
GENERALIZED 2D DELAUNAY MESH REFINEMENT

ANDREY N. CHERNIKOV∗ AND NIKOS P. CHRISOCHOIDES†

Abstract. Delaunay refinement is a popular mesh generation method which makes it possible
to derive mathematical guarantees with respect to the quality of the elements. Traditional Delaunay
refinement algorithms insert Steiner points in a small enumerable number (one or two) of specific
positions inside circumscribed circles of poor quality triangles and on encroached segments. In this
paper we prove that there exist entire two-dimensional and one-dimensional regions that can be
used for the insertion of Steiner points (innumerable number of choices) while the guarantees on
mesh quality can be preserved. This result opens up the possibility to use multiple point placement
strategies, all covered by a single proof. In addition, the parallelization of this generalized algorithm
immediately implies the parallelization for each individual point placement method.

Key words. Delaunay triangulation, mesh generation

AMS subject classifications. 65D18, 68W05, 68W10, 68N19

1. Introduction. In this paper we build the theoretical foundation for the devel-
opment of sequential Delaunay mesh generation algorithms and software that satisfy
the following requirements:

1. make it possible to use custom point placement strategies;
2. guarantee well-shaped elements with bounded minimal angles;
3. offer proofs of termination and good grading.

Our ongoing research includes the extension of the parallel mesh generation frame-
works [3, 4, 14, 15] for use with the generalized sequential analysis presented here, so
that multiple custom point placement strategies can be used for parallel guaranteed
quality Delaunay refinement.

Delaunay refinement is a popular technique for generating triangular and tetra-
hedral meshes for use in the finite element method, the finite volume method, and
interpolation in various numeric computing areas. Among the reasons for its pop-
ularity is the amenability of the method to rigorous mathematical analysis, which
makes it possible to derive guarantees on the quality of the elements by proving the
termination of the algorithm and the good grading of the mesh.

The field of guaranteed quality Delaunay refinement has been extensively studied,
see [6, 7, 11, 16, 18, 19] and the references therein. However, new ideas and improve-
ments keep being introduced. One of the basic questions is where to insert additional
(so-called Steiner) points into an existing mesh in order to improve the quality of
the elements and/or satisfy other algorithm-specific goals, see [7, 8, 10, 12, 13, 20] for
a number of approaches. The goal of this paper is to develop a general framework
which allows to use custom point insertion strategies, all covered by a single proof.

In [5] we listed two-dimensional and three-dimensional point insertion methods
and suggested the use of two-dimensional and three-dimensional regions, respectively,
which we called selection disks. These regions were defined for the highest dimension
only, and, hence, we termed the approach semi-generalized. In this paper we develop
a fully generalized approach for two dimensions, i.e., we define the selection regions for
both one-dimensional elements (segments) and two-dimensional elements (triangles).

∗Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23185
(ancher@cs.wm.edu).

†Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23185
(nikos@cs.wm.edu).

1

2

Fig. 1.1. (Left) An MRI scan showing a cross-section of a body. (Right) A zoom-in of the
selected area containing an artery: the inside is white, the outside has different shades of gray, and
the black zone is an approximate boundary between these regions. The standard Delaunay refinement
algorithm would insert the circumcenter c. However, in order to construct a mesh which conforms
to the boundary, another point (p) would be a better choice.

pu

pv

pw

pt

c

pu

pv

pw

pt

c

pu

pv

pw

pt

pi

Fig. 1.2. Two constrained segments e (pwpt) and e (pupv) are located close to each other and
segment e (pupv) is split by a Delaunay refinement algorithm. (Left) If the center c of e (pupv)
is inserted, c will encroach upon e (pwpt), and (Middle) e (pwpt) will need to be split. (Right)
However, a point pi in the selection segment of e (pupv) can be chosen instead of c, such that it does
not encroach upon e (pwpt).

Our future work includes the development of three-dimensional and N -dimensional
fully generalized algorithms.

The use of the selection regions can find numerous applications in mesh optimiza-
tion algorithms for a diverse range of applications. In particular, we are interested in
conforming the mesh to the boundary between different materials specified by medical
images, see Figure 1.1. In this case, one of the goals of the mesh generation step is
to avoid creating edges that would intersect the boundary, which can be achieved by
inserting Steiner points inside the boundary zone. One-dimensional selection regions
can be used for inserting points along the boundaries according to general distribu-
tion requirements. Another mesh optimization example involving one-dimensional
selection regions is shown in Figure 1.2.

The rest of the paper is organized as follows. In Section 2 we summarize the es-
sential background required for the understanding of Delaunay refinement algorithms
in general. In Section 3 we define the selection circle and the selection interval, as well
as our Generalized Delaunay Refinement (GDR) algorithm. In Section 4 we prove a
number of lemmas and a point spacing theorem which make it possible to bound the
lengths of the edges created by the GDR algorithm in terms of the local feature size

3

BowyerWatson(V , T , p)
Input: V is the set of vertices

T is the set of triangles
p is the Steiner point

Output: V and T after the insertion of p

1 V ← V ∪ {p}
2 T ← T \ C (p) ∪ {(pξ) | ξ ∈ ∂C (p)}

Fig. 2.1. The Bowyer-Watson point insertion procedure.

function determined by the input. These results allow us to show that the algorithm
cannot produce a sequence of edges of ever decreasing length and therefore, since the
area of the domain is bounded, it terminates. In Section 5 we prove the termination of
the algorithm, and in Section 6 we prove the good grading of the meshes it produces.
Section 8 concludes the paper.

