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1 Abstract

Parallel mesh generation is a relatively new research area between the bound-
aries of two scientific computing disciplines: computational geometry and par-
allel computing. In this chapter we present a survey of parallel unstructured
mesh generation methods. Parallel mesh generation methods decompose the
original mesh generation problem into smaller subproblems which are meshed
in parallel. We organize the parallel mesh generation methods in terms of
two basic attributes: (1) the sequential technique used for meshing the indi-
vidual subproblems and (2) the degree of coupling between the subproblems.
This survey shows that without compromising in the stability of parallel mesh
generation methods it is possible to develop parallel meshing software using
off-the-shelf sequential meshing codes. However, more research is required for
the efficient use of the state-of-the-art codes which can scale from emerging
chip multiprocessors (CMPs) to clusters built from CMPs.

2 Introduction

This chapter presents a survey of parallel unstructured mesh generation
methods based on three widely used techniques: Delaunay [41], Advancing
Front [67], and Edge Subdivision [60]. Parallel methods for quadrilateral [7]
and hexahedral [55] mesh generation as well as block structured [93, 23, 90]
and structured adaptive mesh refinement [2] methods are not reviewed in this
chapter.

Parallel mesh generation procedures in general decompose the original 2-
dimensional (2D) or 3-dimensional (3D) mesh generation problem into Ns
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smaller subproblems which are solved (i.e., meshed) concurrently using P
processors. The subproblems can be formulated to be either tightly cou-
pled [61, 57, 79], partially coupled [56, 33, 21] or even decoupled [40, 80, 53].
The coupling of the subproblems determines the intensity of the communica-
tion and the amount/type of synchronization required between the subprob-
lems.

The challenges in parallel mesh generation methods are: to maintain sta-
bility of the parallel mesher (i.e., retain the quality of finite elements generated
by state-of-the-art sequential codes) and at the same time achieve 100% code
re-use (i.e., leverage the continuously evolving and fully functional off-the-shelf
sequential meshers) without substantial deterioration of the scalability of the
parallel mesher. In this chapter we review parallel mesh generation methods
having in mind these three requirements.

We build on top of previous work [32, 41] where parallel mesh generation
methods are classified in terms of the way and the order the artificial boundary
surfaces (interfaces) of the subproblems are meshed. Specifically, in [33, 41]
existing parallel methods are classified in three categories: (i) methods that
first mesh (either in parallel [56] or sequentially [80]) the interfaces of the sub-
problems and then mesh in parallel the individual subproblems, (ii) methods
that first solve the meshing problem in each of the subproblems in parallel
and then mesh the interfaces so that the global mesh is conforming [38], and
(iii) methods that simultaneously mesh and improve the interfaces as they
mesh the individual subproblems [26, 21, 27].

In this chapter we organize the parallel mesh generation methods in terms
of two basic attributes. First, the sequential technique used for meshing the
individual subproblems: (1) Delaunay, (2) Advancing Front, and (3) Edge
Subdivision. Second, the degree of coupling between the subproblems: (a)
tightly-coupled, (b) partially-coupled, and (c) decoupled methods.

3 Domain Decomposition Approaches

Parallel mesh generation methods use a sequential pre-processing step for
the data partitioning problem with the exception of [48, 49]. The data are
partitioned using either the continuous domain which is decomposed into
subdomains (see Figure 1, left) or a discrete approximation (i.e., an initial
coarser mesh) of the domain which is decomposed into submeshes (see Fig-
ure 1, right). The internal boundaries between the subdomains or submeshes
(Si) are called interfaces or separators (∂Si). In both cases the number of
generated subdomains or submeshes (Ns) can be significantly greater than
the number of processors P (over-decomposition). Over-decomposition was
introduced in parallel computing in mid 80s. It is used to hide communica-
tion latency in message passing [51] and to mask information dissemination,
decision making and data migration costs in dynamic load balancing [28].
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The domain decomposition (DD) problem in parallel mesh generation is
defined as follows:

lfs(Ω) ≤ lfs(Si) i = 1, Ns (1)

min
i=1,Ns

|∂Si|
|Si|

(2)

∂Si form ”good” angles between each other and the boundary ∂Ω. (3)

where lfs(Ω) and lfs(Si) are the local feature size [84] of the original domain
Ω and the subdomains (or submeshes) Si, respectively. The |∂Si| denotes the
length (in 2D) and surface (in 3D) of the interfaces while the |Si| denotes the
area (in 2D) and volume (in 3D) of the subdomains (or submeshes) Si.

Continuous Domain Decomposition

The continuous domain decomposition methods partition the region Ω into
subdomains Ωi, i = 1, Ns. There are two types of continuous DD methods.
The first and most popular approach is based on quadtree/octree meth-
ods [33, 57, 59]. The octree methods utilize an octree structure for the de-
composition of Ω into blocks (octants). The octants along with a description
of the external boundary ∂Ω define the subdomains. Another class of con-
tinuous DD methods [53] is based on auxiliary structures like the Medial
Axis [10, 69, 91] so that the subdomains Ωi have no new features like small
angles between the separators and the separators and external boundary [53].

Continuous DD approaches are attractive because they refine the indi-
vidual subdomains by re-using existing well tested and fine-tuned sequential

DD of continuous geometry DD of discrete geometry

Fig. 1. Domain decomposition of the continuous geometry [53] and the discrete
geometry [19] of a cross section of a rocket pipe.



Nikos Chrisochoides

codes on each subdomain independently. However, independence in mesh re-
finement and high code re-use in some cases come at a price. The polyhedral
surfaces which arise due to the decomposition of the initial mesh impose ad-
ditional constraints on the execution of sequential meshing algorithms in each
of the subdomains. Poorly generated interface surfaces can affect the termi-
nation of meshing algorithms and the quality of the elements. Moreover, the
artificially imposed interfaces can affect the mesh gradation.

