
A Template for Developing Next Generation Parallel Delaunay

Refinement Methods

Andrey N. Chernikov and Nikos P. Chrisochoides

Department of Computer Science

College of William and Mary

Williamsburg, Virginia 23185

{ancher,nikos}@cs.wm.edu.

June 17, 2010

Abstract

We describe a complete solution for both sequential and parallel construction of guaranteed

quality Delaunay meshes for general two-dimensional geometries. We generalize the existing

sequential point placement strategies for guaranteed quality mesh refinement: instead of a

specific position for a new point, we derive two types of two-dimensional regions which we call

selection disks. Both types of selection disks are inside the circumdisk of a poor quality triangle,

with the Type I disk always inside the Type II disk. We prove that any point placement

algorithm which inserts Steiner points inside selection disks of Type I terminates, and any

algorithm which inserts Steiner points inside selection disks of Type II produces an

asymptotically size-optimal mesh. In the area of parallel Delaunay mesh refinement, we develop

a new theoretical framework for the construction of graded meshes on parallel architectures, i.e.,

for parallel mesh generation with element size controlled by a user-defined criterion. Our

sufficient conditions of point Delaunay-independence allow to select points for concurrent

insertion in such a way that the standard sequential guaranteed quality Delaunay refinement

procedures can be applied in parallel to attain the required element quality constraints. Finally,

we present a novel parallel algorithm which can be used in conjunction with any sequential point

1

placement strategy that chooses points within the selection disks. We implemented our

algorithm for shared memory multi-core architectures and present the experimental results. Our

data show that even on workstations with a few cores, which are now in common use, our

implementation is significantly faster than the best sequential counterpart.

Keywords: Delaunay triangulation, mesh generation, parallel refinement

1 Introduction

Next generation guaranteed quality mesh refinement methods will have to be flexible in order to

accommodate new challenging applications like medical image analysis and take advantage of current

and emerging hardware architectures like multi-core processors. In this paper we lay out an approach

for the implementation of next generation parallel guaranteed quality Delaunay mesh generation and

refinement. We present our theory and experimental evaluation in two dimensions; three-dimensional

results for sequential Generalized Delaunay Refinement and Parallel Delaunay Refinement published

in [14] and [15], respectively. The contribution of this paper is the creation of a unified (Parallel and

Generalized) Delaunay Refinement method. The unique characteristic of the new framework is its

ability to incorporate many different point insertion strategies without any modification both in

theory and software, for their parallelization in two and three-dimensions.

Delaunay refinement is a popular technique for generating triangular and tetrahedral meshes

for use in the finite element method, the finite volume method, and interpolation in various numeric

computing areas. Among the reasons of its popularity is the amenability of the method to rigorous

mathematical analysis, which allows to derive guarantees on the quality of the elements in terms of

circumradius-to-shortest edge ratio, the gradation of the mesh, and the termination of the algorithm.

The parallelization of two-dimensional mesh generation algorithms is particularly important for some

three-dimensional simulations which use multiple two-dimensional meshes in different coordinate

systems. Some examples include direct numerical simulations of turbulence in cylinder flows with

very high Reynolds numbers, see [23], and coastal ocean modeling for predicting storm surge and

beach erosion in real-time, see [51]. For the modeling of turbulence, as shown by Karniadakis and

Orszag [35], with the increase of the Reynolds number Re, the size of the mesh grows in the order of

2

3

Re9/4, which motivates the use of parallel mesh generation algorithms. At the same time, the size of

the mesh should be as small as possible given the required element quality constraints, which can be

attained by using a nonuniform (graded) mesh.

In this paper we address theoretical and practical aspects for the development of both

sequential and parallel Delaunay mesh generation algorithms and software that satisfy the following

requirements:

1. guarantee well-shaped elements with bounded minimal angle;

2. produce graded meshes, i.e., meshes with element size specified by a user-defined function;

3. offer proofs of termination and size optimality;

4. allow to use custom point placement strategies (e.g., circumcenter, off-center, strategies that

satisfy various application-specific criteria, etc.);

5. replace the solution of a difficult domain decomposition problem with an easier data

distribution approach without relying on the speculative execution model of an earlier

implementation [19, 44];

6. offer performance improvement over the best available sequential software, even on

workstations with just a few hardware cores.

The field of sequential guaranteed quality Delaunay refinement has been extensively studied,

see [16, 17, 27, 41, 45, 47] and the references therein. However, new ideas and improvements keep

being introduced. One of the basic questions is where to insert additional (so-called Steiner) points

into an existing mesh in order to improve the quality of the elements. Frey’s [26], Ruppert’s [45], and

early Chew’s [17] algorithms use circumcenters of poor quality triangles. Later, Chew [18] suggested

to use randomized insertion of near-circumcenter points for three-dimensional Delaunay refinement,

with the goal of avoiding slivers.

Li and Teng [37, 38] extended the work in [18] by defining a picking sphere with a radius which

is a constant multiple of the circumradius of the element. They use two different rules for eliminating

the elements with large radius-edge ratio and for eliminating the slivers. In particular, in [37] the

4

rules are defined as follows: “Add the circumcenter cτ of any d-simplex with a large ρ(τ)” and “For a

sliver-simplex τ , add a good point p ∈ P(τ)”, where ρ(τ) is the radius-edge ratio, P(τ) is the picking

region of simplex τ , and the good point is found by a constant number of random probes. The

authors in [37] prove that their algorithm terminates and produces a well graded mesh with good

radius-edge ratio and without slivers.

In [14] we introduced Type II selection disks which are defined similarly to the picking region

in [37]. We also extended the proofs in [37] to show that any point (not only the circumcenter) from

the selection disk (picking region) can be used to eliminate the elements with large radius-edge

ratios. We did not address the problem of sliver elimination, however, our work can be used in

conjunction with the sliver removal procedure from [37] such that the Delaunay refinement algorithm

can choose any points from the selection disks (picking regions) throughout both the stage of the

construction of a good radius-edge ratio mesh (“almost good mesh” [37]) and the stage of sliver

removal. Intuitively, the requirement of good grading has to be more restrictive than the requirement

of termination only, and, therefore, the definitions of the selection disk has to be different to satisfy

each of these goals. In [14] we improved upon our previous result [12] by decoupling the definitions of

the selection disk used for the proof of termination (Type I) and the selection disk used for the proof

of good grading (Type II). As can be seen further in the paper, the selection disk of Type II is always

inside the selection disk of Type I of the same element, and as the radius-edge ratio ρ of an element

approaches the upper bound ρ̄, the Type II disk approaches the Type I disk.

Recently, Üngör [30, 50] proposed to insert specially chosen points which he calls off-centers;

this method allows to produce smaller meshes in practice and it was implemented in the popular

sequential mesh generation software Triangle [46]. We expect that other optimization techniques

can be used to select positions for new points. Indeed, in [12] we gave an example of a point

placement strategy which in some cases allows to achieve even smaller meshes than the off-center

method, albeit at significant computation cost. Since one would not like to redesign the parallel

algorithm and software to accommodate each of the point placement techniques, in this paper we

generalize the sequential Delaunay refinement approaches and develop a framework which allows to

use custom point selection strategies.

One of the important applications of the flexibility offered by the use of selection disks is in

5

conforming the mesh to the boundary between different materials. The advantages are especially

pronounced in medical imaging, when the boundaries between different tissues are blurred, see

Fig. 1(left). In this case, after the image is segmented, instead of a clear separation, we have a

boundary zone of some none-negligible width, see Fig. 1(right). Then the goal of the mesh generation

step is to avoid creating edges that would intersect the boundary, which can be achieved by inserting

Steiner points inside the boundary zone.

The domain decomposition problem for parallel mesh generation is formulated as

follows [20, 39, 40]. Given a domain Ω ⊂ R
n, construct the separators Sij ⊂ R

n−1, such that the

domain is decomposed into subdomains Ωi:

Ω =
N
⋃

i=1

Ωi, ∂Ωi ∩ ∂Ωj = Sij , i, j = 1, . . . , N, i 6= j,

where ∂Ωi is the boundary of subdomain i, while the separators do not create very small angles and

other features that will force the degradation of the mesh quality. Linardakis and

Chrisochoides [39, 40] described a Medial Axis Domain Decomposition Method for two-dimensional

geometries. However, the solution is based on the Medial Axis Transform [2, 21, 29] which is very

difficult and expensive to construct for three-dimensional geometries. The approach developed in this

paper is domain decomposition independent, i.e., it does not require an explicit construction of

internal boundaries between the subdomains which will be forced into the final mesh.

Another approach is to partition and refine the mesh simultaneously, such that when a conflict

is detected between concurrently inserted points, some of the point insertions are canceled, which

leads to high computation and communication costs. Nave, Chrisochoides, and Chew [19, 44]

presented a practical provably-good parallel mesh refinement algorithm for polyhedral domains. This

approach allows rollbacks to occur whenever the simultaneously inserted points can potentially lead

to an invalid mesh. In the present paper, we develop a theoretical framework which allows us to

guarantee a priori that concurrently inserted points are Delaunay-independent, and, thus, to avoid

computation- and communication-wise expensive rollbacks. By using an auxiliary quadtree data

structure, we prove that the points introduced in certain regions of Ω, that correspond to separated

leaves of the quadtree, do not have any dependences and can be inserted concurrently.

6

In addition to parallel mesh generation methods, there is a class of parallel triangulation

methods. While the mesh generation problem deals with the selection of points which are not given

in the input to achieve required mesh quality, the problem of triangulation is to construct a mesh for

a pre-defined point set. A streaming approach to the triangulation problem was implemented by

Isenburg, Liu, Shewchuk, and Snoeyink [31]. They achieve large performance gains by using a spatial

finalization technique and manage to compute a billion triangle mesh from 500 million points of

LIDAR data on a laptop in 48 minutes. A divide-and-conquer projection-based parallel Delaunay

triangulation algorithm was developed by Blelloch, Hardwick, Miller, and Talmor [4, 5]. The work by

Kadow and Walkington [32–34] extended the work of Blelloch et al. for parallel mesh generation and

further eliminated the sequential step for constructing an initial mesh, however, all potential conflicts

among concurrently inserted points are resolved sequentially through global synchronization which

in [33] is implemented by running a dedicated processor. A more extensive review of parallel mesh

generation methods can be found in the survey [20].

In our previous work [10, 13] we presented a theoretical framework and the experimental

evaluation of a parallel algorithm for constructing guaranteed quality Delaunay meshes which have

uniform element size. We proved a sufficient condition of Delaunay-independence, which is based on

a relation of the distance between points and the global circumradius upper bound, and which can be

verified very efficiently. We also showed that a coarse-grained mesh decomposition can be used in

order to guarantee a priori that the points in separated regions will be Delaunay-independent. In [11]

we developed a theoretical foundation for the parallel construction of non-uniform (graded) meshes.