2. Delaunay Refinement Background. Let the input domain Ω be described
by a Planar Straight Line Graph (PSLG) [18, 19]. A PSLG X consists of a set of ver-
tices and a set of straight line segments. Each segment of X is considered constrained
and must be preserved during the construction of the mesh, although it can be sub-
divided into smaller subsegments. The vertices of X must be a subset of the final set
of vertices in the mesh.

Let the mesh MX for the given PSLG X consist of a set V = {pi} of vertices and
a set T = {ti} of triangles which connect vertices from V . We denote the triangle
with vertices pu, pv, and pw as △pupvpw. We use the symbol e (pipj) to represent the
edge of the mesh which connects points pi and pj .

As a measure of the quality of elements we use the circumradius-to-shortest edge
length ratio specified by an upper bound ρ̄. The value of this bound has to be greater
than or equal to

√
2 which comes from the ratio of the maximum distance of a point

within a circle to either of the end points of the diameter over the radius of the circle,
see the proof of Theorem 4.4. This bound in two dimensions is equivalent to a lower
bound on a minimal angle [17, 19] since for a triangle with the circumradius-to-shortest
edge length ratio ρ and minimal angle A, ρ = 1/(2 sin A). A mesh is said to satisfy
the Delaunay property if the circumscribed circle (circumcircle) of every triangle does
not contain any of the mesh vertices [9].

We use the notion of cavity [11] which is the set of elements in the mesh whose
circumcircles include a given point p. We denote CM (p) to be the cavity of p with
respect to mesh M and ∂CM (p) to be the set of boundary edges of the cavity, i.e.,
the edges which are incident upon only one triangle in CM (p). When M is clear from
the context, we will omit the subscript. For our analysis, we use the Bowyer-Watson
(B-W) point insertion algorithm [2, 21], which can be written shortly as in Figure 2.1.

In order not to create skinny triangles close to constrained segments and to pre-
vent the insertion of Seiner points outside the domain, Delaunay refinement algorithms
observe special encroachment rules [18, 19]. In particular, if a Steiner point p is con-
sidered for insertion but it lies within the diametral circle of a constrained subsegment
s, then a point on s is inserted instead. Traditionally, the midpoint of s is inserted,
however, as we show below, there is a whole interval in s from which any point can
be selected.

Definition 2.1 (Local feature size [18, 19]). The local feature size function
lfs (p) for a given point p is equal to the radius of the smallest disk centered at p that

4

intersects two non-incident elements of the PSLG.

lfs (p) satisfies the Lipschitz condition:

Lemma 2.2 (Lemma 1 in [18], Lemma 2 in [19]). Given any PSLG and any two
points pi and pj, the following inequality holds:

lfs (pi) ≤ lfs (pj) + ‖pi − pj‖. (2.1)

Here and in the rest of the paper we use the standard Euclidean norm ‖ · ‖.
The following definitions of the insertion radius and of the parent of a Steiner

point play a central role in the analysis in [18, 19] and we use them for our analysis
in the generalized form, too.

Definition 2.3 (Insertion radius [19]). The insertion radius R (p) of point p
is the length of the shortest edge which would be connected to p if p is inserted into
the mesh, immediately after it is inserted. If p is an input vertex, then R (p) is the
Euclidean distance between p and the nearest input vertex visible from p.

Here a vertex is called visible from another vertex if the straight line segment
connecting both vertices does not intersect any of the constrained segments.

Remark 1. If e (plpm) is an edge in the mesh and pl was inserted after pm (or
both pl and pm are input vertices) then R (pl) ≤ ‖pl−pm‖. Indeed, if e (plpm) was the
shortest edge among the edges incident upon pl at the time pl was inserted into the
mesh (in the case of input vertices, assume that they were inserted simultaneously),
then R (pl) = ‖pl − pm‖ by the definition of the insertion radius; otherwise, R (pl) <
‖pl − pm‖.

Remark 2. As shown in [19], if p is an input vertex, then R (p) ≥ lfs (p). Indeed,
from the definition of lfs (p), the second feature (in addition to p) which intersects the
disk centered at p is either a constrained segment or the nearest input vertex visible
from p.

The following definition of a parent vertex generalizes the corresponding definition
in [19]. In our analysis, even though the position of the child is not fixed, the parent
is still defined to be the same vertex as in the traditional approach.

Definition 2.4 (Parent of a Steiner point). The parent p̂ of point p is the
vertex which is defined as follows: (i) If p is an input vertex, it has no parent. (ii) If
p lies on an encroached segment, then p̂ is the encroaching point (possibly rejected for
insertion). (iii) If p is inserted inside the circumcircle of a poor quality triangle, p̂ is
the most recently inserted vertex of the shortest edge of this triangle.

The quantity D (p) is defined as the ratio of lfs (p) over R (p) [19]:

D (p) =
lfs (p)

R (p)
. (2.2)

It reflects the density of vertices near p at the time p is inserted, weighted by the local
feature size. To achieve good mesh grading we would like this density to be as small
as possible. If the density is bounded from above by a constant, the mesh is said to
have a good grading property.