Discrete Domain Decomposition

The Discrete DD methods partition an initial coarse mesh (usually a bound-
ary conforming mesh), D into a number of simply-connected submeshes
Di, i = 1, Ns while they try to minimize the surface-to-volume ratio for each
of the submeshes. Usually a coarse mesh is generated on a high-performance
workstation using sequential mesh generators. The partitioning of a coarse
mesh is performed either sequentially or in parallel using generic graph par-
titioning libraries like Metis/Parallel Metis [81] and Chaco [43]. Also, there
are mesh partitioning libraries like Domain Decomposer [24, 22], Zoltan [35],
Drama [4], Plum [65], and Jove [87] (to mention a few) which extend and
customize the generic data partitioning techniques for FEM calculations.

4 Parallel Mesh Generation Methods

In this section we review parallel mesh generation methods which are based
on Delaunay triangulation in Section 4.1, Advancing Front Technique in Sec-
tion 4.2, and Edge Subdivision methods in Section 4.3.

4.1 Delaunay Based Methods

There are many approaches to generate Delaunay meshes [41], we focus on
methods based on Bowyer-Watson [11, 96] kernel which can lead to: (1) more
efficient parallel implementations due to easier optimizations for improving
data locality and (2) simpler and more efficient data structures. The Bowyer-
Watson (BW) kernel is described in Figure 2 and the loop bellow:

Algorithm 1 (BW(Mo, p1, ..., pn)).

1. Input: Mesh Mo an initial mesh and a set of n points
2. for i = 1, n
3. Compute the cavity of Ci of the point pi

4. Compute the ball Bi of point pi

5. Mi+1 = Mi − Ci + Bi

6. endfor

7. Output: A new mesh M = Mn+1
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Mi Mesh Point Insertion & Computation of Bi New Mesh Mi+1

Computation of Ci

Fig. 2. Bowyer-Watson kernel starts with a mesh Mi (left), computes the cavity
(center left) of a newly inserted point, triangulates the cavity (center right) and
updates the mesh into Mi+1 (right).

where the cavity C of a point p is defined as the set of all triangles whose
circumcircle includes p; the ball B of a point p is defined as set of new triangles
defined by the point p and the vertices of the boundary of its cavity [41].

The challenge, for parallel mesh generation methods based on the BW
kernel, is to maintain the following loop invariant: Mi is conformal and De-
launay, for i = 1, n. Figure 3 depicts two cases where the concurrent point
insertion violates the loop invariant. First, the cavities intersect i.e., there is
a triangle 4p3p6p7 ∈ C(p8) ∩ C(p9), then concurrent insertion of p8 and p9

results in a non-conformal mesh. Second, the cavities share an edge in 2D (or a
face in 3D), an edge p3p6 is shared by C(p8) = {4p1p2p7, 4p2p3p7, 4p3p6p7}
and C(p10) = {4p3p5p6, 4p3p4p5}, then the new triangle 4p3p10p6 can have
point p8 inside its circircle, thus, violating the Delaunay property.

The focus of this section is on parallel mesh generation methods that ad-
dress this challenge. There is a number of parallel Delaunay and triangulation
methods like the MIMD method in [92] and the HPF implementation in [16]
which target parallel programming paradigms no longer in use for practical
purposes. Other methods [29, 63, 64, 12] also contributed in shaping up this
author’s directions and work in parallel mesh generation and implicitly con-
tribute in this chapter.

In [8] the authors describe a divide-and-conquer projection-based algo-
rithm for constructing in parallel 2D Delaunay triangulations of a set of given
points. The method extends to 3D, but its implementation is quite complex.
The goal in parallel mesh generation, though, is to refine an existing mesh by
inserting new points i.e., the set of points in the final mesh is not known in
advance.

In [47, 49] the authors extended [8] for parallel 2D mesh generation which
further eliminates the sequential step for an initial mesh, but does not address
the issue of code re-use. The method in [47, 49] is partially coupled.

In [37] the authors define the points x and y as independent if the closures
of their prestars (or cavities) are disjoint. The approach in [37] does not
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Fig. 3. (a) Intersection of two cavities and (b) two cavities share an edge; solid
lines represent the edges of the initial triangulation, and dashed lines edges created
by the insertion of p8, p9, and p10.

provide a way to schedule the concurrent insertion of points whose cavity
closures are disjoint.

In [88] the authors presented the first theoretical analysis of the complexity
of parallel Delaunay refinement algorithms. However, the assumption in [88]
is that the global mesh is completely retriangulated each time a set of in-
dependent points is inserted. In [89] the authors developed a more practical
algorithm.

In the rest of this section we describe five different practical (i.e., they
have been implemented) parallel Delaunay mesh generation methods. These
methods formulate the subproblems to be: (1) tightly coupled, (2) decoupled,
and (3) partially coupled.

Tightly Coupled Methods

A straight forward approach to parallel computing is based on identifying
some partial order among the computations of well understood and successful
sequential kernels and then in a brute-force fashion use message passing or
threads to implement the computations on distributed and shared memory
parallel machines, respectively. This approach leads to the tightly coupled
method presented in [61] for parallel guaranteed quality Delaunay mesh gen-
eration.

