decoupling procedure (MADD). The MADD phase includes the load balance estimation procedure and
the distribution of the subdomains to the processors. The imbalance is measured as ratio of the max
meshing processor time over the average. All times are in seconds except for the time/(elem./procs)
which is in microsecs.

No of processors 1 8 16 32 48 64

The Key domain
No of subdomains 12 96 192 384 576 768
Mesh size 20M 160M 320M 650M 860M 1.3B
Total time 152.43 177.31 192.41 213.91 166.10 205.26
Max meshing time 152.23 176.92 191.93 213.26 165.25 204.19
Aver. meshing time 152.23 165.75 168.04 170.31 137.70 163.14
Imbalance 1 1.067 1.142 1.252 1.200 1.252
MADD phase time 0.20 0.38 0.44 0.63 0.84 1.05
Max MADD time 0.20 0.14 0.13 0.13 0.12 0.13
Tot. time/(elem./procs) 7.33 8.73 9.47 10.54 9.20 10.11
Additional Cost /procs 0% 2.4% 1.8% 1.4% 0.5% 0.6%

The Pipe Domain
No of subdomains 20 160 320 640 960 1280
Mesh size 32M 240M 500M 1B 1.4B 2.1B
Total time 236.00 247.10 245.32 279.59 246.59 294.39
Max meshing time 235.71 246.53 244.65 278.56 245.09 292.71
Aver. meshing time 235.71 226.78 231.15 253.59 218.56 255.87
Imbalance 1 1.087 1.058 1.098 1.121 1.144
MADD phase time 0.29 0.55 0.67 1.01 1.48 1.66
Max MADD time 0.29 0.19 0.17 0.17 0.16 0.18
Tot. time/(elem./procs) 7.30 8.23 7.94 8.51 8.45 8.96
Additional cost /procs 0% 1.6% 0.6% 0.5% 0.3% 0.4%

An important measure for evaluating the efficiency of a parallel meshing method is
the (total) time spent for creating one element on one processor. Let T (P ) be the total
time running on P processors in order to create a mesh of size S(P ). Then the time

per element per processor is T
(P )
e = T (P )·P

S(P ) . This measure eliminates the differences
in the mesh size, providing a more objective view of the scaled performance. We
see in Table 12.2 that this time is almost constant, and thus the method is scalable.
The slight increase of this time is mainly due to the imbalance increase, while the
contribution of the overhead time cost is very small. This is evident in Figure 12.3,
where the imbalance is depicted on the top and the scaled speedup on the bottom.

The scaled speedup for P processors is measured as UP =
T s
e ·P

T
(P )
e

, where T s
e is the time

to create sequentially one element for a nondecomposed mesh of size 5 M. We again
observe the superlinear speedup for the same reasons as in the fixed size experiments.
In this figure the direct impact of the imbalance to the speedup is obvious.

Another measure for evaluating the scalability is the additional time cost for each
processor that we use, relative to the total time when running on one processor. The
additional cost CP per processor, when using P processors, is computed as CP =
T (P )
e −T (1)

e

T
(1)
e ·P

. Taking into account that the mesh size S(P ) is approximately proportional

to the number of processors P , we have CP � T (P )−T (1)

T (1)·P . We can consider the quantity

T (1) as the ideal time for creating on P processors a mesh of size S(P ) � P · S(1),
since the effect of over-decomposition is eliminated. In this way the additional cost CP

measures the distance from the ideal speedup, distributed to the number of processors
used.

The time T
(P )
e is increasing as P increases; the reasons were explained above.
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This increase, though, is small for the Key and even smaller for the Pipe domain. It
is interesting to observe that the additional cost CP tends to decrease as P increases.
Although we have to pay a (small) cost in the performance for each additional proces-
sor we use, this cost tends to decrease, when measured in scale. This result underlines
the scalability of the method.

Finally, we should compare the quality of the elements of scaled meshes that the
decoupling procedure produces. In Figure 12.3 (right) is depicted the distribution
of the angles of the elements, for meshes varying from 30 M triangles to 2.1 B. The
quality is obviously the same.

13. Conclusions and future work. We presented a decoupling procedure for
parallel Delaunay guaranteed quality mesh generation on distributed memory ma-
chines for 2-dimensional domains. The method eliminates the communication during
the mesh generation and maintains the size and the quality of the final mesh. It also
shows good speedup and scalability, making it suitable for creating very large meshes
on distributed memory machines. A major advantage of our method is that a com-
mercial, off-the-shelf and state-of-the-art, sequential mesher, like Triangle [43], can be
used as a library, without any modification, achieving 100% code reuse. The method
can be used at the same time for sequential mesh generation, in order to create larger
meshes in less time using one processor. Because of the zero communication and the
scalability for large meshes, this method seems to be suitable for Grid computing
applications [16].

Future work for 2-dimensional geometries includes the extension of our approach
for optimizing over-refinement of the interfaces, using the local feature size rather than
lfsmin. This will address the mesh gradation and improve the mesh-size optimality
criterion.

Another problem is to determine the required level of the medial axis approxi-
mation that guarantees the creation of a minimum number of junction triangles, in
order to produce separators that satisfy our geometric constraints.

It is also interesting to see how this approach can be applied in three dimensions
for surface and volume parallel guaranteed quality mesh generation. The main issue
in 3-dimensional domains is the creation of suitable domain decompositions, similar
to the one we are able to create for the 2-dimensional cases.
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