3. Generalized Delaunay Refinement Algorithm.

Definition 3.1 (Selection circle). For a skinny triangle with circumcenter c,
shortest edge length l, circumradius r, and circumradius-to-shortest edge length ratio

5

pk

pl = p̂i

pm

pi c

δ2‖c − pl‖

pu

pv

pi

p̂i

c

δ1‖c − pv‖

Fig. 3.1. (Left) Selection circle (shaded) for the skinny triangle △pkplpm with the shortest
edge e (plpm). Also illustrates case (1) from Table 4.1. (Right) Selection interval (bold) for an
encroached segment e (pupv). Also illustrates case (2) from Table 4.1.

ρ = r/l ≥ ρ̄ ≥
√

2, the selection circle is the circle with center c and radius r(1− δ2),
where δ2 is a constant parameter chosen such that

√
2

ρ̄
≤ δ2 ≤ 1. (3.1)

See Figure 3.1(left) for an illustration.

Remark 3. If δ2 = 1 then the selection circle shrinks to the circumcenter point.

Definition 3.2 (Selection interval). If s is an encroached segment with center
c then the selection interval of s is the subsegment of s with center c and length
|s|(1 − δ1), where δ1 is a constant parameter chosen such that

√
2

ρ̄δ2
≤ δ1 ≤ 1 (3.2)

and |s| is the length of s. See Figure 3.1(right) for an illustration.

Remark 4. If δ1 = 1, then the selection interval shrinks to the center point.

Remark 5. If ρ̄ =
√

2 then both δ2 and δ1 can only be equal to 1; therefore,
both the selection circles of skinny triangles and the selection intervals of encroached
segments shrink to the center points.

Remark 6. If δ2 =
√

2
ρ̄

then δ1 can only be equal to 1; therefore, the selection
intervals of encroached segments shrink to the center points.

If δ1 = 1 then our Generalized Delaunay Refinement (GDR) algorithm is equiv-
alent to the semi-generalized algorithm which was presented in [5] for both two and
three dimensions. This paper lays the foundation for the development of the three-
dimensional fully generalized algorithm.

Figure 3.2 presents the GDR algorithm. For brevity, let us abbreviate the types
of Steiner points inserted by the GDR algorithm as follows:

• Type-A: points within selection circles of skinny triangles,
• Type-B : points within selection intervals of encroached constrained segments

that do not create input angles less than 90◦,

6

GeneralizedDelaunayRefinement(X , ρ̄, δ2, δ1, f2(), f1(), M)
Input: X is the PSLG which defines the domain Ω

ρ̄ is the upper bound on circumradius-to-shortest edge length ratio,

ρ̄ ≥
√

2
δ2 is the parameter which defines selection circles for skinny triangles,√

2

ρ̄
≤ δ2 ≤ 1

δ1 is the parameter which defines selection intervals for encroached segments,√
2

ρ̄δ2
≤ δ1 ≤ 1

f2() and f1() are user-defined functions which return specific positions
for Steiner points within selection circles and selection intervals, respectively

M = (V, T) is an initial triangulation of X , where V is the set of vertices
and T is the set of triangles

Output: A refined Delaunay mesh M which respects the bound ρ̄

1 Let SkinnyTriangles be the set of skinny triangles in T

2 while SkinnyTriangles 6= ∅
3 Pick t ∈ SkinnyTriangles

4 p← f2(δ2, t) //Type-A
5 Let EncroachedSegments be the set of encroached segments
6 if EncroachedSegments = ∅
7 BowyerWatson(V , T , p)
8 Update SkinnyTriangles

9 endif

10 while EncroachedSegments 6= ∅
11 Pick s ∈ EncroachedSegments

12 if s creates an input angle between 60◦ and 90◦

13 p← midpoint of s //Type-C
14 else

15 p← f1(δ1, s) //Type-B
16 endif

17 BowyerWatson(V , T , p)
18 Update EncroachedSegments

19 endwhile

20 endwhile

Fig. 3.2. The Generalized Delaunay Refinement algorithm.

• Type-C : center points of encroached constrained segments that create at least
one input angle α, 60◦ ≤ α < 90◦.

For example, in Figure 3.3, segments e (prpw) and e (ptpw) create input angles
between 60◦ and 90◦, and e (pupv) and e (pspw) do not.

The analysis below assumes that all angles in the input PSLG are not less than
60◦. In practice such geometries are rare; however, a modification of the algorithm
with concentric circular shell splitting [18, 19] allows to guarantee the termination of
the algorithm (but not the good grading) even though the small angles created by the
segments of the input PSLG cannot be improved.

4. Point Spacing Theorem. The main result of section is Theorem 4.4 which
establishes the relation between the insertion radius of a point and that of its parent
or the local feature size. In particular, in both cases the insertion radius is bounded
from below and, therefore, the lengths of the edges created by the GDR algorithm
are bounded from below. This result allows us to prove in the following sections the
termination of the algorithm and the good grading of the meshes it produces.