Parallel Optimistic Delaunay Meshing (PODM) Method

In [61] the authors presented the first provable 3D parallel guaranteed quality
Delaunay mesh generation method for polyhedral domains. PODM is based
on discrete domain decomposition, but it is not constrained by the inter-
faces of the submeshes. The algorithm guarantees the stability by simulta-
neously re-partitioning and refining the interface surfaces and volume of the
submeshes [27] —refinement due to a point insertion might extend across
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subproblem (or submesh) boundaries. The extension of a cavity beyond the
interfaces is a source of intensive communication. However, PODM can toler-
ate most of the communication by concurrently refining other regions of the
submeshes while it waits for remote data to arrive. Unfortunately, the con-
current refinement can create a number of inconsistencies in the mesh (see
Figure 3). These inconsistencies are resolved at the cost of setbacks (or roll-
backs [45]) and thus we call this method Parallel Optimistic Delaunay Meshing
method. Setbacks is a source of major algorithm and code re-structuring (due
to overlapping cavities) and they lead to zero code re-use. Unfortunately, the
overlapping of the cavities becomes even more complex when they are near
the external boundary, where a certain order of inserted points needs to be
maintained due to encroachment rules that are used to maintain and prove
the quality of the elements and thus satisfy the stability requirement.

Figure 4a depicts a cavity which extends beyond the submesh interfaces
(because two of the cavity BHGFAC triangles t ∈ M1 and t∗ ∈ M2 are non-
local to submesh M0) in order to guarantee the quality of the mesh. The
extension of the cavity beyond the interfaces is a source of intensive commu-
nication. However, as Figure 4b shows PODM can tolerate the communication
by concurrently refining other regions (e.g. compute a new cavity ABCDE)
of the submeshes while it waits for remote data (e.g. the partially completed
cavity BCAF) to arrive (eg. rest of the cavity BFGH). Unfortunately, the
concurrent refinement can lead the violation of the loop invariant by creating
non-conforming meshes and/or the violation of the Delaunay property as is
the case in Figure 4a where the point Pj is within the circumcenter of 4PlCA
which is a newly created triangle from the triangulation of the cavity (BHG-
FAC) that corresponds to the point P1. These violations are resolved at the
cost of setbacks and frequent message polling shown in the performance graph
of Figure 4c. With some additional communication cost the PODM becomes
domain decomposition independent and moreover re-distributes new elements
as they are generated (Figure 4d).

In summary, PODM does not depend on good domain decompositions
before, during and after parallel meshing at the cost of being labor intensive
approach. PODM is a stable and tightly coupled method, with zero code re-
use.

Decoupled Methods

In [40, 53] the authors present two approaches which achieve 100% code re-use
and eliminate communication and synchronization. Both approaches rely on
continuous domain decomposition and decouple the individual subdomains
(subproblems) so that they can be meshed independently. Earlier, in [9] the
authors presented similar approach for the parallel triangulation of a set of
fixed points.
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Fig. 4. a) cavity extension beyond submesh interfaces, b) time diagram with con-
current point insertion, c) a breakdown of execution time for PODM, and finally
d) the refinement of a cavity with simultaneous distribution of the newly created
elements.

Parallel Projective Delaunay Meshing

The Parallel Projective Delaunay Meshing (P 2DM) method [40] starts
by sequentially meshing the external surfaces of the geometry and by pre-
computing domain separators whose facets are Delaunay-admissible (i.e., the
precomputed interface faces of the separators will appear in the final Delaunay
mesh). The separators decompose the continuous domain into subdomains
which are meshed in parallel using a sequential Delaunay mesh generation
method on each of the processors.
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Fig. 5. The circumcenter of the face 4PQR lies on the plane Π which helps define
a separator SΠ . Note that 4PQR ∈ SΠ .

The basic idea for computing Delaunay-admissible separators can be ex-
plained easier in the context of the parallel triangulation of a convex hull for
a set of points S ∈ R3 [38, 32]. The convex hull of a set of points S is decom-
posed in two subdomains by computing a Delaunay admissible separator as
follows: First, the position of a surface (in practice a plane Π) is computed
using an Inertia Axis Decomposition method [35]. The plane Π decomposes
the convex hull of S into two almost equal pieces (in terms of points). Then
the algorithm finds all faces (P,Q,R) ∈ R3 (see Figure 5) for which there is
an empty sphere whose center lies on the plane Π and passes through the
points P,Q,R. These faces constitute a polyhedral separator SΠ which de-
composes the domain into two subdomains assuming that the corresponding
tetrahedra PQRX and PQRY contain the centers of their respective circum-
scribed spheres i.e., the quality of the initial mesh around the separators is
very good which requires substantial refinement around the separators. In [40]
it is shown that the faces of the polyhedral separator SΠ will appear in the
final Delaunay triangulation of the convex hull. The generalization of the idea
to complex geometries is possible, however it is much more difficult and it is
explained in [40].

It is possible that the pre-constructed separators can not be Delaunay-
admissible [40] and the whole process has to start from the beginning. This is
a very difficult problem which for 2D has been solved in [53] using a different
approach.

Parallel Delaunay Domain Decoupling PD3 Method

The PD3 method [53] like P 2DM is based on continuous domain decomposi-
tion. PD3, for the domain decomposition of 2D geometries, uses medial axis
of the domain and relies on the following simple geometric property [53]:

Lemma 1. Let MA(Ω) be the medial axis of Ω and b a contact point of
c ∈ MA(Ω). The angles formed by the segment cb and the tangent of the
boundary ∂Ω at b are at least π/2.



Nikos Chrisochoides

(a) (b) (c) (d)

Fig. 6. The Medial Axis Transformation (a) which in turn is used to achieve high
quality domain decomposition (b). For PD3 the interfaces of the subdomains are
refined (c) in a pre-processing step in order to decouple the subdomains which are
refined independently (d).

The medial axis of a domain Ω is approximated by Voronoi points of a
discretization of the domain. Figure 6a depicts the medial axis approximation
and a 8-way partition (b) for the same geometry. The level of the discretization
of the boundary determines the quality of the approximation of the medial
axis. However, the goal in [53] is not to approximate accurately the medial
axis, but to obtain good angles from the separator. Therefore, the criteria for
the discretization of the domain are determined from the quality of the angles
formed between the separators and the external boundary of the domain [54].