We introduced new, local point independence conditions, and proved that a dynamically constructed

quadtree with leaf size reflecting the local mesh density can be used to select Delaunay-independent

points. In [12, 14] we generalized the existing point placement techniques and presented the

experimental evaluation of our parallel algorithm. In this paper, we unify our previous theoretical

and practical results for the parallel construction of graded meshes into a complete solution and

study the flexibility–gradation tradeoff of the generalized Delaunay refinement algorithm.

In Section 2 we describe the sequential Generalized Delaunay Refinement (GDR) algorithm.

We define the selection disks for the insertion of Steiner points, and present the proofs of termination

and size optimality. We introduce the concept of a δ-graded Delaunay refinement algorithm and show

7

how the constants involved in the proof of size optimality depend on δ. We also give an example of a

point selection strategy which allows to reduce the number of inserted Steiner points. Then, in

Section 3 we develop local Delaunay-independence conditions and show how quadtree leaves can be

used to select subsets of candidate Steiner points for concurrent insertion; we describe our Parallel

Generalized Delaunay Refinement (PGDR) algorithm, the implementation details, and the

experimental results. Section 4 concludes the paper.

2 Sequential Generalized Delaunay Refinement

2.1 Delaunay refinement background

Let the mesh M = (V, T, S) consist of a set V = {pi} of vertices, a set

T = {ti = △pupvpw | pu, pv, pw ∈ V } of triangles, and a set S = {si = pupv | pu, pv ∈ V } of

constrained segments. We will denote an edge of a triangle as e (pipj), and a straight line segment

connecting free points pi and pj as L (pipj). The input to a planar triangular mesh generation

algorithm includes a description of domain Ω ⊂ R
2, which is permitted to contain holes or have more

than one connected component. We use a Planar Straight Line Graph (PSLG) [46] to delimit Ω from

the rest of the plane. Each segment in the PSLG is considered constrained and must appear

(possibly as a union of smaller subsegments) in the final mesh. The vertices of the PSLG are a subset

of the final set of vertices in the mesh.

There are two commonly used parameters that control the quality of mesh elements: an upper

bound on the circumradius-to-shortest edge ratio (which is equivalent to a lower bound on a minimal

angle [42]) and an upper bound on the element area. We will denote the circumradius-to-shortest

edge ratio of triangle t as ρ (t) and the area of triangle t as A (t). The former upper bound is usually

fixed and given by a constant value ρ̄, while the latter can vary and be controlled by some

user-defined grading function Ā (·), which can be defined either over the set of triangles or over Ω,

depending on the implementation.

Let us call the open disk corresponding to a triangle’s circumscribed circle its circumdisk. We

will use symbols © (t) and r (t) to represent the circumdisk and the circumradius of triangle t,

respectively. A mesh is said to satisfy the Delaunay property if the circumdisk of every triangle does

8

not contain any of the mesh vertices [22, 24, 27, 47].

Delaunay mesh generation algorithms start with the construction of the initial mesh, which

conforms to the input PSLG, and then refine this mesh until the element quality constraints are met.

In this paper, we focus on parallelizing the Delaunay refinement stage, which is usually the most

memory- and computation-expensive [10]. The general idea of Delaunay refinement is to insert

additional (Steiner) points inside the circumdisks of poor quality triangles, which causes these

triangles to be destroyed, until they are gradually eliminated and replaced by better quality triangles.

We will extensively use the notion of cavity [27] which is the set of triangles in the mesh whose

circumdisks include a given point pi. We will denote CM (pi) to be the cavity of pi with respect to

mesh M and ∂CM (pi) to be the set of edges which belong to only one triangle in CM (pi), i.e.,

external edges. When M is clear from the context, we will omit the subscript. For our analysis, we

will use the Bowyer-Watson (B-W) point insertion algorithm [6, 52], which can be written as

V ′ ← V ∪ {pi},

T ′ ← T \ C (pi) ∪ {△pipjpk | e (pjpk) ∈ ∂C (pi)},
(1)

where M = (V, T, S) and M′ = (V ′, T ′, S′) represent the mesh before and after the insertion of pi,

respectively. The set of newly created triangles forms a ball [27] of point pi (denoted B (pi)), which is

the set of triangles in the mesh that have pi as a vertex.

Sequential Delaunay algorithms treat constrained segments differently from triangle

edges [45, 47]. A vertex p is said to encroach upon a segment s, if it lies within the open diametral

disk of s [45]. When a new point is about to be inserted and it happens to encroach upon a

constrained segment s, another point is inserted in the middle of s instead [45], and a cavity of the

segment’s midpoint is constructed and triangulated according to (1).

The proofs of termination and size optimality of Delaunay refinement algorithms [45, 47]

explore the relationships between the insertion radius of a point and that of its parent. The insertion

radius R (p) of point p is defined as the length of the shortest edge connected to p immediately after

p is inserted into the mesh [47]. The parent p̂ of point p is the vertex which is “responsible” for the

insertion of p [47]. In particular, if p is inserted inside the circumdisk of a poor quality triangle, p̂ is

the most recently inserted vertex of the shortest edge of that triangle. If p is a midpoint of an

9

encroached segment, p̂ is the point (possibly rejected for insertion) that encroaches upon that

segment. If p is an input vertex, it has no parent. In addition, the proofs require that ρ̄ ≥
√

2.

The local feature size function lfs : R
2 → R for a given point p is equal to the radius of the

smallest disk centered at p that intersects two non-incident vertices or segments of PSLG X [45].

lfs (p) satisfies the Lipschitz condition:

Lemma 1 (Lemma 1 in Ruppert [45], Lemma 2 in Shewchuk [47]) Given any PSLG X and

any two points pi and pj in the plane, the following inequality holds:

lfs (pi) ≤ lfs (pj) + ‖pi − pj‖ (2)

Remark 1 As shown in [47], if p is an input vertex, then R (p) ≥ lfs (p). Indeed, from the definition

of lfs (p), the second feature (in addition to p) which intersects the disk centered at p is either a

constrained segment, a constrained facet, or the nearest input vertex visible from p.

2.2 Generalized Delaunay refinement using selection disks

In this section we introduce two types of selection disks which can be used for the insertion of Steiner

points in two dimensions. First, we prove the termination of a Delaunay refinement algorithm with

the Type I selection disks. Then we give an example of an optimization based strategy for the

insertion of Steiner points from the Type I selection disks which, for small angle bounds, allows to

decrease the size of the final mesh in practice. Finally, we introduce the Type II selection disk (which

is always inside the Type I selection disk of the same skinny triangle) and prove the good grading

and the size optimality.

2.2.1 Proof of Termination with Selection Disks of Type I

Definition 1 (Selection disk of Type I) If t is a poor quality triangle with circumcenter c,

shortest edge length l, circumradius r, and circumradius-to-shortest edge ratio ρ = r/l > ρ̄ ≥
√

2,

then the Type I selection disk for the insertion of a Steiner point that would eliminate t is the open

disk with center c and radius r −
√

2l.

10

For example, in Figure 2(right), e (plpm) is the shortest edge of a skinny triangle △pkplpm and

c is its circumcenter. The selection disk of Type I is the shaded disk with center c and radius

r (△pkplpm) −
√

2‖pl − pm‖.
Further we will prove that any point inside the Type I selection disk of a triangle can be

chosen for the elimination of the triangle, and that the generalized Delaunay refinement algorithm

which chooses Steiner points inside Type I selection disks terminates.

Remark 2 Üngör’s off-center always lies inside the selection disk of Type I. Consider Figure 2(left).

Suppose △pkplpm is skinny: ρ (△pkplpm) > ρ̄. If we insert its circumcenter c, the new triangle

△cplpm may also be skinny. In this case, instead of inserting c, Üngör suggests to insert the

off-center o chosen on the perpendicular bisector of the shortest edge e (plpm) in such a way that the

new triangle △oplpm will have circumradius-to-shortest edge ratio equal to exactly ρ̄, i.e.,

ρ (△oplpm) = ρ̄. (3)

If a is the circumcenter of △oplpm, and b is the midpoint of edge e (plpm), then from (3) and the

Pythagorean theorem for △abpl we have:

‖a − b‖2 = ρ̄2‖pl − pm‖2 − 1

4
‖pl − pm‖2 = (ρ̄2 − 1

4
)‖pl − pm‖2,

or

‖a − b‖ =

√

4ρ̄2 − 1

2
‖pl − pm‖. (4)

Noting that

‖a − o‖ = r (△oplpm) = ρ̄‖pl − pm‖, (5)

11

we have:

‖c − o‖ < r (△pkplpm) − ‖a − b‖ − ‖a − o‖
= r (△pkplpm) −

√
4ρ̄2−1

2 ‖pl − pm‖ − ρ̄‖pl − pm‖ (from (4) and (5))

= r (△pkplpm) −
(√

4ρ̄2−1

2 + ρ̄

)

‖pl − pm‖

≤ r (△pkplpm) −
(√

7
2 +

√
2
)

‖pl − pm‖ (since ρ̄ ≥
√

2)

< r (△pkplpm) −
√

2‖pl − pm‖,

which implies that the off-center o is inside the Type I selection disk of triangle △pkplpm.

Remark 3 As ρ (△pkplpm) approaches
√

2, the Type I selection disk shrinks to the circumcenter c of

the triangle. If, furthermore, ρ (△pkplpm) ≤
√

2, the selection disk vanishes, which coincides with the

fact that the triangle △pkplpm cannot be considered skinny.

Lemma 2 If pi is a vertex of the mesh produced by a Delaunay refinement algorithm which chooses

points within Type I selection disks of triangles with circumradius-to-shortest edge ratios greater than

ρ̄ ≥
√

2, then the following inequality holds:

R (pi) ≥ C · R (p̂i) , (6)

where C is defined as follows:

(i) C =
√

2 if pi is a Steiner point chosen within the Type I selection disk of a skinny triangle;

Otherwise, let pi be the midpoint of subsegment s. Then

(ii) C = 1√
2

if p̂i is a Steiner point which encroaches upon s, chosen within the selection disk of a

skinny triangle;

(iii) C = 1
2 cos α if pi and p̂i lie on incident subsegments separated by an angle of α (with p̂i

encroaching upon s), where 45◦ ≤ α ≤ 90◦;

(iv) C = sinα if pi and p̂i lie on incident segments separated by an angle of α ≤ 45◦.

If pi is an input vertex, then

R (pi) ≥ lfs (pi) . (7)

12

Proof We need to present new proofs only for cases (i) and (ii), since the proofs for all other cases

are independent of the choice of the point within the selection disk and are given in [47].