7

pu

pv

pw

pr

ps

pt

Fig. 3.3. Examples of segments which can be split by the specified types of Steiner points.
Segments e (prpw) and e (ptpw) can only be split by center points (Type-C), and segments e (pupv)
and e (pspw) can be split by arbitrary points within their selection intervals (Type-B).

Type-A

Type-A Type-B

Type-B

Type-C or input

Type-C

pi

p̂i

(1)

(2)

(3) (4)

(5)(5)

(6)(6)

n/a

n/a

n/a

non-adjacentnon-adjacent adjacentadjacent

Table 4.1
All possible type combinations of pi and p̂i. The cells above the labels “adjacent” and “non-

adjacent” correspond to the cases when pi and p̂i lie on adjacent and non-adjacent segments, re-
spectively. Each of the cases (n) is analyzed separately.

First, we prove Lemmas 4.1, 4.2, and 4.3 that establish important relations used
in the proof of Theorem 4.4 as well as in the proof of good grading in Section 6.
Lemmas 4.1 and 4.2 bound the insertion radius of a Steiner point from below in terms
of the “size” of the two-dimensional and one-dimensional selection region, respectively.
Lemma 4.3 deals with the case when the position of the point is fixed to the center
of the segment.

Lemma 4.1. If Steiner point pi is of Type-A then

R (pi) ≥ δ2r, (4.1)

where r is the circumradius of the corresponding skinny triangle.

Proof. Consider Figure 3.1(left). By the Delaunay property, the circumcircle of
the skinny triangle △pkplpm does not contain any of the mesh vertices in its interior.
Therefore, the donut between the boundary of the circumcircle and the boundary of
the selection circle is also empty. Thus, the distance from pi to the closest mesh vertex
has to be greater than or equal to the width of the donut. Hence, the insertion radius
of pi has to be greater than or equal to the width of the donut which is equal to δ2r.

8

Lemma 4.2. If Steiner point pi is of Type-B, it lies on segment s, and the vertex
closest to pi is one of the endpoints of s, then

R (pi) ≥ δ1
|s|
2

. (4.2)

Proof. By the encroachment rule, the diametral circle of s is empty except for
possibly p̂i, see Figure 3.1(right). Suppose pv is the end point of s which is the mesh
vertex closest to pi. Then R (pi) = ‖pi − pv‖ and from the definition of the selection

interval, R (pi) ≥ δ1
|s|
2 .

Lemma 4.3. If pi is of Type-C and p̂i is either of Type-C or an input vertex,
and, furthermore, pi and p̂i lie on adjacent segments, then

R (pi) = ‖pi − p̂i‖. (4.3)

Proof. Consider Figure 4.1(left). Since pi is the center of the diametral circle of
e (pupv), and by the encroachment rule this circle is empty of mesh vertices except
for the encroaching vertex p̂i, the vertex closest to pi is p̂i and (4.3) holds.

Theorem 4.4 (Point Spacing Theorem). With the use of the GDR algorithm
either

R (pi) ≥ Cn · R (p̂i) , n = 1, 2, 3, 4, (4.4)

or

R (pi) ≥ Cn · lfs (pi) , n = 5, 6, (4.5)

where Cn are defined separately for each of the cases (n) from Table 4.1 as follows:
C1 = ρ̄δ2, C2 = δ1√

2
, C3 = 1√

2
, C4 = 1

2 cos αmin

, C5 = δ1

2−δ1

, C6 = 1, where αmin is the

minimum input angle.

Proof.
Case (1) By the definition of the parent vertex, p̂i is the most recently inserted

endpoint of the shortest edge of the triangle. Consider Figure 3.1(left). Without
loss of generality let p̂i = pl and e (plpm) be the shortest edge of the skinny triangle
△pkplpm with circumradius r. Then

R (pi) ≥ δ2r (from Lemma 4.1)
= δ2

r
‖pl−pm‖‖pl − pm‖

= δ2ρ‖pl − pm‖
≥ δ2ρ̄‖pl − pm‖ (since ρ ≥ ρ̄)
≥ δ2ρ̄R (pl) (from Remark 1)
= δ2ρ̄R (p̂i) ;

therefore, (4.4) holds with C1 = ρ̄δ2.
The argument above holds for all types of p̂i because it does not involve the

properties of p̂i specific for a particular type.
Case (2) Let p̂i encroach upon the constrained segment e (pupv), see Figure 3.1(right).

Then

R (p̂i) ≤ min{‖p̂i − pu‖, ‖p̂i − pv‖} (from Remark 1)

≤
√

2‖pu−pv‖
2 (because p̂i encroaches upon e (pupv))

≤
√

2R(pi)
δ1

(from Lemma 4.2, since p̂i is rejected);

9

pu

pv

pw

pi

p̂iα

θ

pu

pv

c

pi

p̂i

Fig. 4.1. (Left) pi and p̂i lie on adjacent segments separated by angle α, 60◦ ≤ α < 90◦ (case
(4) from Table 4.1). (Right) pi and p̂i lie on non-adjacent segments (case (5) from Table 4.1).

therefore, (4.4) holds with C2 = δ1√
2
.

Case (3) This is a special case of Case (2), with δ1 = 1. Thus, (4.4) holds with
C3 = 1√

2
.

Case (4) This case was proved in [19]. We present the proof using our notation
for the completeness of the paper.