After the decomposition of the domain (see Figure 6b), PD3 constructs
a “zone” around the interfaces of the submeshes. The “zone” consist of the
union of all diametral circles of the interface edges (see Figure 6c). The in-
terfaces of the subdomains are refined using the lfs of the original domain.
This leads into an overrefinement of the final distributed mesh. Experimental
data from PD3 (see Table 1) suggest that the overrefinement is not as high
as one could expect. However, the authors of [53] are working on a new ap-
proach which will use adaptive domain decomposition [54] and different lfs
for different interfaces of the subdomains. This method is expected to reduce
overrefinement of the interfaces and produce well graded meshes [52].

Table 1. Overrefinement data as we increase the number of subdomains for the
decomposition of a cross section of a rocket pipe model.

Subs 1 16 32 64 128

Elms : 21,016,403 21,016,857 21,018,522 21,030,711 21,044,689

ORef.Elms/Sub 0 28 66 379 299

In [53] the authors prove that sequential Delaunay meshers will not insert
any new points within a zone around the subdomain interfaces i.e., the sequen-
tial Delaunay meshing on the individual submeshes can terminate without
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inserting any new points on the interfaces and thus eliminate communication
and modifications of the sequential codes. This way, the problem of parallel
meshing is reduced into a “proper” domain decomposition and a discretization
of interfaces. However, the construction of decompositions that can decouple
the mesh is a challenging problem, since its solution is based on medial axis
which is very expensive and difficult to construct (even to approximate) for
complex 3-dimensional geometries [42, 83, 31].

Partially Coupled Methods

The parallel tightly-coupled and decoupled methods we have seen so far ad-
dress some of the parallel mesh generation requirements we described in Sec-
tion 2. For example, PODM is a 3D stable and domain decomposition inde-
pendent, but it is zero code re-use with high communication method; while
P 2DM and PD3 address the code re-use and communication issues, but their
applicability in 3D is limited by the Delaunay-admissible and domain decom-
position problem, respectively. In the rest of this section we present two par-
tially coupled methods that make an attempt to balance trade-offs between
all three requirements and the domain decomposition problem at the cost of
some communication.

Parallel Constrained Delaunay Meshing (PCDM) Method

In order to address the communication and synchronization problem in [21],
the authors developed the PCDM which is asynchronous and can reduce the
variable and unpredictable communication patterns to irregular but bulk com-
munication.

The PCDM [21] is based on the Constrained Delaunay Triangulation [20]
and a discrete DD method. Each submesh is treated as an independent mesh
defined by external boundary (if any) and/or constrained edges which are the
edges of the interfaces between any pair of adjacent submeshes.

Intuitively, the constrained Delaunay triangulation is as close as one can
get to the Delaunay triangulation given that one needs to preserve certain
(constrained) edges and internal boundaries. It has been shown in [20] that
the constrained internal edges do not affect the quality of the resulting mesh
more than the edges and faces that define the external boundary. However,
one might be able to identify such boundaries (interfaces for the PDCM) in the
resulting mesh by noting the way in which triangle edges are aligned. Using
the idea of a constrained Delaunay mesh generation one can introduce in the
mesh artificial constrained edges (interfaces) which decompose the mesh into
submeshes and can be meshed almost independently.

By the definition of the constrained Delaunay mesh, points inserted on
one side of an interface have no effect on triangles on the other side; thus,
no synchronization is required during the element creation process. In addi-
tion, communication between submeshes is tremendously simplified: the only



Nikos Chrisochoides

Processor 0

Processor 1

x

Processor 0

Processor 1

x

Processor 0

Processor 1

x

x

(a) (b) (c)

Processor 0

Processor 1

x

x

Processor 0

Processor 1

x

(d) (e) (f)

Fig. 7. Processor P1 inserts a new point (a) which is encroaching upon an interface
edge (b). Then P1 discards the new point and inserts the midpoint of the encroached
edge (c) while at the same time it sends a request to split the same interface edge
on processor P0. Processor P0 computes the cavity of the midpoint (d). The trian-
gulation of the cavities (e) and (f) of the midpoint of the interface edge results in a
new conforming and distributed Delaunay (in the CDT sense) triangulation which
guarantees the quality of the elements.

message between adjacent processes is of the form [21]: “Split this interface
(i.e., constrained) edge” if a newly inserted point encroaches (see Fig. 7) upon
an interface edge. Since interface edges are always split exactly in half, no
additional information needs to be communicated.

The PCDM is an asynchronous with bulk communication and thus par-
tially coupled method. Moreover, the number and size of messages can be
reduced by message aggregation [19]. Although this optimization improves
the performance of the PCDM it has its own problems when many “Split this
interface edge” messages are delayed. This causes performance degradation
due to: (1) the large number of accumulated messages which can consume
memory, (2) redundant computation (by delaying messages), from neighbor-
ing processors which are unaware of each other’s interface splits. In [19] these
problems are addressed by a mechanism which adaptively changes the number
of messages allowed to be aggregated before a low-level message is send.
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However, code re-use remains a problem due to “Split this interface edge”
message and optimizations required for reducing the fine-grain communication
to a bulk and asynchronous message passing.

Parallel Delaunay Refinement (PDR) Method

The above tightly coupled (PODM) and partially coupled (PCDM) meth-
ods [62, 25, 21] require algorithm re-structuring and thus lead to completely
new implementations for parallel Delaunay mesh generation. The implemen-
tation of sequential mesh generation codes is labor intensive and requires
multi-disciplinary effort; it takes about ten to fifteen years to develop the al-
gorithmic and software infrastructure for sequential industrial strength mesh
generation libraries. Moreover, improvements in terms of quality, speed, and
functionality are open ended and permanent which makes the task of deliver-
ing state-of-the-art parallel mesh generation codes much more difficult.