Case (i) By the definition of a parent vertex, p̂i is the most recently inserted endpoint of the

shortest edge of the triangle; without loss of generality let p̂i = pl and e (plpm) be the shortest edge

of the skinny triangle △pkplpm, see Figure 2(right). If e (plpm) was the shortest edge among the

edges incident upon pl at the time pl was inserted into the mesh, then ‖pl − pm‖ = R (pl) by the

definition of the insertion radius; otherwise, ‖pl − pm‖ ≥ R (pl). In either case,

‖pl − pm‖ ≥ R (pl) . (8)

Now we can derive the relation between the insertion radius of point pi and the insertion

radius of its parent p̂i = pl:

R (pi) >
√

2‖pl − pm‖ (from Delaunay property and Definition 1)

≥
√

2R (pl) (from (8)).

Hence, R (pi) >
√

2R (p̂i); choose C =
√

2.

Case (ii) Let p̂i be inside the Type II selection disk of a skinny triangle △pkplpm, such that p̂i

encroaches upon e (pupv), see Figure 5(left). Since the edge e (pupv) is part of the mesh, there must

exist some vertex pw such that pu, pv, and pw form a triangle. Because pw is outside of the diametral

circle of e (pupv), the circumdisk © (△pupvpw) has to include point p̂i. Therefore, if p̂i were inserted

into the mesh, △pupvpw would be part of the cavity C (p̂i) and the edges connecting p̂i with pu and

pv would be created. Therefore,

R (p̂i) ≤ min(‖p̂i − pu‖, ‖p̂i − pv‖) (from the definition of insertion radius)

<
√

2‖pu−pv‖
2 (because p̂i encroaches upon e (pupv))

=
√

2R (pi) (from the definition of insertion radius);

choose C = 1√
2
.

13

Figure 3 shows the relationship between the insertion radii of mesh vertices and the insertion

radii of their parents. We can see that if Inequality (6) is satisfied then no new edge will be created

whose length is smaller than 1√
2

times the length of some existing edge and the algorithm will

eventually terminate because it will run out of space to insert new vertices.

Theorem 1 (Theorem 4 in [47]) Let lfsmin be the shortest distance between two non-incident

entities (vertices or segments) of the input PSLG. Suppose that any two incident segments are

separated by an angle of at least 60◦, and a triangle is considered to be skinny if its

circumradius-to-shortest edge ratio is larger than ρ̄, where ρ̄ ≥
√

2. Ruppert’s algorithm will

terminate with no triangulation edge shorter than lfsmin.

The proof of this theorem in [47] is based on the result of Lemma 3 in [47], which establishes

Inequality (6) in the context of circumcenter point insertion. Otherwise, the proof is independent of

the specific position of inserted points. Since we proved (6) in the context of inserting arbitrary

points within Type I selection disks, this theorem also holds in this new context.

The size of the Type I selection disks, and, hence, the flexibility in choosing Steiner points

depends on the initial model and can vary significantly. Figure 4 depicts the circumradius-to-shortest

edge length ratios of skinny triangles being eliminated by inserting Steiner points in their

circumcenters, for the pipe, the cylinder flow, and the Chesapeake bay models, as they were refined

to meet the 20◦ minimal angle bound. The horizontal axis show the iteration number, such that each

insertion of a Steiner point counts as one iteration. The vertical axis correspond to the

circumradius-to-shortest edge ratio of the skinny triangle eliminated by each Steiner point. The

larger the circumradius-to-shortest ratio of the triangle, the larger its Type I selection disk: if the

circumradius-to-shortest edge length ratio of a triangle is ρ, the radius of the Type I selection disk is

r −
√

2l = r(1 −
√

2/ρ).

2.2.2 An Example of a Point Selection Strategy

Let us consider Figure 5(right). We can see that the off-center o of the skinny triangle △pkplpm is

not the only location for a Steiner point pi that will lead to the creation of the new triangle incident

to the edge e (plpm) with circumradius-to-shortest edge ratio equal to exactly ρ̄. The arc shown in

14

bold in the figure is the intersection of the circle passing through pl, pm, and o with the selection disk

of △pkplpm. Let us denote this arc as Γ. The thin arcs show parts of the circumcircles of other

triangles in the mesh. We can observe that the cavity C (pi) will vary depending on the location of pi,

according to the set of triangle circumdisks that include pi. Let us also represent the penalty for

deleting triangle t as P (t):

P (t) =







−1, if (ρ (t) > ρ̄) ∨ (A (t) > Ā),

1, otherwise.

Then our objective is to minimize the profit function associated with the insertion of point pi as the

sum of the penalties for deleting all triangles in the cavity C (pi):

min
pi∈Γ

F (pi), F (pi) =
∑

t∈C(pi)

P (t)

In other words, we try to minimize the number of deleted good quality triangles and at the same

time to maximize the number of deleted poor quality triangles. The results of our experiments with

the cylinder flow (Figure 6(left)) and the pipe cross-section (Figure 6(right)) models using Triangle

version 1.6 [46] are summarized in Tables 1 and 2. We do not list the running times since our

experimental implementation is built on top of Triangle, but we do not take advantage of its

efficient routines for our intermediate calculations as do the circumcenter and the off-center point

insertion methods. From Table 1 we can see that our optimization-based method tends to produce

up to 20% fewer triangles than the circumcenter method and up to 5% fewer triangles than the

off-center method for small values of the minimal angle bound and no area bound, and the

improvement diminishes as the angle bound increases. Parts of the pipe mesh for the three point

insertion methods are also shown in Figure 7. Table 2 lists the results of the similar experiments,

with an additional area bound constraint. We observe that the introduction of an area bound

effectively voids the difference among the presented point insertion strategies.

15

2.2.3 Proof of Good Grading and Size Optimality with Selection Disks of Type II

Definition 2 (Selection disk of Type II) If t is a poor quality triangle with circumcenter c,

shortest edge length l, circumradius r, and circumradius-to-shortest edge ratio ρ = r/l > ρ̄ ≥
√

2,

then the Type II selection disk for the insertion of a Steiner point that would eliminate t is the open

disk with center c and radius r(1 −
√

2
ρ̄).

For example, in Figure 8, e (plpm) is the shortest edge of a skinny triangle △pkplpm and c is

its circumcenter. The Type II selection disk for this triangle is the shaded disk with center c and

radius r (△pkplpm) (1 −
√

2
ρ̄).

Remark 4 Note from Definitions 1 and 2 that the radius of the Type II selection disk is always

smaller than the radius of the Type I selection disk of the same skinny triangle because

r(1 −
√

2
ρ̄) = r − ρ

ρ̄

√
2l and ρ > ρ̄.

Remark 5 As ρ̄ approaches
√

2 the radius of the Type II selection disk approaches zero, which

means that the selection disk shrinks to the circumcenter point.

As can be seen further below, the price which we pay for the gain in the flexibility in choosing

points is the increase of the constants which bound the size of the mesh. To classify the Delaunay

refinement algorithms with respect to the theoretical bounds on mesh grading we need the following

definition.

Definition 3 (δ-graded Delaunay refinement algorithm) If for every triangle t with

circumcenter c, circumradius r, shortest edge length l, and circumradius-to-shortest edge length ratio

ρ = r/l > ρ̄ ≥
√

2 a Delaunay refinement algorithm selects a Steiner point pi within the Type II

selection disk such that ‖pi − c‖ < r(1 − δ), where

√
2

ρ̄
≤ δ ≤ 1,

we say that this Delaunay refinement algorithm is δ-graded.

The analysis below assumes that all angles in the input PSLG are greater than 45◦ or 60◦. In

practice such geometries are rare; however, a modification of the algorithm with a concentric circular

16

shell splitting [45, 47] allows to guarantee the termination of the algorithm even though the small

angles adjacent to the segments of the input PSLG cannot be improved.

Lemma 3 If pi is a vertex of the mesh produced by a δ-graded Delaunay refinement algorithm then

the following inequality holds:

R (pi) ≥ C · R (p̂i) , (9)

where we distinguish among the following cases:

(i) C = δρ̄ if pi is a Steiner point chosen within the Type II selection disk of a skinny triangle;

Otherwise, let pi be the midpoint of subsegment s. Then

(ii) C = 1√
2

if p̂i is a Steiner point which encroaches upon s, chosen within the Type II selection

disk of a skinny triangle;

(iii) C = 1
2 cos α if pi and p̂i lie on incident subsegments separated by an angle of α (with p̂i

encroaching upon s), where 45◦ ≤ α ≤ 90◦;

(iv) C = sinα if pi and p̂i lie on incident segments separated by an angle of α ≤ 45◦.

If pi is an input vertex, then

R (pi) ≥ lfs (pi) .

Proof We need to present a new proof only for case (i) since the proof for case (ii) is the same as in

Lemma 2, and the proofs for all other cases are independent of the choice of the point within the

selection disk and are given in [47].

Case (i) As in the proof of Case (i) of Lemma 2, assuming that e (plpm) is the shortest edge of

the skinny triangle △pkplpm and p̂i = pl, we derive relation (8). Then

R (pi) > δr (from Delaunay property and Definition 3)

= δρ‖pl − pm‖ (since ρ = r
‖pl−pm‖)

> δρ̄‖pl − pm‖ (since ρ > ρ̄)

≥ δρ̄R (pl) (from (8)).

Hence, R (pi) > δρ̄R (p̂i); choose C = δρ̄.

17

The quantity D (p) is defined as the ratio of lfs (p) over R (p) [47]:

D (p) =
lfs (p)

R (p)
. (10)

It reflects the density of vertices near p at the time p is inserted, weighted by the local feature size.

Lemma 4 If p is a vertex of the mesh produced by a δ-graded Delaunay refinement algorithm and C

is the constant specified by Lemma 3, then the following inequality holds:

D (p) ≤ 2 − δ

δ
+

D (p̂)

C
. (11)

Proof If p is inside a Type II selection disk of a skinny triangle with circumradius r, then

‖p − p̂‖ < 2r − δr (from the definition of p̂ and Def. 3)

= (2 − δ)r

= 2−δ
δ δr

< 2−δ
δ R (p) (from Delaunay property and Def. 3).

If p is an input vertex or lies on an encroached segment, then

‖p − p̂‖ ≤ R (p) (by definitions of p̂ and R (p))

≤ 2−δ
δ R (p) (since from Def. 3, δ ≤ 1).

In all cases,

‖p − p̂‖ ≤ 2 − δ

δ
R (p) . (12)

Then

lfs (p) ≤ lfs (p̂) + ‖p − p̂‖ (from Lemma 1)

≤ lfs (p̂) + 2−δ
δ R (p) (from (12))

= D (p̂) R (p̂) + 2−δ
δ R (p) (from (10))

≤ D (p̂) R(p)
C + 2−δ

δ R (p) (from Lemma 3).

The result follows from the division of both sides by R (p).

18

Lemma 5 (Extension of Lemma 7 in [47] and Lemma 2 in [45]) Suppose that ρ̄ >
√

2 and

the smallest angle in the input PSLG is strictly greater than 60◦. There exist fixed constants CT and

CS such that, for any vertex p inserted (or considered for insertion and rejected) by a δ-graded

Delaunay refinement algorithm, D (p) ≤ CT , and for any vertex p inserted at the midpoint of an

encroached subsegment, D (p) ≤ CS. Hence, the insertion radius of a vertex has a lower bound

proportional to its local feature size.