Consider Figure 4.1(left). Let the adjacent constrained segments e (pupv) and
e (pvpw) be separated by an angle α, 60◦ < α < 90◦. Then

R(pi)
R(p̂i)

= ‖pi−p̂i‖
R(p̂i)

(from Lemma 4.3)

≥ ‖pi−p̂i‖
‖p̂i−pv‖ (from Remark 1)

= sin α
sin θ

(considering △pipv p̂i).

Considering α fixed and the position of p̂i variable, the fraction sin α
sin θ

is minimized when
θ is maximized (since 0 < θ < 90◦) or, equivalently, when p̂i lies on the boundary of
the diametral circle of e (pupv). In that case

R (pi) = ‖pi − p̂i‖ = ‖pi − pv‖ = r, (4.6)

where r is the radius of the diametral circle of e (pupv), and from the isosceles triangle
△p̂ipipv,

‖p̂i − pv‖ = 2r cos α. (4.7)

Therefore, noting (4.6) and (4.7), the fraction ‖pi−p̂i‖
‖p̂i−pv‖ has a lower bound of 1

2 cos α
,

i.e.,

R (pi) ≥
1

2 cos α
R (p̂i) .

Therefore, (4.4) holds with C4 = 1
2 cos αmin

, where αmin is the minimum input angle.
Case (5) Let p̂i lie on a constrained segment (including the case when it is an

end point of this segment) and encroach upon a non-adjacent constrained segment
s = e (pupv), see Figure 4.1(right), and pi lie in the selection interval of s. Then there
are two possibilities:

(a) If p̂i is the vertex closest to pi then R (pi) = ‖pi − p̂i‖ ≥ lfs (pi) by Defini-
tion 2.1 of the lfs () function.

10

ρ̄δ2 · R (p̂)

δ1√
2
· R (p̂) 1√

2
· R (p̂)

1
2 cos αmin

· R (p̂)

δ1

2−δ1

· lfs (p)

δ1

2−δ1

· lfs (p)

1 · lfs (p)

1 · lfs (p)

Type-A

Type-B Type-C

Fig. 5.1. A diagram illustrating the relationship between the insertion radius R (p) of a vertex p

and the insertion radius R (p̂) of its parent p̂. The head of each arrow points to the box marked with
the type of p and the tail leaves from the box marked with the type of p̂. Solid arrows are labeled with
the minimum value of R (p) in terms of R (p̂). Dashed arrows are labeled with the minimum possible
value of R (p). The GDR algorithm terminates because no solid cycle has a product of constant
multipliers smaller then one. Input vertices are not shown since they do not participate in cycles.

(b) Otherwise, because the diametral circle of s is empty except for p̂i, one of the
endpoints of s must be the vertex closest to pi. Then, if c is the center of s,
by Definition 2.1 of the lfs () function,

lfs (c) ≤ ‖c − p̂i‖. (4.8)

Therefore,

lfs (pi) ≤ lfs (c) + ‖pi − c‖ (from Lemma 2.2)
≤ ‖c − p̂i‖ + ‖pi − c‖ (from (4.8))

≤ |s|
2 + ‖pi − c‖ (because p̂i encroaches upon s)

≤ |s|
2 + (1 − δ1)

|s|
2 (since pi lies in the selection interval of s)

= (2 − δ1)
|s|
2

≤ (2 − δ1)
R(pi)

δ1

(from Lemma 4.2).

In both cases, C5 = δ1

2−δ1

satisfies the inequality (4.5).
The argument above holds for each type of p̂i (Type-B, Type-C, or input) because

it does not involve the properties of p̂i specific for a particular type.
Case (6) This is a special case of Case (5), with δ1 = 1. Thus, the inequality (4.5)

can be satisfied with C6 = 1.

5. Proof of Termination.

Theorem 5.1. The GDR algorithm terminates.

Proof. To prove the termination, we need to prove that the GDR algorithm does
not create edges of ever decreasing length. Then, from the fact that in a Delaunay

11

mesh each vertex is always connected by an edge to its nearest neighbor [1], it follows
that there exists an empty circle around each vertex of radius equal to the distance
to its nearest neighbor. Since one can pack only a finite number of such circles in the
bounded domain, the algorithm will eventually terminate because it will run out of
space to insert new vertices.

Table 4.1 presents an exhaustive enumeration of all possible parent-child com-
binations. First, we prove by contradiction that the combinations marked as “n/a”
cannot arise. These combinations have the following three common properties:

1. the child point pi is either of Type-B or of Type-C,
2. the parent p̂i lies on the segment adjacent to the segment containing pi,
3. at least one of the points pi and p̂i is of Type-B.

Since a point of Type-B or of Type-C can only be inserted as a result of encroachment
by its parent, the angle between the segments containing pi and p̂i has to be less than
90◦. Therefore, both pi and p̂i must be of Type-C or input which contradicts item 3
above.

All the remaining parent-child combinations (marked with numbers) have been
analyzed in Theorem 4.4. From this theorem it follows that with the use of the GDR
algorithm no new edge will be created whose length is less than C · lfsmin, where C > 0
is a constant, and lfsmin = minp∈Ω lfs (p), see Figure 5.1.