This problem is addressed by P 2DM and PD3 in [40, 53], where two
decoupling methods are presented in order to use (without modifications)
optimized and fully functional sequential codes on each of the subproblems and
eliminate communication and synchronization. However, P 2DM can suffer
setbacks due to difficulty of constructing Delaunay-admissible separators and
PD3, for 3D geometries, is expected to be suffer high pre-processing overhead
due the construction (or approximation) of the medial axis.

With PDR in [18, 17] the authors try to balance trade-offs between the data
decomposition, communication and code re-use i.e., maintain stability and
achieve high code re-use using a simple domain decomposition method at the
cost of some communication. The key idea of the PDR method is based on the
concurrent point insertion of more than two points without calculating their
corresponding cavities ahead of time in order to decide whether they violate
the conformity and Delaunay properties of the mesh. PDR accomplishes this
objective by introducing for the first time a practical Delaunay-independence
criterion for concurrent point insertion [18]:

Theorem 1 Let r̄ be the upper bound on triangle circumradius in the mesh
and pi, pj ∈ Ω ⊂ R

2. Then if ‖pi − pj‖ ≥ 4r̄, then independent insertion of pi

and pj will result in a mesh which is both conformal and Delaunay.

Theorem 1 is applicable throughout the run of the algorithm, since the
execution of the Bowyer-Watson kernel, either sequentially [11, 96] or in par-
allel [62], does not violate the condition that r̄ is the upper bound on triangle
circumradius in the entire mesh [18]. However, checking the inequality of the
theorem, for every pair of candidate points, would be quite expensive task.
In [18] the authors present a simple block domain decomposition scheme1

which guarantees that any pair of points in non-adjacent cells are far apart

1This scheme is based on a simple block decomposition for uniform mesh refine-
ment [18] and octree decomposition for graded mesh refinement [17].
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no less than 4r̄. To enforce the r̄ circumradius bound in the mesh they derive
the following relation which allows the use of a standard sequential Delaunay
refinement algorithm/software like Triangle [85] for preprocessing [18]:

Theorem 2 If ρ̄ and ∆̄ are upper bounds on triangle circumradius-to-shortest
edge ratio and area, respectively, then r̄ = 2(ρ̄)3/2

√
∆̄ is an upper bound on

triangle circumradius.

4.2 Advancing Front Based Methods

All five parallel Delaunay methods we present in Section 4.1 maintain the
stability of the parallel mesher. However, parallel finite element codes require
only “good” quality of elements and the definition of quality depends on the
field solver and varies from code to code. For example, in [80] although the
stability is not guaranteed, it appears that the generated meshes are practical
and of “good” quality. This raises the following two questions: Is the stability
of parallel mesher important? Does the parallel mesh generation without the
stability requirement become easier?

The answer to the first question depends on the upstream solver. Regarding
the second question, our experience2 suggests that even if we relax the stability
criterion the problem of parallel mesh generation does not become easier.
In fact, the termination problem (which is even more fundamental than the
stability) becomes, for some cases, a very important issue. In some cases,
subdomains or submeshes obtained from state-of-the-art partitioning libraries
can not be meshed even by industrial strength advancing front sequential
meshers. Parallel mesh smoothing techniques [58] are helpful, but do not work
always.

There is a trade-off between the domain decomposition and the capa-
bility of the sequential mesher required to mesh the individual subdomains.
A balance between the two is important not only for stability but even for
termination. Two successful Parallel Advancing Front Techniques [57, 30] ad-
dress this issue by what we refer to as guided re-partitioning or shifting of the
separators. In [57] the authors present a tightly coupled method for shared
memory machines and in [30] the authors present a partially coupled method
for distributed memory machines. We review both methods in the rest of this
section.

Tightly Coupled Methods

Lóhner et al. in [57] revisit a partially coupled Parallel Advancing Front Tech-
nique (PAFT) they developed in [56] (see bellow) in order to address the ter-
mination, stability, and code re-use requirements. In [57] they address these
issues by developing a PAFT for shared memory computers (PAFTSM ). How-
ever, instead of generating and partitioning a very fine-grain octree as in [59]

2From the implementation of a method similar to one appeared in [80].
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on a single processor, for the whole geometry, they use an octree to identify
the zones where elements can be introduced concurrently. They set the edge
length of the smallest octree box to be an order of magnitude larger than the
specified size of elements and they use the “shift and regrid” technique, but
in a completely different way from the method in [34]. The PAFTSM is bro-
ken into two phases: (1) the AFT phases and (2) “shift” or as we call it here
guided re-partitioning phase. At each AFT phase the active front expands
and a new one is created. The process continues until the whole domain is
meshed. The PAFTSM method synchronizes at the beginning of each AFT
phase in order to sequentially refine and re-partition the global octree, for
the new active front, whose leaves will be refined in parallel. The method
is suitable for shared memory machines but can not be used in large-scale
distributed memory parallel platforms, because of the global synchronization
required between the mesh generation and re-partitioning phases.

The PAFTSM is stable and code re-use is achieved at the cost of global
synchronization which is not expensive on shared memory machines.

Partially Coupled Methods

In [56] Lóhner et al. introduced the first 2D PAFT. The initial mesh is subdi-
vided into submeshes using a discrete domain decomposition approach. Each
submesh is further separated into an interior region and interface regions,
where interface regions of a submesh are defined to be the set of elements
that are adjacent to elements that belong to different submehses. The inte-
rior regions of each submesh are refined independently. The interface regions
and then the corners are refined once all the interior and interface regions are
meshed, respectively (a posteriori approach). The order of meshing interface
and interior regions can change i.e., interfaces can be refined first (a priori ap-
proach) and the interior regions refined last [56]. The submeshes synchronize
locally, because no new elements can be inserted in the interfaces and corner
regions before the meshing of adjacent interior and interface regions, respec-
tively. The pre-computed interface regions work well for AFT because they
create buffer zones which fully decouple the interior regions of the submeshes.