Proof The proof is by induction and is similar to the proof of Lemma 7 in [47]. The base case covers

the input vertices, and the inductive step covers the other two types of vertices: free vertices and

subsegment midpoints.

Base case: The lemma is true if p is an input vertex, because in this case, by Remark 1,

D (p) = lfs (p) /R (p) ≤ 1.

Inductive hypothesis: Assume that the lemma is true for p̂, i.e., D (p̂) ≤ max{CT , CS}.
Inductive step: There are two cases:

(i) If p is in the Type II selection disk of a skinny triangle, then

D (p) ≤ 2−δ
δ + D(p̂)

C (from Lemma 4)

= 2−δ
δ + D(p̂)

δρ̄ (from Lemma 3)

≤ 2−δ
δ + max{CT ,CS}

δρ̄ (by the inductive hypothesis).

It follows that one can prove that D (p) ≤ CT if CT is chosen so that

2 − δ

δ
+

max{CT , CS}
δρ̄

≤ CT . (13)

(ii) If p is the midpoint of a subsegment s such that p̂ encroaches upon s, then we have 3 sub-cases:

(ii-a) If p̂ is an input vertex, then the disk centered at p and touching p̂ has radius less than the

radius of the diametral disk of s and therefore lfs (p) < R (p). Thus, D (p) < 1 and the

lemma holds.

(ii-b) If p̂ is a rejected point from the Type II selection disk of a skinny triangle or lies on a

19

segment not incident to s, then

D (p) ≤ 2−δ
δ + D(p̂)

C (from Lemma 4)

= 2−δ
δ +

√
2D (p̂) (from Lemma 3)

≤ 2−δ
δ +

√
2CT (by the inductive hypothesis).

(ii-c) If p̂ lies on a segment incident to s, then

D (p) ≤ 2−δ
δ + D(p̂)

C (from Lemma 4)

= 2−δ
δ + 2 cos αD (p̂) (from Lemma 3)

≤ 2−δ
δ + 2CS cos α (by the inductive hypothesis).

It follows that one can prove that D (p) ≤ CS if CS is chosen so that both of the following

relations (14) and (15) are satisfied:

2 − δ

δ
+
√

2CT ≤ CS , (14)

and
2 − δ

δ
+ 2CS cos α ≤ CS . (15)

If δρ̄ >
√

2, relations (13) and (14) can be simultaneously satisfied by choosing

CT =
(2 − δ)(ρ̄ + δ)

δρ̄ −
√

2
, and CS =

(2 − δ)ρ̄(1 +
√

2)

δρ̄ −
√

2
.

If the smallest input angle αmin > 60◦, relations (13) and (15) can be simultaneously satisfied by

choosing

CT =
2 − δ

δ
+

CS

δρ̄
, and CS =

2 − δ

δ(1 − 2 cos αmin)
.

Theorem 2 (Theorem 8 in [47], Theorem 1 in [45]) For any vertex p of the output mesh, the

distance to its nearest neighbor is at least lfs(p)
CS+1 .

The proof in [47] relies only on Lemmata 1 and 5 here and, therefore, holds for the arbitrary points

chosen within selection disks of skinny triangles.

20

Theorem 2 is used in the proof of the following theorem.

Theorem 3 (Theorem 10 in [47], Theorem 14 in [43], Theorem 3 in [45]) Let lfsM (p) be

the local feature size at p with respect to a mesh M (treating M as a PSLG), whereas lfs (p) remains

the local feature size at p with respect to the input PSLG. Suppose a mesh M with smallest angle θ

has the property that there is some constant k1 ≥ 1, such that for every point p, k1lfsM (p) ≥ lfs (p).

Then the cardinality of M is less than k2 times the cardinality of any other mesh of the input PSLG

with smallest angle θ, where k2 = O
(

k2
1/θ

)

.

Smaller values of δ offer more flexibility to a δ-graded Delaunay refinement algorithm in

choosing Steiner points. However, from Lemma 5 it follows that as δ approaches
√

2/ρ̄, CT and CS

approach infinity, which leads to the worsening of the good grading guarantees. For example, as we

can see from Figures 9, 10, and 11, the insertion of Steiner points at the boundaries of Type II

selection disks increases the size of the Chesapeake bay mesh by about 0.5% over the circumcenter

point insertion. If, furthermore, we drop the theoretical good grading guarantees and insert the

points at the boundaries of Type I selection disks, the size of the Chesapeake bay mesh increases by

about 15%. Therefore, along with satisfying application-specific requirements, the point insertion

schemes should try to place Steiner points as close to circumcenters as possible.

3 Parallel Generalized Delaunay Refinement

In this section, we develop local Delaunay-independence conditions and show how quadtree leaves

can be used to select subsets of candidate Steiner points for concurrent insertion. We extend our

previous work [10, 13] by eliminating the use of the global circumradius upper bound and adapting

the size of refinement and buffer zones to the user-defined grading function.

3.1 Delaunay-independent points

We expect our parallel Delaunay refinement algorithm to insert multiple Steiner points (one per

selection disk) concurrently in such a way that it maintains the conformity and the Delaunay

property of the mesh. Figure 12 illustrates how the concurrently inserted points can violate one of

21

these conditions. Edelsbrunner and Guoy [25] define two Steiner points as independent if the closures

of their prestars (or cavities [27]) are disjoint. Their approach does not provide a way to avoid

computing the cavities and their intersections for all candidate points, which is very expensive.

Definition 4 (Delaunay-independence) Points pi and pj are Delaunay-independent with respect

to mesh M = (V, T, S) if their concurrent insertion yields the conformal Delaunay mesh

M′ = (V ∪ {pi, pj}, T ′, S′). Otherwise, pi and pj are Delaunay-conflicting.

Suppose point pi encroaches upon a constrained segment si. Then pi will not be inserted, and

the midpoint p′i of si will be inserted instead (similarly for pj).

Definition 5 (Strong Delaunay-independence) Points pi and pj are strongly

Delaunay-independent with respect to mesh M iff any pair of points in {pi, p
′
i} × {pj , p

′
j} are

Delaunay-independent with respect to M.

3.2 Local Delaunay-independence conditions

Lemma 6 (Delaunay-independence criterion) Suppose the mesh M = (V, T, S) is conformal

and Delaunay, and pi and pj are candidate Steiner points. Then pi and pj are Delaunay-independent

iff

CM (pi) ∩ CM (pj) = ∅, (16)

and

∀e (pmpn) ∈ ∂CM (pi) ∩ ∂CM (pj) : pi /∈ © (△pjpmpn) . (17)

Proof First, M′ = (V ∪ {pi, pj}, T ′, S′) is conformal iff (16) holds. Indeed, if (16) holds, then

considering (1), the concurrent retriangulation of CM (pi) and CM (pj) will not yield overlapping

triangles, and the mesh will be conformal. Conversely, if (16) does not hold, the newly created edges

will intersect as shown in Fig. 12(left), and M′ will not be conformal.

Now, we will show that M′ is Delaunay iff (17) holds. The Delaunay Lemma [27] states that

the triangulation is globally Delaunay if and only if the empty circumdisk criterion holds for every

pair of adjacent triangles. Disregarding the symmetric cases, there are three types of pairs of

adjacent triangles tr and ts, where tr ∈ BM′ (pi), that will be affected: (i) ts ∈ BM′ (pi), (ii)

22

ts ∈ T ′ \ BM′ (pi) \ BM′ (pj), and (iii) ts ∈ BM′ (pj). The sequential Delaunay refinement algorithm

guarantees that tr and ts will be locally Delaunay in the first two cases. In addition, condition (17)

ensures that they will be locally Delaunay in the third case. Therefore, the mesh will be globally

Delaunay. Conversely, if (17) does not hold, triangles △pipmpn and △pjpmpn will not be locally

Delaunay, and the mesh will not be globally Delaunay.

Corollary 1 (Sufficient condition of Delaunay-independence I [10]) From Lemma 6 it

follows that if (16) holds and ∂CM (pi) ∩ ∂CM (pj) = ∅, then pi and pj are Delaunay-independent.

To prove a more practical sufficient condition of Delaunay-independence we are going to use

the following lemma which was proven in [10]:

Lemma 7 Let △pkpmpn ∈ C (pj) and △plpnpm /∈ C (pj). Then

r (△pjpmpn) < max{r (△pkpmpn) , r (△plpnpm)}.

The following lemma is the main theoretical basis for the construction of the quadtree which

will be described later.

Lemma 8 (Sufficient condition of Delaunay-independence II) Points pi and pj are

Delaunay-independent if there exists a subsegment s of segment L (pipj) such that all triangle

circumdisks which intersect s have diameter less than or equal to the length of s, i.e.,

∃s ⊆ L (pipj) : ∀t ∈ T : s ∩© (t) 6= ∅ =⇒ 2r (t) ≤ |s|, (18)

where |s| is the length of s.

Proof First, condition (18) implies that C (pi) ∩ C (pj) = ∅. Indeed, if there had been a triangle

circumdisk which included both pi and pj , then the diameter of this circumdisk would be greater

than the length of L (pipj) which would contradict (18).

Now, there are two possibilities:

(i) If ∂C (pi) ∩ ∂C (pj) = ∅, then, by Corollary 1, pi and pj are Delaunay-independent.

23

(ii) Otherwise, let ∂C (pi) ∩ ∂C (pj) 6= ∅ and e (pmpn) be an arbitrary edge in ∂C (pi) ∩ ∂C (pj). We

are going to prove that pi /∈ © (△pjpmpn) and, thus, pi and pj are Delaunay-independent by

Lemma 6. The proof is by contradiction. Suppose condition (18) holds and pi ∈ © (△pjpmpn).

There are two cases:

(ii-a) If r (△pkpmpn) > r (△plpnpm), see Figure 13, then from Lemma 7 it follows that

r (△pjpmpn) < r (△pkpmpn) . (19)

In addition, the assumption that pi ∈ © (△pjpmpn) implies that

|L (pipj)| < 2r (△pjpmpn) . (20)

From (19) and (20) we conclude that the following relation holds:

|L (pipj)| < 2r (△pkpmpn) . (21)

Due to (21) and the assumption that (18) holds as well as the fact that |s| ≤ |L (pipj)|, we

conclude that s cannot intersect © (△pkpmpn). If pr is the point of intersection of

L (pipj) with the boundary of © (△pkpmpn), then s is restricted to be the subsegment of

L (pipr) and

|s| ≤ |L (pipr)|. (22)

From the assumptions that pi ∈ © (△pjpmpn) and pi /∈ © (△pkpmpn), it follows that pi

has to lie in the crescent-shaped area which is shaded in the figure and the following two

relations hold:

s ∩© (△plpnpm) 6= ∅ (23)

and

|L (pipr)| < 2r (△plpnpm) . (24)

Relations (22), (23), and (24) together imply that the condition (18) does not hold and we

24

have come to a contradiction.