6. Proof of Good Grading. The main result of this section is Theorem 6.4
which establishes that the insertion radius of a vertex has a lower bound proportional
to its local feature size. This is a stronger result than the bound on the insertion radius
required for the termination of the algorithm that is proportional to the global mini-
mum of the local feature size. First, we prove Lemmas 6.1 and 6.2 that bound from
above the distance from a point to its parent in terms of the “size” of the correspond-
ing two-dimensional and one-dimensional selection region, respectively. These results
are used to prove Lemma 6.3 which establishes that the vertex density in a point is
bounded from above by a linear function of the density in its parent. Lemma 6.3
is proved only for cases (1)–(4), since for cases (5) and (6) the relation of the inser-
tion radius to the local feature size proved by Theorem 6.4 follows directly from the
Spacing Theorem. Finally, we prove Theorem 6.4 by enumerating all possible type
combinations of a point and its parent.

Lemma 6.1. If p is of Type-A then

‖p − p̂‖ ≤ (2 − δ2)r, (6.1)

where r is the circumradius of the skinny triangle t.

Proof. If c is the circumcenter of t, then

‖p − p̂‖ ≤ ‖p − c‖ + ‖c − p̂‖ (from the triangle inequality)
≤ (1 − δ2)r + ‖c − p̂‖ (since p is in the selection circle)
= (1 − δ2)r + r (since p̂ is a vertex of t)
= (2 − δ2)r.

Lemma 6.2. If p is of Type-B then

‖p − p̂‖ ≤ (2 − δ1)
|s|
2

, (6.2)

where |s| is the length of the encroached segment s.

12

Proof. If c is the center of s, then

‖p − p̂‖ ≤ ‖p − c‖ + ‖c − p̂‖ (from the triangle inequality)

≤ (1 − δ1)
|s|
2 + ‖c − p̂‖ (since p is in the selection interval)

≤ (1 − δ1)
|s|
2 + |s|

2 (since p̂ encroaches upon s)

= (2 − δ1)
|s|
2 .

Lemma 6.3. If p is a vertex of the mesh inserted by the GDR algorithm, and Cn

(n = 1, 2, 3, 4) are the constants specified by Theorem 4.4 for the corresponding cases
listed in Table 4.1, then the following inequality holds:

D (p) ≤ Bn +
D (p̂)

Cn

, n = 1, 2, 3, 4 (6.3)

where B1 = 2−δ2

δ2

, B2 = 2−δ1

δ1

, B3 = 1, B4 = 1.

Proof.
First, we prove the inequality

‖p − p̂‖ ≤ Bn · R (p) (6.4)

for each of the cases below.
Case (1):

‖p − p̂‖ ≤ (2 − δ2)r (from Lemma 6.1)

= 2−δ2

δ2

δ2r

≤ 2−δ2

δ2

R (p) (from Lemma 4.1);

therefore, inequality (6.4) can be satisfied with B1 = 2−δ2

δ2

.
Case (2):

‖p − p̂‖ ≤ (2 − δ1)
|s|
2 (from Lemma 6.2)

= 2−δ1

δ1

δ1
|s|
2

≤ 2−δ1

δ1

R (p) (from Lemma 4.2, since p̂ is rejected);

therefore, inequality (6.4) can be satisfied with B2 = 2−δ1

δ1

.
Case (3): The argument is a special case of Case (2) with δ1 = 1; therefore,

inequality (6.4) can be satisfied with B3 = 1.
Case (4): From Lemma 4.3, ‖p − p̂‖ = R (p); therefore, inequality (6.4) can be

satisfied with B4 = 1.
Now, for all cases (1)–(4),

lfs (p) ≤ lfs (p̂) + ‖p − p̂‖ (from Lemma 2.2)
≤ lfs (p̂) + BnR (p) (from (6.4))
= D (p̂) R (p̂) + BnR (p) (from (2.2))

≤ D (p̂) R(p)
Cn

+ BnR (p) (from Theorem 4.4).

The result follows from the division of both sides by R (p).

Theorem 6.4 (Extension of Lemma 7 in [19] and Lemma 2 in [18]). Suppose
that ρ̄ >

√
2 and the smallest angle in the input PSLG is strictly greater than 60◦.

13

There exist fixed constants DA > 0, DB > 0, and DC > 0 such that, for any vertex p
inserted (or considered for insertion and rejected) by the GDR algorithm, the following
inequalities hold:

D (p) ≤







DA if p is of Type-A,
DB if p is of Type-B,
DC if p is of Type-C.

(6.5)

Therefore, the insertion radius of p has a lower bound proportional to its local feature
size.

Proof. The proof is by induction and is similar to the proof of Lemma 7 in [19].
The base case covers the input vertices, and the inductive step covers the other three
types of vertices.

Base case: The theorem is true if p is an input vertex, because in this case, by
Remark 2, D (p) = lfs (p) /R (p) ≤ 1.

Inductive hypothesis: Assume that the theorem is true for p̂, i.e.,

D (p̂) ≤







DA if p̂ is of Type-A,
DB if p̂ is of Type-B,
DC if p̂ is of Type-C.