Parallel Octree AFT (POAFT) Method

The 3D POAFT in [30], contrary to the PAFT in [56], is based on continuous
domain decomposition method. The POAFT method generates a distributed
coarse-grain octree using a divide-and-conquer algorithm. The terminal oc-
tants and the geometric model of a domain define the subdomains. The ter-
minal octants of the octree are classified into: interior, interface, boundary,
and complete. Interface octants have at least one adjacent octant which is not
local. Boundary octants include mesh entities from the input surface mesh.
Complete octants have no front faces in their volumes. The subdomains rep-
resented as subtrees (on each processor) which are refined further until their
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leaves reach to a predefined size to use tetrahedral meshing templates. The
new octrees are repartitioned (using stop-and-repartition methods) in order
to guarantee load balancing during the execution of meshing templates. After
the re-distribution of interior octants, mesh templates are applied so that the
triangulations conform on both sides of interface-octant faces. The interior
octants of one processor are independent of the interior octants in other sub-
domains and thus can be meshed in parallel. At this step code re-use is high,
since the meshing templates of sequential octree meshing code [82] can be
used on each processor. Existing scalar meshing templates for the interface
octants can be used, but some communication will be required during the
meshing process. Instead in [30] meshing templates were re-designed in or-
der to guarantee conformity without compromising stability and eliminating
communication. The potential for ambiguous splits of faces is addressed and
resolved in [70].

Before the boundary octants are refined and meshed a re-partitioning
might take place if it is necessary. Any parallel partitioning algorithm can
be used; in [30] the parallel recursive inertia bisection method is applied. The
meshing of boundary octants is a challenging task. Every processor applies a
tree-based face removal procedure [30] in order to connect the input surface
mesh with the mesh of the interior octants. The face removal (from the active
front) is a basic operation in AFT and it consists of connecting a front mesh
face to a target mesh vertex which is drawn from a “neighborhood” of the
face [30]. In the parallel face removal, portion of the “neighborhood” might
be on a remote processor and a target vertex can not be found locally; in
this case the face removal is postponed. This will create unmeshed regions be-
tween the terminal interface boundary octants and input surface mesh. In [30]
active terminal and boundary interface octants are repartitioned so that the
remaining unmeshed “neighborhoods” become local and thus the face removal
becomes a local operation. This permits code re-use. This process is repeated
until there are no unmeshed regions. The “guided” repartitioning is a very
challenging problem.

4.3 Edge Subdivision Based Methods

Parallel Edge Subdivision (PES) methods have been used successfully for
both 2D domains [97, 46] and 3D geometries [15, 30, 66, 79]. PES methods
use discrete DD for data decomposition and their termination and stability
does not depend on the geometric properties of the submeshes. Once a coarse
mesh is partitioned into submeshes, the individual submeshes are refined in
parallel by splitting tetrahedra using sequential subdivision techniques. The
longest-edge bisection method [73, 76] is the most commonly used for paral-
lel refinement/derefinement [97, 46, 15, 79]. In 2D an element is refined into
two triangles by adding an edge defined by the longest-edge midpoint and
its opposite vertex, while in 3D an element is refined into two tetrahedra by
adding a triangle defined by the longest-edge midpoint and its two opposite
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vertices. The longest-edge bisection technique is attractive because it simpli-
fies the management of intermediate non conforming points throughout the
process. With the introduction of terminal-edges in [79] this management is
localized in a similar way the cavity localizes the computation of Delaunay
based methods.

Like all parallel mesh generation methods PES refinement methods should
satisfy all three requirements we listed in the introduction of this chapter. Ex-
isting PES methods address some of these requirements successfully and have
the potential to meet all the requirements in the future. In [13] the authors
present a termination proof, for parallel longest-edge bisection algorithms,
using Dijkstra’s general termination algorithm [36, 6]. Moreover, they prove
the stability and even show that the mesh refined in parallel is identical to a
sequentially generated mesh.

The scalability of PES methods depends on the way they address the re-
finement collision: more than one processor split concurrently two different
copies of the same interface edge. Other factors that affect the scalability is
the choice of dynamic load balancing methods and the degree of code re-
use. For example, frequent use of stop-and-repartition methods due to global
barrier operations can deteriorate the scalability of computationally inexpen-
sive parallel mesh generation methods [3]. In general parallel mesh generation
methods that do not take advantage of highly optimized sequential codes have
difficulty to demonstrate good scalability against the best sequential codes.

In [66] it has been shown that 100% code re-use is possible at the cost
of 10% overhead by putting a wrapper around the sequential data structure
in order to handle data distribution and remote memory accesses. Communi-
cation is another aspect of parallel codes that affects scalability. In [30] the
authors present a number of subdivision templates that can be used to decou-
ple the refinement on different processors and thus eliminate communication
completely.

The main challenge in PES methods is the collision refinement problem.
In order to achieve mesh conformity and correctness the interface faces be-
tween the submeshes should be subdivided the same way from all submeshes
that share them. Thus interface edges that are subdivided in one submesh
are marked to be subdivided from all other submeshes that share them. This
causes communication which is handled by sending, at the end of the refine-
ment of the interface faces, a message to submeshes that share refined faces
and edges. Based on the communication and synchronization requirements
for handling the refinement collision problem, the PES methods are classified
into three categories: tightly coupled methods [79], partially coupled meth-
ods [46, 30, 15, 66] and decoupled methods [78].

Tightly Coupled Methods

The 3D Parallel Terminal-Edge (PTE) method described in [79] is an inher-
ently decoupled method. However, the PTE method in [79] is implemented as
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a coupled method. In [78] a new design and implementation is presented so
that the stability and code re-use requirements are satisfied while the global
synchronization for maintaining the global name of all bisected edges is elim-
inated.