(ii-b) If r (△pkpmpn) ≤ r (△plpnpm), see Figure 14, then from Lemma 7 it follows that

r (△pjpmpn) < r (△plpnpm) and considering that

|s| ≤ |L (pipj)| < 2r (△pjpmpn) < 2r (△plpnpm) we conclude that s cannot intersect

© (△plpnpm). This limits s to lie within the subsegment L (pjpr), where pr is the point of

intersection of L (pipj) with the boundary of © (△plpnpm); therefore,

|s| ≤ |L (pjpr)|. (25)

The subsegment L (pjpr) lies completely inside the crescent-shaped region shaded in the

figure which in turn is completely inside © (△pkpmpn), hence the following two relations

hold:

s ∩© (△pkpmpn) 6= ∅ (26)

and

|L (pjpr)| < 2r (△pkpmpn) . (27)

Relations (25), (26), and (27) together imply that the condition (18) does not hold and we

have come to a contradiction.

3.3 Quadtree construction

Callahan and Kosaraju [7, 8] developed a binary tree data structure for constructing well-separated

pair decompositions of points, which was motivated by an application in n-body simulations [28].

They say that point sets A and B are well-separated if the rectangles which enclose A and B can

each be contained in d-balls of radius r whose minimum distance is at least sr, where s is the

separation. This data structure is based on a fair split tree of a point set which associates a leaf with

each of the points. The construction of the quadtree which we describe below also uses a notion of

separated regions. However, in the mesh generation context, the separation is based on the size and

shape of the triangles in the underlying mesh. Another distinction is the introduction of the

adjustable granularity parameter which allows to reduce the overheads associated with tree updates

25

by increasing the number of triangles per leaf. Finally, unlike in n-body simulations, in mesh

refinement we have the creation of new points throughout the execution; therefore, the tree needs to

be constructed dynamically.

Definition 6 (α-neighborhood) Let the α-neighborhood Nα (Li) (α ∈ {Left , Right , Top,

Bottom}) of quadtree leaf Li be the set of quadtree leaves that share a side with Li and are located in

the α direction of Li. For example, in Fig. 15, Lk ∈ NTop (Li) and Ll ∈ NRight (Li).

Definition 7 (Orthogonal directions) Let the orthogonal directions ORT (α) of direction α be

ORT (α) =







{Left ,Right} if α ∈ {Top,Bottom},
{Top,Bottom} if α ∈ {Left ,Right}.

Definition 8 (Buffer zone) Let the set of leaves

BUF (Leaf) =
⋃

α



Nα (Leaf) ∪
⋃

L∈Nα(Leaf)

⋃

β∈ORT(α)

Nβ (L)



 , (28)

under the condition that the following relation holds

∀L ∈ BUF (Leaf) ,∀t ∈ T : © (t) ∩ L 6= ∅ =⇒ r (t) <
1

4
ℓ (L) , (29)

where ℓ (L) is the length of the side of L, be called a buffer zone of leaf Leaf with respect to mesh M.

Equation (29) is the criterion for the dynamic construction of the quadtree. Starting with the

root node which covers the entire domain, each node of the quadtree is split into four smaller nodes

as soon as all triangles, whose circumdisks intersect this node, have circumradii smaller than one

eighth of its side length.

Definition 9 (Delaunay-separated regions) Let two regions Ri ⊂ R
2 and Rj ⊂ R

2 be called

Delaunay-separated with respect to mesh M iff any two arbitrary points pi ∈ Ri and pj ∈ Rj are

strongly Delaunay-independent.

26

Lemma 9 (Sufficient condition of leaf Delaunay-separateness) If Li and Lj are quadtree

leaves, i 6= j, and Lj /∈ BUF (Li), then Li and Lj are Delaunay-separated.

Proof First, for an arbitrary pair of points pi ∈ Li and pj ∈ Lj /∈ BUF (Li), we will prove that pi

and pj are Delaunay-independent. Then we will extend the proof to show that any pair of points

from {pi, p
′
i} × {pj , p

′
j} are Delaunay-independent, which will imply that pi and pj are strongly

Delaunay-independent; hence, Li and Lj are Delaunay-separated.

By enumerating all possible configurations of leaves in BUF (Li) and grouping similar cases,

without loss of generality all arrangements can be accounted for using the following argument.

Suppose L (pipj) intersects the common boundary of Li and Lk, where

Lk ∈ NTop (Li) ⊂ BUF (Li), see Figure 17. For each of the following sub-cases we show that there

exists a subsegment s of segment L (pipj) which satisfies the condition of Lemma 8, and therefore pi

and pj are Delaunay-independent:

(i) If L (pipj) intersects the upper boundary of Lk, see Figure 17(left), then we choose s as the

intersection of L (pipj) with Lk and note that |s| ≥ ℓ (Lk) while all triangle circumdisks which

intersect Lk have diameter less than ℓ (Lk).

(ii) Otherwise, let L (pipj) intersect the left boundary of Lk and let Lm ∈ NLeft (Lk) ⊂ BUF (Li)

be the leaf adjacent to this boundary at the point of intersection. There are two sub-cases:

(ii-a) If L (pipj) intersects the upper boundary of Lm, see Figure 17 (center), then we select s at

the intersection of L (pipj) with Lk ∪ Lm. In this case, |s| ≥ ℓ (Lk) and all triangle

circumdisks which intersect s have diameter less than max{ℓ (Lk) , ℓ (Lm)} = ℓ (Lk).

(ii-b) If L (pipj) intersects the left boundary of Lm, see Figure 17(right), then we select s at the

intersection of L (pipj) with Lm. In this case, |s| ≥ ℓ (Lm) and all triangle circumdisks

which intersect s have diameter less than ℓ (Lm).

Now, suppose pi and pj encroach upon constrained edges e (plpm) and e (prps), respectively

(Fig. 16). Then the midpoints p′i and p′j of e (plpm) and e (prps) will be inserted instead. If p′i and p′j

lie in the same quadtree leaves as pi and pj , then they can be proven Delaunay-independent using

the argument above.

27

Let us analyze the worst case, i.e., p′i, p
′
j ∈ Lk ∈ BUF (Li). Since the diametral disk of an edge

has the smallest radius among all disks whose circle passes through the endpoints of the edge, then

r (e (plpm)) ≤ r (△plpmpn) < 1
4ℓ (Lk) and r (e (prps)) ≤ r (△prpspt) < 1

4ℓ (Lk). Therefore,

‖p′i − p′j‖ > 1
2ℓ (Lk). We can construct imaginary buffer squares Lk1

and Lk2
between p′i and p′j

inside leaf Lk with ℓ (Lk1
) = ℓ (Lk2

) = 1
2ℓ (Lk). Since by construction all triangle circumdisks which

intersect Lk have radius less than 1
4ℓ (Lk), then all triangle circumdisks which intersect Lk1

or Lk2

will have radius less than 1
2ℓ (Lk1

) or 1
2ℓ (Lk2

). Then, by an argument similar to the one above, we

show that for p′i and p′j the condition of Lemma 8 is satisfied, and hence these two points are

Delaunay-independent.

3.4 Parallel algorithm

If a part of the mesh associated with a leaf Leaf of the quadtree is scheduled for refinement by a

thread, no other thread can refine the parts of the mesh associated with the buffer zone BUF (Leaf)

of this leaf. To simplify the presentation, here we rewrite the definition of the buffer zone in the way

it is used by the algorithm. For this purpose, we introduce a superscript to the BUF (·) symbol:

BUF1 (Leaf) = BUF (Leaf) ,

BUFi (Leaf) = BUFi−1 (Leaf) ∪
⋃

L∈BUFi−1(Leaf)

BUF (L) , i ≥ 2.
(30)

The algorithm is designed for the execution by one master thread which manages the work

pool and multiple refinement threads which refine the mesh and the quadtree. Figure 18 presents a

high level description of the Parallel Generalized Delaunay Refinement (PGDR) algorithm performed

by the master thread. Line 14 shows the invocation of a refinement thread from the master thread.

Figure 19 presents the part of the algorithm executed by each of the refinement threads.

When a quadtree leaf Leaf is scheduled for refinement, we remove not just BUF1 (Leaf) but

BUF2 (Leaf) from the refinement queue. Although this is not required by our theory, there are two

implementation considerations for doing so, and both are related to the goal of reducing fine-grain

synchronization.1 First, each leaf has an associated data structure which stores the poor quality

1As we have shown previously [1], the overheads of portable thread packages (e.g., Pthreads) on modern SMTs are

28

triangles whose circumdisks intersect this leaf, so that we can maintain the relation (29). Therefore,

we would have to introduce synchronization in line 9 of the algorithm in Figure 19 to maintain this

data structure. Second, for efficiency considerations, we followed the design of the triangle data

element that is used in Triangle [46]. In particular, each triangle contains pointers to neighboring

triangles for easy mesh traversal. However, if two cavities share an edge and are updated by the

concurrent threads, which can be done legitimately in certain cases, these triangle–neighbor pointers

will be invalidated. For these reasons, we chose to completely separate the sets of leaves affected by

the mesh refinement performed by multiple threads.

Each of the worker threads performs the refinement of the mesh and the refinement of the

quadtree. The poor quality triangles whose split-points selected by a deterministic function f(·) are

inside the square of Leaf are stored in the data structure denoted here as PoorTriangles(Leaf).

Leaf needs to be scheduled for refinement if the size of this data structure is not empty. In addition,

each Leaf has a counter for the triangles with various ratios of the side length of Leaf to their

circumradius. If we denote σ(t,Leaf) =
⌊

log2
ℓ(Leaf)

r(t)

⌋

, then

Counteri(Leaf) = |{t ∈ M | (© (t) ∩ Leaf 6= ∅) ∧ (σ(t,Leaf) = i)}|.
When Counteri(Leaf) = 0, ∀i = 1, 2, 3, it implies that (29) would hold for each of the children of

Leaf , and Leaf can be split. Lemma 7 guarantees that when a point is inserted into a Delaunay mesh

using the B-W algorithm, the circumradii of the new triangles are not going to be larger than the

circumradii of the triangles in the cavity of the point or those that are adjacent to the cavity. In

addition, the following lemma proves that the circumdisks of the new triangles are not going to

extend beyond the circumdisks of the triangles in the cavity and the triangles adjacent to the cavity.

Therefore, new triangles that would violate (29) are not going to be created.

Lemma 10 Let △pkpmpn ∈ C (pj) and △plpnpm /∈ C (pj). Then

© (△pjpmpn) ⊂ (© (△pkpmpn) ∪© (△plpnpm)).

Proof Consider Figure 20. Let p4 be the midpoint of edge e (pmpn), and let the following points lie

at the intersections of the perpendicular bisector of e (pmpn) with the boundaries of the

not small enough to tolerate fine-grain parallelism in Delaunay mesh refinement.