(6.6)

Inductive step: For each of the cases (n), n = 1, 2, 3, 4, we start with (6.3) and
apply the inductive hypothesis considering the possible type combinations of p and p̂
from Table 4.1. As a result, the inequalities in (6.5) can be satisfied if DA, DB , and
DC are chosen such that the following inequalities (6.7), (6.8), (6.9), (6.10), (6.11),
and (6.12) hold:

Case (1):

B1 +
DA

C1
≤ DA, (6.7)

B1 +
DB

C1
≤ DA, (6.8)

B1 +
DC

C1
≤ DA, (6.9)

Case (2):

B2 +
DA

C2
≤ DB , (6.10)

Case (3):

B3 +
DA

C3
≤ DC , (6.11)

Case (4):

14

B4 +
DC

C4
≤ DC . (6.12)

For cases (5) and (6), from Theorem 4.4 we have: D (p) = lfs (p) /R (p) ≤ 1/Cn,
i.e., the inequalities in (6.5) can be satisfied if DB , and DC are chosen such that the
following inequalities (6.13) and (6.14) hold:

Case (5):

1

C5
≤ DB , (6.13)

Case (6):

1

C6
≤ DC . (6.14)

From (6.7),

DA ≥ B1C1

C1 − 1
. (6.15)

We solve (6.8) together with (6.10) and obtain

DA ≥ (B1C1 + B2)C2

C1C2 − 1
. (6.16)

We solve (6.9) together with (6.11) and obtain

DA ≥ (B1C1 + B3)C3

C1C3 − 1
. (6.17)

From (6.12),

DC ≥ B4C4

C4 − 1
. (6.18)

Finally, from (6.15), (6.16), (6.17), (6.18), (6.10), (6.11), (6.13), and (6.14) we
obtain the solution:

DA ≥ max
{

B1C1

C1−1 , (B1C1+B2)C2

C1C2−1 , (B1C1+B3)C3

C1C3−1

}

,

DB ≥ max
{

DA

C2

+ B2,
1

C5

}

,

DC ≥ max
{

B4C4

C4−1 , DA

C3

+ B3,
1

C6

}

.

If we plug in the values for Bn and Cn we have:

DA ≥ max
{

(2−δ2)ρ̄
ρ̄δ2−1 , (2−δ2)ρ̄δ1+2−δ1

ρ̄δ1δ2−
√

2
, (2−δ2)ρ̄+1

ρ̄δ2−
√

2

}

,

DB ≥
√

2DA+2−δ1

δ1

,

DC ≥ max
{

1
1−2 cos αmin

,
√

2DA + 1
}

.

15

Remark 7. DA, DB, and DC are undefined if any of the following conditions
hold:

ρ̄ =
√

2, δ2 =

√
2

ρ̄
, δ1 =

√
2

ρ̄δ2
, αmin = 60◦. (6.19)

These values of δ2 and δ1 correspond to the boundaries of the selection circles and
intervals, respectively.

us the same bound

7. An Example of a Point Placement Approach. As an example of a prac-
tical application of selection regions we developed an approach which in many cases
allows us to decrease the number of inserted Steiner points. We emphasize that this is
just a starting point in the development of mesh optimization techniques based on the
use of selection regions. The motivating idea is shown in Figure 8.1(left): with one
point insertion we try to eliminate as many skinny triangles as possible. In addition,
we try to preserve as many good quality triangles as we can. For more details on this
approach see our earlier description in [3]. Table 7.1 shows the number of triangles
obtained for the simplified brain outline (see Figure 7.1) for three point placement
methods: circumcenter, off-center and our suggested technique. For all angle bounds
we can see a slight improvement in the number of inserted points, and, as a result, in
the final number of triangles.

Fig. 7.1. A simplified outline of a human brain.

Table 7.1
The comparison of the number of triangles generated with the use of circumcenter, off-center,

and an optimization-based point insertion strategies.

Point position
Minimum angle bound θ = arcsin 1

2ρ̄

5◦ 10◦ 15◦ 20◦ 25◦ 30◦

Circumcenter 714 874 1018 1344 1754 3186
Off-center 702 842 1002 1300 1584 2412
Our example of an opti-
mization-based method 700 828 964 1274 1564 2370

8. Conclusions. We developed a fully generalized two-dimensional sequential
Delaunay refinement algorithm. It makes it possible to develop custom point insertion
methods for a variety of mesh optimization goals, for example,

• for minimizing the number of inserted points, see [3] and Figure 1.2 here;
• for splitting multiple poor quality triangles simultaneously, see Fig. 8.1(left);
• for eliminating slivers, see [8, 12, 13];

16

Fig. 8.1. Examples of the approaches for choosing Steiner points within selection disks of skinny
triangles.

• for creating elongated edges in required directions, see Fig. 8.1(center);
• for inserting more than one point, e.g., to create elements with specific shapes,

see Fig. 8.1(right);
• for satisfying other application-specific requirements, for example, conformity

to a boundary zone, see Fig. 1.1.

The presented algorithm is based on the two main simplifying decisions for the
definition of the selection regions: (1) the selection regions are balls (circles or inter-
vals) centered in the geometric centers of the corresponding circumcircles or segments,
and (2) the size of a selection region is a function of the local circumradius of the
triangle or segment and of the global quality bound (disregarding the constant pa-
rameters). There are indications that locally larger (more complex) selection regions
can be defined; therefore, we do not claim the maximality in the proposed approach.
For example, the off-center point in the Üngör’s approach [20] is determined based on
the local quality of the triangle, and it may or may not be inside the selection region
as we defined it here. Our ongoing work also includes the improvement of the quality
bound and the investigation of the relation between the input angles and the sizes of
the selection intervals.