Parallel Coupled Terminal-Edge (PCTE) Method

In this paragraph we will refer to the tightly coupled implementation of the
PTE method as PCTE. The PCTE method is based on longest-edge bisection
approach introduced by Rivara [72, 73, 76]. Triangles/ tetrahedra are refined
by bisecting their longest-edge. The longest-edge bisection algorithm requires
the management of sequences of intermediate non conforming mesh points
throughout the refinement process. This complicates its parallel implementa-
tion because it requires some synchronization in order to handle the collision
refinement and global name of newly inserted vertices, both are required to
maintain the conformity of the distributed mesh. The PCTE method [79],
although it requires zero communication between processors, relies on a cen-
tral processor for global name-assignment of new mesh points. The use of the
central processor limits the scalability of the method for more than 60 pro-
cessors and reduces the speed (tetrahedra per second) of the method by an
order of magnitude. However, in [78] the authors present a decoupled method
and implementation which takes full advantage of the terminal-edge algorithm
introduced in [79]. The terminal-edge of a longest edge propagation path of t,
Lepp(t), is the longest-edge between all the edges involved in Lepp(t) includ-
ing the boundary of the Lepp polygon [74, 75, 77]. We review this method at
the end of this Section.

Partially Coupled Methods

Partially coupled methods resolve inconsistencies during the collision refine-
ment by processing interface edges in 2D (or faces in 3D) using independent
sets of elements [46] and by breaking the mesh refinement process into two
phases [30, 15, 66]: computation (actual refinement of elements) and communi-
cation (exchange of information about the newly created points and elements
due to refinement of interfaces).

Parallel Independent Set Method

In [46] the refinement of a 2D mesh takes place in phases (refinement of
one independent set at a time). This guarantees the conformity of the mesh
and the elimination of the collision refinement problem, since non-local adja-
cent elements never refine interface edges concurrently and the processors are
always aware of bisections of their interface edges. Specifically, the authors
in [46] use a vertex-based partition of a 2D mesh to generate P submeshes,
where P is the number of processors. Then all non-local adjacent elements
(i.e., elements that share an edge) and adjacent vertices to the elements and
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vertices of submeshes are computed to create a layer of “ghost” mesh entities
which are used to minimize communication in the independent set (IS) phase.
The distributed memory implementation of the IS phase in [46] computes a
distributed independent set I = ∪P

i=1IMi
, where IMi

= I ∩ Mi and Mi is
a submesh, as follows: a triangle ta ∈ IMi

if: ∀tb ∈ adj(ta) and one of the
following three holds (1) ta, tb ∈ Mi, (2) ρ(ta) > ρ(tb), and (3) tb is not a
marked triangle for refinement, where adj(t) is the set of adjacent triangles of
t, and ρ(t) is a unique random number assigned to each element in the mesh
Mi, i = 1, P . Note that due to the ghost elements, the communication for
checking the above conditions is eliminated. The algorithm requires commu-
nication only for: (a) the update of the bisections of ghost elements, and (b) a
global reduction operation for termination. Both take place at the end of the
refinement of an independent set. These two types of communication make
the algorithm partially coupled, since experimental data in [46] indicate that
the number of refinement phases (or loop iterations) is small (10 to 20) as the
number of processors and the size of the mesh increase to 200 processors and
a million elements, respectively.

Parallel Alternate Bisection Method

DeCougny et. al [30] addresses the collision refinement problem by using, first,
alternate bisection on the interface faces then by applying region subdivision
templates on the rest of the tetrahedra. After the mesh faces are subdivided,
it is possible to create non-conforming interface edges on the interfaces. The
non-conforming interface edges are sent to the corresponding adjacent sub-
meshes that are refined by different processors. This will start a new mesh
face subdivision followed by a communication phase, until no mesh faces need
to be subdivided. Upon termination of face subdivisions, the mesh is con-
forming across the interfaces and then a region subdivision using sequential
templates is applied in parallel to the rest of the interior tetrahedra.

Parallel Nested Elements Method

Castaños and Savage [15] have parallelized the non-conforming longest edge
bisection algorithm both in 2D and 3D. In this case the refinement propa-
gation implies the creation of sequences of non-conforming edges that can
cross several submeshes involving several processors. This also means the cre-
ation of non-conforming interface edges which is particularly complex to deal
with in 3D. To perform this task each processor Pi iterates between a no-
communication phase (where refinement propagation between processors is
delayed) and an interprocessor communication phase. Different processors
can be in different phases during the refinement process, their termination
is coordinated by a central processor P0. The subdivision of an interface edge
might leads to either a non conforming edge or to a conforming edge, but the
creation of different copies (one per subdomain) of its midpoint. However, af-
ter the communication phase a remote cross reference for each newly created
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interface edge midpoint along with nested elements information guarantee a
unique logical name for these newly created vertices [14].

Decoupled Methods

The PTE method [78] in addition to the terminal-edge of a Lepp(t) takes full
advantage of the terminal-star, which is the set of tetrahedra that share a
terminal-edge. The terminal-star can play the same role in PTE the cavity
plays in PCDM. Contrary to the method in [15] the terminal-star refinement
algorithm completely avoids the management of non-conforming edges both in
the interior of the submeshes and in the inter-subdomain interface. This elim-
inates the communication among subdomains and thus processors. Similarly
to Castaños et al. the terminal-star method can terminate using a single pro-
cessor as coordinator for adaptive mesh refinement i.e., when a global stopping
criterion like the minimum-edge length of terminal-edges is not used.

The decoupled PTE algorithm and its implementation lead to an order
of magnitude performance improvements compared to a previous tightly cou-
pled implementation [78] of the same algorithm. Although the algorithm is
theoretically scalable, our performance data indicate the contrary; the reason
is the work-load imbalances and heterogeneity of the clusters we use. We will
address these two issues in Section 6.