29

corresponding circumdisks: p1 and p5 with © (△plpnpm), p2 and p6 with © (△pjpmpn), and p3 and

p7 with © (△pkpmpn). Due to the premise that pj ∈ © (△pkpmpn) and pj /∈ © (△plpnpm), p6 is

restricted to lie between p5 and p7, and p2 is restricted to lie between p1 and p3. Therefore, the arc

pnp6pjpm is restricted to lie within the shaded region which is © (△pkpmpn) \© (△plpnpm) and the

arc pmp2pn is restricted to lie within the shaded region which is © (△plpnpm) \© (△pkpmpn).

Hence, © (△pjpmpn) cannot extend beyond © (△pkpmpn) ∪© (△plpnpm).

Each leaf of the quadtree has associated with it a bucketing structure which holds poor quality

triangles:

PoorTrianglesi(Leaf) = {t ∈ M | (f(t) ∈ Leaf) ∧ (σ(t,Leaf) = i)∧

((A (t) > Ā (t)) ∨ (ρ (t) > ρ̄))}.

At each mesh refinement step, all triangles in PoorTrianglesj(Leaf) are refined, for all

j = imin, . . . , imin + granularity, where imin = minPoorTrianglesi(Leaf) 6=∅ i, and granularity ≥ 1 is a

parameter that controls how much computation is done during a single mesh refinement call. After a

mesh refinement call returns, the feasibility of splitting Leaf is evaluated, and it is recursively

subdivided if necessary.

The PoorTriangles structure allows our parallel algorithm to give priority to triangles with

large circumradii. As discussed in [45, 47], Ruppert’s sequential Delaunay refinement algorithm has

quadratic worst-case running time, even though in most practical cases the time is linear with respect

to the output size. Recently, Miller [41] proposed a Delaunay refinement algorithm which runs in

optimal O (n log n + m) time, where n is the size of the input, and m is the size of the output. He

achieved this improvement by introducing a priority queue, where the skinny triangles are ordered by

their diameter (equivalently, circumradius), and the triangles with the largest diameter are refined

first. Although our algorithm does not introduce total ordering as Miller’s sequential algorithm, it

allows to eliminate quadratic running time for pathological input geometries. Spielman, Teng, and

Üngör [48, 49] presented the first theoretical analysis of the complexity of parallel Delaunay

refinement algorithms.

30

3.5 Implementation and evaluation

We developed two implementations of the PGDR algorithm. The first one is written in Python using

Python threads module, and the second one is in C++ using Pthreads. The Python code is

interpreted and, thus, is much slower than the compiled code written in languages like C/C++,

however, it offers high level data types and expressions which allow to significantly decrease the

development cycle. We ran this code on a Linux box with two single-core Pentium-4 processors.

Figures 21 and 22 compare the meshes produced by our Python implementation and Triangle

library [46] for a pipe cross-section and a key. Figure 23 also shows the initial geometry and the

quadtree produced by our algorithm for the cylinder flow problem [23]. For all of the quadtree nodes,

mesh refinement and node subdivision routines were applied concurrently while preserving the

required buffer zones, until the quality constraints were met. The specified grading functions were

used as follows. If (xi, yi) is the centroid of the triangle ti, then the area of ti has to be less than

Ā (xi, yi). In all experiments we used the same minimal angle bound of 20◦. These tests indicate that

while maintaining the required quality of the elements, the number of triangles produced by our

method is close, and sometimes is even smaller, than produced by Triangle [46].

The experiments with the code written in C++ were conducted on an IBM Power5 node with

two dual-core processors running at 1.6 GHz and 8 GBytes of total physical memory. We compared

our implementation with the fastest to our knowledge sequential Delaunay mesh generator Triangle

version 1.6 [46]. This is the latest release of Triangle, which uses the off-center point insertion

algorithm [50]. In order to make the results comparable, our PGDR implementation also uses the

off-center point insertion [50]. Triangle provides a convenient facility for the generation of meshes

respecting user-defined area bounds. The user can write his own triunsuitable() function and link

it against Triangle. This function is called to examine each new triangle and to decide whether or

not it should be considered big and enqueued for refinement. We encoded our grading function into

the triunsuitable() function, compiled it into an object file, and linked against both Triangle and

our own PGDR implementation. We ran each of the tests 10 times and used average or median

timing measurements as indicated.

Figure 24(left) presents the total running times for several granularity values, as the number of

compute threads increases from 1 to 4. One additional thread was used to manage the refinement

31

queue. The mesh was constructed for the pipe cross-section model shown in Figure 6(right), using

the grading function

Ā (x, y) = 10−4(
√

(x − 200)2 + (y − 200)2 + 1).

The total number of triangles produced both by Triangle and PGDR was approximately 17 million.

We can see that the best running time was achieved using 4 compute threads with the

granularity value equal to 2, and it amounted for 56% of Triangle’s sequential running time. It is

also interesting to see the intersection of lines corresponding to granularities 2 and 3, when the

number of compute threads was increased from 3 to 4. This intersection reflects one of the basic

tradeoffs in parallel computing, between granularity and concurrency: in order to increase the

concurrency we have to decrease the granularity, which introduces more overheads.

Figure 24(right) shows the breakdown of the total execution time for each of the threads. The

fact that the management thread is idle for 93% of the total time suggests the possibility of high

scalability of the code on larger machines, since it can handle many more refinement threads (cores)

than the current widely available machines have.

Standard system memory allocators exhibited high latency and poor scalability in our

experiments, which lead us to develop a custom memory management class. At initialization, our

memory pool class takes the size of the underlying object (triangle, vertex, quadtree node, or

quadtree junction point) as a parameter and at runtime it allocates blocks of memory which can fit a

large number of objects. When the objects are deleted, they are not deallocated but are kept for

later reuse instead. Each thread manages a separate set of memory pools, which allows us to avoid

synchronization. Our quantitative study of the performance of the standard, the custom, and a novel

generic multiprocessor allocator appears elsewhere [9].

4 Conclusions

We analyzed the existing point insertion methods for guaranteed quality Delaunay refinement and

unified them into a framework which allows to develop customized mesh optimization techniques.

The goals of these techniques may include the following:

• minimizing the number of inserted points, see for example [50] and Subsection 2.2.2 here;

32

• eliminating slivers, see [18, 37, 38];

• splitting multiple poor quality triangles simultaneously, see Fig. 25(left).

• creating elongated edges in required directions, see Fig. 25(center);

• inserting more than one point, e.g., to create elements with specific shapes, see Fig. 25(right);

• satisfying other application-specific requirements, for example, conformity to a boundary zone,

see Fig. 1.

We conducted experiments with three different point placement methods: circumcenter, off-center

and a new optimization-based method which allows to improve the size of the mesh by up to 20%

and up to 5% over the first two methods, respectively.

An extension of the selection disks to anisotropic mesh generation requires additional analysis.

Labelle and Shewchuk [36] presented an anisotropic guaranteed-quality mesh generation algorithm.

With each point p in Ω they associate a symmetric positive definite metric tensor which specifies how

distances and angles are measured from the perspective of p. As a result, the Voronoi diagram of a

point set becomes very complicated, and may even contain disconnected faces; therefore, it does not

always dualize to a correct triangulation. The point insertion scheme developed in [36] takes into

account the visibility of points with respect to Voronoi faces, which would also restrict the shape of a

selection region.

We presented a theoretical framework for developing parallel Delaunay meshing codes, which

allows to control the size of the elements with a user-defined grading function. We eliminated such

disadvantages of the previously proposed methods as the necessity to maintain a cavity (conflict)

graph, the rollbacks, the requirement to solve a difficult domain decomposition problem, and the

centralized sequential resolution of potential conflicts. Our theory leverages the quality guarantees of

the existing sequential Delaunay refinement algorithms. The experimental results confirm that the

parallel algorithm produces meshes with the same quality as the sequential Delaunay refinement

algorithm and does not lead to over-refinement.

We presented the algorithm and the implementation of a parallel 2D graded guaranteed

quality Delaunay mesh generator. Our algorithm is designed to work with custom point placement

33

techniques which choose points from the selection disks. Our current algorithm is limited to

deterministic point selection; incorporating randomized point selection is left to the future research.

The experimental results show that our code on a machine with two dual-core processors runs in 56%

of the time taken by the fastest sequential code Triangle [46]. By using a quadtree constructed in a

specific way, we eliminated the need to solve the difficult domain decomposition problem. Our

implementation is designed for shared memory architectures. In [10, 13] we described a parallel

algorithm for distributed memory machines that allows to produce uniform meshes. In the uniform

case, a simple static data distribution works very well. However, for non-uniform and adaptive

meshes a dynamic work and/or data distribution is required. This problem can be addressed by the

use of run-time load balancing approaches, see [3] for more details. Our ongoing research includes the

extension of the theory and of the implementation to three dimensions.

5 Acknowledgments

We thank Gary Miller for helpful references. This work was supported (in part) by the NSF grants

CCS-0750901, CCF-0833081, CCF-0916526, and by the John Simon Guggenheim Foundation.

References

[1] Christos D. Antonopoulos, Xiaoning Ding, Andrey N. Chernikov, Filip Blagojevic, Dimitris S.

Nikolopoulos, and Nikos P. Chrisochoides. Multigrain parallel Delaunay mesh generation:

Challenges and opportunities for multithreaded architectures. In Proceedings of the 19th Annual

International Conference on Supercomputing, pages 367–376, Cambridge, MA, 2005. ACM Press.

[2] C. Armstrong, D. Robinson, R. McKeag, T. Li, S. Bridgett, R. Donaghy, and C. McGleenan.

Medials for meshing and more. In Proceedings of 4th International Meshing Roundtable, pages

277–288. Sandia National Laboratories, 1995.

[3] Kevin Barker, Andrey Chernikov, Nikos Chrisochoides, and Keshav Pingali. A load balancing

framework for adaptive and asynchronous applications. IEEE Transactions on Parallel and

Distributed Systems, 15(2):183–192, February 2004.

34

[4] G. E. Blelloch, J.C. Hardwick, G. L. Miller, and D. Talmor. Design and implementation of a

practical parallel Delaunay algorithm. Algorithmica, 24:243–269, 1999.

[5] G. E. Blelloch, G. L. Miller, and D. Talmor. Developing a practical projection-based parallel

Delaunay algorithm. In Proceedings of the 12th Annual ACM Symposium on Computational

Geometry, pages 186–195, Philadelphia, PA, May 1996.

[6] Adrian Bowyer. Computing Dirichlet tesselations. Computer Journal, 24:162–166, 1981.

[7] Paul B. Callahan and S. Rao Kosaraju. Algorithms for dynamic closest pair and n-body

potential fields. In Proceedings of the 6th annual ACM-SIAM symposium on Discrete algorithms,

pages 263–272, San Francisco, CA, 1995.