Currently we are also working on combining the sequential Generalized Delau-
nay Refinement algorithm with the parallel Delaunay meshing analysis [3, 4, 14, 15].
The result will make it possible to automatically parallelize any custom point inser-
tion method with the only restriction that it inserts points within selection regions.
Our future work includes the extension of the fully generalized algorithm to higher
dimensions.

9. Acknowledgments. We thank Gary Miller for helpful references and Andriy
Fedorov for insightful discussions on medical imaging. We also thank Panagiotis
Foteinos for a deeply technical exploration of generalized Delaunay refinement. This
work was supported (in part) by the NSF grants CCS-0750901 and CCF-0833081,
and by the John Simon Guggenheim Foundation. We thank the anonymous referees
for their helpful comments.

REFERENCES

[1] Marshall Wayne Bern and David Eppstein, Mesh generation and optimal triangulation, in
Computing in Euclidean Geometry, Ding-Zhu Du and Frank Hwang, eds., Lecture Notes
Series on Computing, World Scientific, 1992, pp. 23–90.

[2] Adrian Bowyer, Computing Dirichlet tesselations, Computer Journal, 24 (1981), pp. 162–166.

17

[3] Andrey N. Chernikov and Nikos P. Chrisochoides, Generalized Delaunay mesh refinement:
From scalar to parallel, in Proceedings of the 15th International Meshing Roundtable,
Birmingham, AL, Sept. 2006, Springer, pp. 563–580.

[4] , Parallel guaranteed quality Delaunay uniform mesh refinement, SIAM Journal on Sci-
entific Computing, 28 (2006), pp. 1907–1926.

[5] , Three-dimensional semi-generalized point placement method for Delaunay mesh refine-
ment, in Proceedings of the 16th International Meshing Roundtable, Seattle, WA, Oct.
2007, Springer, pp. 25–44.

[6] L. Paul Chew, Guaranteed-quality triangular meshes, Tech. Report TR89983, Cornell Univer-
sity, Computer Science Department, 1989.

[7] , Guaranteed quality mesh generation for curved surfaces, in Proceedings of the 9th ACM
Symposium on Computational Geometry, San Diego, CA, 1993, pp. 274–280.

[8] , Guaranteed-quality Delaunay meshing in 3D, in Proceedings of the 13th ACM Sympo-
sium on Computational Geometry, Nice, France, 1997, pp. 391–393.

[9] Boris N. Delaunay, Sur la sphere vide, Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie
Mataematicheskii i Estestvennyka Nauk, 7 (1934), pp. 793–800.

[10] William H. Frey, Selective refinement: A new strategy for automatic node placement in
graded triangular meshes, International Journal for Numerical Methods in Engineering, 24
(1987), pp. 2183–2200.

[11] Paul-Louis George and Houman Borouchaki, Delaunay Triangulation and Meshing. Ap-
plication to Finite Elements, HERMES, 1998.

[12] Xiang-Yang Li, Generating well-shaped d-dimensional Delaunay meshes, Theoretical Com-
puter Science, 296 (2003), pp. 145–165.

[13] Xiang-Yang Li and Shang-Hua Teng, Generating well-shaped Delaunay meshes in 3D, in
Proceedings of the 12th annual ACM-SIAM symposium on Discrete algorithms, Washing-
ton, D.C., 2001, pp. 28–37.

[14] Leonidas Linardakis and Nikos Chrisochoides, Delaunay decoupling method for parallel
guaranteed quality planar mesh refinement, SIAM Journal on Scientific Computing, 27
(2006), pp. 1394–1423.

[15] , Graded Delaunay decoupling method for parallel guaranteed quality planar mesh gen-
eration, SIAM Journal on Scientific Computing, 30 (2008), pp. 1875–1891.

[16] Gary L. Miller, A time efficient Delaunay refinement algorithm, in Proceedings of the 15th
annual ACM-SIAM symposium on Discrete algorithms, New Orleans, LA, 2004, pp. 400–
409.

[17] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington, A Delaunay
based numerical method for three dimensions: Generation, formulation, and partition, in
Proceedings of the 27th Annual ACM Symposium on Theory of Computing, Las Vegas,
NV, May 1995, pp. 683–692.

[18] Jim Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation,
Journal of Algorithms, 18(3) (1995), pp. 548–585.

[19] Jonathan Richard Shewchuk, Delaunay refinement algorithms for triangular mesh genera-
tion, Computational Geometry: Theory and Applications, 22 (2002), pp. 21–74.

[20] Alper Üngör, Off-centers: A new type of Steiner points for computing size-optimal
guaranteed-quality Delaunay triangulations, in Proceedings of LATIN, Buenos Aires, Ar-
gentina, Apr. 2004, pp. 152–161.

[21] David F. Watson, Computing the n-dimensional Delaunay tesselation with application to
Voronoi polytopes, Computer Journal, 24 (1981), pp. 167–172.