[8] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with

applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,

42(1):67–90, 1995.

[9] Andrey Chernikov, Christos Antonopoulos, Nikos Chrisochoides, Scott Schneider, and Dimitris

Nikolopoulos. Experience with memory allocators for parallel mesh generation on multicore

architectures. In 10th International Conference on Numerical Grid Generation in Computational

Field Simulations, Forth, Crete, Greece, September 2007. Published on CD-ROM.

[10] Andrey N. Chernikov and Nikos P. Chrisochoides. Practical and efficient point insertion

scheduling method for parallel guaranteed quality Delaunay refinement. In Proceedings of the

18th Annual International Conference on Supercomputing, pages 48–57, Malo, France, 2004.

ACM Press.

[11] Andrey N. Chernikov and Nikos P. Chrisochoides. Parallel 2D graded guaranteed quality

Delaunay mesh refinement. In Proceedings of the 14th International Meshing Roundtable, pages

505–517, San Diego, CA, September 2005. Springer.

[12] Andrey N. Chernikov and Nikos P. Chrisochoides. Generalized Delaunay mesh refinement: From

scalar to parallel. In Proceedings of the 15th International Meshing Roundtable, pages 563–580,

Birmingham, AL, September 2006. Springer.

35

[13] Andrey N. Chernikov and Nikos P. Chrisochoides. Parallel guaranteed quality Delaunay uniform

mesh refinement. SIAM Journal on Scientific Computing, 28:1907–1926, 2006.

[14] Andrey N. Chernikov and Nikos P. Chrisochoides. Three-dimensional semi-generalized point

placement method for Delaunay mesh refinement. In Proceedings of the 16th International

Meshing Roundtable, pages 25–44, Seattle, WA, October 2007. Springer.

[15] Andrey N. Chernikov and Nikos P. Chrisochoides. Three-dimensional Delaunay refinement for

multi-core processors. In Proceedings of the 22nd Annual International Conference on

Supercomputing, pages 214–224, Island of Kos, Greece, 2008. ACM Press.

[16] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR89983, Cornell

University, Computer Science Department, 1989.

[17] L. Paul Chew. Guaranteed quality mesh generation for curved surfaces. In Proceedings of the

9th ACM Symposium on Computational Geometry, pages 274–280, San Diego, CA, 1993.

[18] L. Paul Chew. Guaranteed-quality Delaunay meshing in 3D. In Proceedings of the 13th ACM

Symposium on Computational Geometry, pages 391–393, Nice, France, 1997.

[19] Nikos Chrisochoides and Démian Nave. Parallel Delaunay mesh generation kernel. International

Journal for Numerical Methods in Engineering, 58:161–176, 2003.

[20] Nikos P. Chrisochoides. A survey of parallel mesh generation methods. Technical Report

BrownSC-2005-09, Brown University, 2005. Also appears as a chapter in Numerical Solution of

Partial Differential Equations on Parallel Computers (eds. Are Magnus Bruaset and Aslak

Tveito), Springer, 2006.

[21] Tim Culver. Computing the Medial Axis of a Polyhedron Reliably and Efficiently. PhD thesis,

The University of North Carolina at Chapel Hill, 2000.

[22] Boris N. Delaunay. Sur la sphere vide. Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie

Mataematicheskii i Estestvennyka Nauk, 7:793–800, 1934.

36

[23] Suchuan Dong, Didier Lucor, and George Em Karniadakis. Flow past a stationary and moving

cylinder: DNS at Re=10,000. In Proceedings of the 2004 Users Group Conference

(DOD UGC’04), pages 88–95, Williamsburg, VA, 2004.

[24] Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge University

Press, England, 2001.

[25] Herbert Edelsbrunner and Damrong Guoy. Sink-insertion for mesh improvement. In Proceedings

of the 17th ACM Symposium on Computational Geometry, pages 115–123, Medford, MA, 2001.

[26] William H. Frey. Selective refinement: A new strategy for automatic node placement in graded

triangular meshes. International Journal for Numerical Methods in Engineering,

24(11):2183–2200, 1987.

[27] Paul-Louis George and Houman Borouchaki. Delaunay Triangulation and Meshing. Application

to Finite Elements. HERMES, 1998.

[28] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of

Computational Physics, 73(2):325–348, 1987.

[29] Halit Nebi Gürsoy. Shape interrogation by medial axis transform for automated analysis. PhD

thesis, Massachusetts Institute of Technology, 1989.

[30] Sariel Har-Peled and Alper Üngör. A time-optimal delaunay refinement algorithm in two

dimensions. In Proceedings of the 21st annual symposium on Computational geometry, pages

228–236, Pisa, Italy, 2005. ACM Press.

[31] Martin Isenburg, Yuanxin Liu, Jonathan Shewchuk, and Jack Snoeyink. Streaming computation

of Delaunay triangulations. ACM Transactions on Graphics, 25(3):1049–1056, 2006.

[32] Clemens Kadow. Adaptive dynamic projection-based partitioning for parallel Delaunay mesh

generation algorithms. In SIAM Workshop on Combinatorial Scientific Computing,

San-Francisco, CA, February 2004.

[33] Clemens Kadow. Parallel Delaunay Refinement Mesh Generation. PhD thesis, Carnegie Mellon

University, 2004.

37

[34] Clemens Kadow and Noel Walkington. Design of a projection-based parallel Delaunay mesh

generation and refinement algorithm. In 4th Symposium on Trends in Unstructured Mesh

Generation, Albuquerque, NM, July 2003.

http://www.andrew.cmu.edu/user/sowen/usnccm03/agenda.html.

[35] G.E. Karniadakis and S.A. Orszag. Nodes, modes, and flow codes. Physics Today, 46:34–42,

1993.

[36] Francois Labelle and Jonathan Richard Shewchuk. Anisotropic Voronoi diagrams and

guaranteed-quality anisotropic mesh generation. In Proceedings of the 19th ACM Symposium on

Computational geometry, pages 191–200, San Diego, CA, 2003.

[37] Xiang-Yang Li. Generating well-shaped d-dimensional Delaunay meshes. Theoretical Computer

Science, 296(1):145–165, 2003.

[38] Xiang-Yang Li and Shang-Hua Teng. Generating well-shaped Delaunay meshes in 3D. In

Proceedings of the 12th annual ACM-SIAM symposium on Discrete algorithms, pages 28–37,

Washington, D.C., 2001.

[39] Leonidas Linardakis and Nikos Chrisochoides. Delaunay decoupling method for parallel

guaranteed quality planar mesh refinement. SIAM Journal on Scientific Computing,

27(4):1394–1423, 2006.

[40] Leonidas Linardakis and Nikos Chrisochoides. Algorithm 870: A static geometric medial axis

domain decomposition in 2D Euclidean space. ACM Transactions on Mathematical Software,

34(1):1–28, 2008.

[41] Gary L. Miller. A time efficient Delaunay refinement algorithm. In Proceedings of the 15th

annual ACM-SIAM symposium on Discrete algorithms, pages 400–409, New Orleans, LA, 2004.

[42] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. A Delaunay based

numerical method for three dimensions: Generation, formulation, and partition. In Proceedings

of the 27th Annual ACM Symposium on Theory of Computing, pages 683–692, Las Vegas, NV,

May 1995.

38

[43] Scott A. Mitchell. Cardinality bounds for triangulations with bounded minimum angle. In

Proceedings of the 6th Canadian Conference on Computational Geometry, pages 326–331,

Saskatoon, Saskatchewan, Canada, August 1994.

[44] Démian Nave, Nikos Chrisochoides, and L. Paul Chew. Guaranteed–quality parallel Delaunay

refinement for restricted polyhedral domains. Computational Geometry: Theory and

Applications, 28:191–215, 2004.

[45] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.

Journal of Algorithms, 18(3):548–585, 1995.

[46] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay

Triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry:

Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Science, pages

203–222. Springer-Verlag, May 1996. From the First ACM Workshop on Applied Computational

Geometry.

[47] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh generation.

Computational Geometry: Theory and Applications, 22(1–3):21–74, May 2002.

[48] Daniel A. Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay refinement:

Algorithms and analyses. In Proceedings of the 11th International Meshing Roundtable, pages

205–217, Ithaca, NY, 2001.

[49] Daniel A. Spielman, Shang-Hua Teng, and Alper Üngör. Time complexity of practical parallel

Steiner point insertion algorithms. In Proceedings of the 16th Annual ACM Symposium on

Parallelism in Algorithms and Architectures, pages 267–268, Barcelona, Spain, 2004. ACM Press.

[50] Alper Üngör. Off-centers: A new type of Steiner points for computing size-optimal

guaranteed-quality Delaunay triangulations. In Proceedings of LATIN, pages 152–161, Buenos

Aires, Argentina, April 2004.

[51] Roy A. Walters. Coastal ocean models: Two useful finite element methods. Recent

Developments in Physical Oceanographic Modeling: Part II, 25:775–793, 2005.

39

[52] David F. Watson. Computing the n-dimensional Delaunay tesselation with application to

Voronoi polytopes. Computer Journal, 24:167–172, 1981.

40

Figure 1: (Left) An MRI scan showing a cross-section of a body. (Right) A zoom-in of the selected
area containing an artery: the inside is white, the outside has different shades of gray and the black
zone is an approximate boundary between these regions. The standard Delaunay refinement algorithm
would insert the circumcenter c. However, in order to construct a mesh which conforms to the boundary,
another point (p) would be a better choice.

41

c

p
l

p
m

p
k

|| p
l

p
m||−ρ

a

b

o

p
i

p
n

c

p
l

p
m

p
k

o

|| p
l

p
m||−

Figure 2: (Left) Delaunay refinement with the off-centers. [50] (Right) The Type I selection disk
(shaded) for the insertion of a Steiner point.

Vertices
Free

Subsegment
Midpoints

×C

× 1√
2 × 1

2 cos α

Figure 3: Flow diagram from [47] illustrating the relationship between the insertion radius of a vertex
and its parent in two dimensions. If no cycle has a product smaller then one, the algorithm will
terminate. Input vertices are not shown since they do not participate in cycles. In [47] the constant
C = ρ̄ ≥

√
2. In our case, with the use of Type I selection disks C =

√
2, and with the use of Type II

selection disks C = δρ̄ ≥
√

2.

42

200 400 600 800 1000 1200 1400

1.46

3.5

6

8

10

12

14

16

Iteration

C
irc

um
ra

di
us

−
to

−
sh

or
te

st
−

ed
ge

 r
at

io

Pipe model

split triangle
average (3.50)
upper bound (1.46)

100 200 300 400 500 600 700 800 900 1000

0.5

1

1.5

2

2.5
x 10

4

Iteration

C
irc

um
ra

di
us

−
to

−
sh

or
te

st
 e

dg
e

ra
tio

Cylider flow model

split triangle
average (114.74)
upper bound (1.46)

500 1000 1500 2000 2500 3000 3500 4000
1.46
2.51

5

10

15

20

25

30

Iteration

C
irc

um
ra

di
us

−
to

−
sh

or
te

st
 e

dg
e

ra
tio

Chesapeake bay model

split triangle
average (2.51)
upper bound (1.46)

Figure 4: Circumradius-to-shortest edge length ratios of skinny triangles being eliminated by Delaunay
refinement.

43

p
l

p
m

p
k

p
i

pp

p

wu

p

v

i

p
l

p
m

p
k

p
i

o

Figure 5: (Left) p̂i is a Steiner point within a selection disk of a poor quality triangle which encroaches
upon a constrained segment e (pupv). (Right) An example of an optimization-based method for the
selection of a Steiner point within a selection disk of a poor quality triangle.

Figure 6: (Left) An upper part of a model of cylinder flow. (Right) Pipe cross-section model.

44

Figure 7: The pipe mesh (lower half is shown) with the minimal angle bound equal to 10◦. (Top)
Steiner points are inserted at the circumcenters of skinny triangles: 3033 triangles. (Center) Steiner
points are inserted at the off-centers: 2941 triangles. (Bottom) Our optimization-based method: 2841
triangles.

45

p
i

c

p
l

p
m

p
k

|| p
l ||cδ −

Figure 8: Selection of a Steiner point by a δ-graded Delaunay refinement algorithm. When δ =
√

2/ρ̄
the shaded disk corresponds to the Type II selection disk.

Figure 9: The Chesapeake bay mesh with the minimal angle bound equal to 20◦. Steiner points are
inserted at the circumcenter (cx, cy) of each skinny triangle: 22438 triangles.

46

Figure 10: The Chesapeake bay mesh with the minimal angle bound equal to 20◦. Steiner points are
inserted at the boundary (cx + r(1 −

√
2/ρ̄), cy) of the Type II selection disk: 22558 triangles.

47

Figure 11: The Chesapeake bay mesh with the minimal angle bound equal to 20◦. Steiner points are
inserted at the boundary (cx + r −

√
2l, cy) of the Type I selection disks: 25868 triangles.

p
9

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

p
10

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

Figure 12: (Left) If △p3p6p7 ∈ C (p8) ∩ C (p9), then concurrent insertion of p8 and p9 yields a non-conformal
mesh. Solid lines represent edges of the initial triangulation, and dashed lines represent edges created by the
insertion of p8 and p9. Note that the intersection of edges p8p6 and p9p7 creates a non-conformity. (Right)
If edge p3p6 is shared by C (p8) = {△p1p2p7, △p2p3p7, △p3p6p7} and C (p10) = {△p3p5p6, △p3p4p5}, the new
triangle △p3p10p6 can have point p8 inside its circumdisk, thus, violating the Delaunay property.

48

p
i

p
k

p
l

p
j

p
r

p

p

n

m

s

Figure 13: △plpnpm ∈ C (pi), △pkpmpn ∈ C (pj), C (pi) ∩ C (pj) = ∅, e (pmpn) ∈ ∂C (pi) ∩ ∂C (pj),
pi ∈ © (△pjpmpn), and r (△pkpmpn) > r (△plpnpm).

p
k

p
j

p
i

p
l

p
r

p
n

p
m

s

Figure 14: △plpnpm ∈ C (pi), △pkpmpn ∈ C (pj), C (pi) ∩ C (pj) = ∅, e (pmpn) ∈ ∂C (pi) ∩ ∂C (pj),
pi ∈ © (△pjpmpn), and r (△pkpmpn) ≤ r (△plpnpm).

49

l

L
Lm

k

L

L j

iL

Figure 15: An example of BUF (Li).

p
j

’p
j

p
i
’

2k

1k

p
i

L Li j

L

L

L

p
p

p

p

p

p
n

l

m

t

r

s

k

Figure 16: Splitting constrained segments and strong Delaunay-independence.

Lm

p
j

s

p
i

L

L i

k Lm

p
j

s

p
i

L

L i

k Lm

p
j

s

p
i

L

L i

k

Figure 17: Some possible positions of points pi and pj relative to BUF (Li).

50

ParallelGeneralizedDelaunayRefinement(X , P , g, Ā (·), ρ̄, f(·))
Input: X is a PSLG which defines Ω

P is the maximum number of compute threads
g is the granularity
Ā (·) is the triangle area grading function
ρ̄ is the upper bound on triangle circumradius-to-shortest edge ratio
f(·) is a deterministic function which returns a specific position

within triangle’s selection disk
Output: a conforming Delaunay mesh M respecting Ā (·) and ρ̄

1 Let Quadtree be a quadtree, initially consisting of a root node
which encloses the entire model

2 Construct M, a constrained Delaunay triangulation of X
3 Let RefinementQ = {Leaf ∈ Quadtree | PoorTriangles(Leaf) 6= ∅}
4 Let p = 0 be the number of spawned threads
5 while RefinementQ 6= ∅ or p > 0
6 if RefinementQ = ∅ or p = P

7 Wait for a thread to finish refining Leaf

8 p ← p − 1
9 RefinementQ ← RefinementQ∪

{L ∈ BUF2 (Leaf) | |PoorTriangles(L)| > 0}
10 else
11 Let Leaf be the leaf on the top of RefinementQ

12 RefinementQ ← RefinementQ \ BUF2 (Leaf)
13 p ← p + 1
14 spawn DelaunayRefinement(X , g, Ā (·), ρ̄, f(·), M, Leaf)
15 endif
16 endwhile
17 return M

Figure 18: The Parallel Generalized Delaunay Refinement (PGDR) algorithm executed by the master
thread.

51

GeneralizedDelaunayRefinement(X , g, Ā (·), ρ̄, f(·), M, Leaf)
Input: See the GPDR algorithm, Figure 18
Output: Locally refined Delaunay mesh M

Locally refined quadtree node Leaf

1 imin ← minPoorTrianglesi(Leaf) 6=∅ i

2 imax ← imin + g

3 for j = imin, . . . , imax

4 while PoorTrianglesj(Leaf) 6= ∅
5 Let t ∈ PoorTrianglesj(Leaf)
6 p ← f(t)
7 Insert p into M
8 for L ∈ {Leaf } ∪ BUF (Leaf)
9 Update PoorTriangles(L) and Counter(L)

10 endfor
11 endwhile
12 endfor
13 Split Leaf recursively while (29) holds
14 return M, Leaf

Figure 19: The algorithm executed by each of the refinement threads.

52

p
k

p
l

p
j

p
1

p

p

n

m

p

p
p

p

p
3

4

5
6

7

p
2

Figure 20: △pkpmpn ∈ C (pj), △plpnpm /∈ C (pj).

Figure 21: Pipe cross-section model, Ā (x, y) = 0.4
√

(x − 200)2 + (y − 200)2 + 1. (Left) Our parallel
refinement algorithm, 4166 triangles. (Right) Triangle [46], 4126 triangles.

53

Figure 22: Jonathan Shewchuk’s key model, Ā (x, y) = 0.02|y−46|+0.1. (Left) Our parallel refinement
algorithm, 5411 triangles. (Right) Triangle [46], 5723 triangles.

−20
−20

0

0

y

x

20

50

Figure 23: The cylinder flow model. Ā (x, y) = 1.2·10−3 if ((x ≥ 0)∧(|y| < 5))∨((x < 0)∧(
√

x2 + y2) <
5); Ā (x, y) = 10−2, otherwise. Our parallel refinement algorithm produced 1044756 triangles, and
Triangle [46] produced 1051324 triangles. (Left) The input model. (Right) The final quadtree. The
complete triangulation is not drawn.

54

1 2 3 4
0

10

20

23.5

30

42.2

50

54.3

60

70

80

Number of compute threads

T
im

e,
 s

ec

Triangle (sequential)
granularity = 1
granularity = 2
granularity = 3
granularity = 4
granularity = ∞

0 1 2 3 4
0

5

10

15

20

25

Thread number

T
im

e,
 s

ec

Mesh refinement
Quadtree refinement
Refinement queue updates
Idle time

Figure 24: (Left) The total running time of the PGDR code, for different granularity values, as the
number of compute threads is increased form 1 to 4, compared to Triangle.[46] Each point on the
graph is the average of 10 measurements. (Right) The breakdown of the total PGDR execution time
for each of the threads, when the number of compute threads is 4 and granularity is 2. Thread number
0 performs only the management of the refinement queue, and threads 1–4 perform mesh and quadtree
refinement. The data correspond to the test with the median total running time.

55

Figure 25: Examples of the approaches for choosing Steiner points within selection disks of skinny
triangles.

Table 1: Mesh quality comparison for three point insertion strategies, no area bound is used. θ is the
minimal angle bound, n is the number of triangles in the resulting mesh, % is the percentage ratio
in the number of triangles over the optimization-based method, minA and max A are the minimal
and the maximal angles in the entire mesh, Aave

min and Aave
max are the averages of the minimum and the

maximum angle for all triangles.

Point position
θ = 10◦ θ = 20◦ θ = 30◦

flow pipe flow pipe flow pipe

Circumcenter

n 2173 3033 3153 4651 8758 10655
% 120.3 106.7 107.5 106.6 138.5 124.1
min A 10.0 10.0 20.0 20.0 30.0 30.0
max A 151.5 150.4 128.5 137.7 119.3 119.4
Aave

min 28.1 26.7 35.9 35.9 45.8 45.6
Aave

max 92.5 92.5 88.1 88.0 76.6 76.8

Off-center

n 1906 2941 2942 4411 6175 8585
% 105.5 103.5 100.3 101.1 97.7 100.0
min A 10.1 10.0 20.2 20.0 30.0 30.0
max A 157.0 149.9 133.3 133.7 118.2 119.0
Aave

min 24.4 25.4 34.4 34.7 43.6 43.7
Aave

max 96.2 94.9 87.8 87.1 77.3 77.7
n 1805 2841 2932 4359 6319 8581
% 100.0 100.0 100.0 100.0 100.0 100.0

Our example of an opti- minA 10.0 10.0 20.0 20.0 30.0 30.0
mization-based method max A 157.3 152.5 138.3 137.1 119.0 119.5

Aave
min 23.2 24.8 34.3 34.6 44.0 43.6

Aave
max 98.3 96.7 87.9 87.6 77.1 77.8

56

Table 2: The comparison of the number of triangles generated with the use of circumcenter, off-center,
and an optimization-based point insertion strategies, with an area bound. For the cylinder flow model,
the area bound is set to Ā = 0.01, and for the pipe cross-section model Ā = 1.0.

Point position
θ = 10◦ θ = 20◦ θ = 30◦

flow pipe flow pipe flow pipe
Circumcenter 219914 290063 220509 289511 228957 294272
Off-center 219517 290057 220479 289331 226894 295644
Our example of an opti-
mization-based method 219470 289505 220281 289396 226585 294694