5 Taxonomy

DeluanayCoupling

Tight

None

Partial PCDT, PDR

PODM

POAFT

PAFT
SM

PAFT

Mesh Generation Technique

PIS, PNE

PTE

PCTE

3
P DM, PD
2

Advancing Front Edge Bisection

Fig. 8. Taxonomy of Parallel Mesh Generation Methods.

The taxonomy in Figure 8 helps to clarify basic similarities and differences
between parallel tetrahedral meshing methods. The taxonomy is based on the
two attributes we used to classify the methods reviewed in this chapter: (i)
the basic sequential meshing technique used for each subproblem and (ii) the
degree of coupling between the subproblems. The coupling (i.e., the amount of
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communication and synchronization between the subproblems) is determined
by the degree of dependency between the subproblems.

6 Implementation

The complexity of implementing efficient parallel mesh generation codes arises
from the dynamic, data-dependent, and irregular computation and communi-
cation patterns of the algorithms. This inherent complexity, when combined
with challenges from using primitive tools for communication like message-
passing libraries [86, 5], makes the development of parallel mesh generation
codes even more time-consuming and error-prone.

In the rest of the section we focus on dynamic load balancing issue. The
scientific computing community has developed application-specific runtime
libraries and software systems [4, 35, 50, 65, 68, 98] for dynamic load balancing.
These systems are designed to support the development of parallel multi-phase
applications which are computationally-intensive and consist of phases that
are separated by computations such as the global error estimation. In these
cases the load-balancing is accomplished by dynamically repartitioning the
data after a global synchronization [95]. Throughout this chapter we call this
approach to load balancing the stop-and-repartition method.

The stop-and-repartition approaches are good for loosely-synchronous ap-
plications like iterative PDE solvers, however they are not well-suited for
applications such as adaptive mesh generation and refinement. Because for
asynchronous and not computation-intensive applications the global synchro-
nization overhead can overwhelm the benefits from load balancing. This prob-
lem is exacerbated as the number of processors in the parallel system grows.
In order to address this issue, the authors in [3] developed a Parallel Runtime
Environment for Multi-computer Applications (PREMA).

PREMA is a software library which provides a set of tools to application
developers via a concise and intuitive interface. It supports single-sided com-
munication primitives which conform to the active messages paradigm [94], a
global namespace, message forwarding mechanisms to cope with object/data
migration and a preemptive dynamic load balancing [3].

Performance Evaluation

In the rest of this section we present some performance data that show the
effects of two sources of imbalance: (1) work-load due to geometric complexity
of the subdomains/submeshes, and (2) processor heterogeneity. The experi-
mental study was performed on Sciclone [1] cluster at the College of William
and Mary which consists of many different heterogeneous subclusters. We
have used three subclusters: (1) Whirlwind subcluster which consists of 64
single-cpu Sun Fire V120 nodes (650 MHz, 1 GB RAM), (2) Tornado which
consists of 32 dual-cpu Sun Ultra 60 nodes (360 MHz, 512 MB RAM) and (3)
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Fig. 9. Execution time of PAFT on Whirlwind subcluster with 64 homogeneous
processors for the simplified human brain model without load balancing (left) and
with load balancing using PREMA (right). The final mesh in both cases is 1.2 billion
tetrahedrons.

Typhoon which consists of 64 single-cpu Sun Ultra 5 nodes (333 MHz, 256
MB RAM). The models we used are: (i) a cross-section of the rocket pipe (see
Figure 1) and (ii) a simplified model of a human brain (see Figure 11, left).

Figure 9 shows the impact of dynamic load balancing on the performance
of PAFT on the human brain model. The work-load imbalances are due to
differences in the geometric complexity of the submeshes. The PAFT with
dynamic load balancing (using PREMA) took 1.7 hours to generate the 1.2
billion elements while without dynamic load balancing it took 2.7 hours. The
dynamic load balancing improved the performance of PAFT by more than
30%. Sequentially using Solidmesh [39], it takes three days one hour and 27
minutes, by executing the subdomains one at a time.
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Fig. 10. The execution time of PCDM for the cross section of the rocket pipe whose
data are equidistributed on 128 heterogenous processors; without load balancing
(left) and with load balancing using PREMA (right).
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Fig. 11. Surface of the tetrahedral mesh for a simplified model of a human brain
generated from an advancing front method [44].

Figure 10 shows the impact of dynamic load balancing (using PREMA) on
the performance of the PCDM for the cross section of rocket pipe. Although
we used state-of-the-art ab-initio data partition methods for equidistributing
the data and thus the computation among all 128 processors, the imbalances
are due to heterogeneity of the three different clusters; the first 64 processors
are from Typhoon (slowest cluster), the next 32 processors are from Tornado
and the last 32 processors are from Whirlwind (the fastest cluster). Again,
the dynamic load balancing (using PREMA) improved the performance of
parallel mesh generation by 23%.

Finally, the data from Figure 11 and Table 2 indicate the impact of work
load imbalances due to: (1) the differences in the work-load of submeshes
and (2) heterogeneity of processors using the PTE method. Figure 11(right),
shows that the speed of the PTE method is substantially lower, for the brain
model (see Figure 11, left), due to work-load imbalances; while for a more
regular geometry (the semiconductor test case [78]), the PTE speed is almost
twice higher, because of better load balancing due to more uniform point
distribution. Also, Table 2 indicates a 19% slowdown in the PTE’s speed
once we increase the number of processors from 64 to 96 using additional 32
slower processors, despite the fact the PTE is a scalable method. Finally, a
comparison between the speed data from the Figure 11 (right) and Table 2,
for the brain model, indicate that the coupling (i.e., global synchronization) in
the PCTE method slows down the speed of the code by an order of magnitude.

Table 2. PTE speed (in tetrahedra per second) for the simplified human brain
model using min-edge = 2.0. The final mesh is about 2.4 million tetrahedra.

Processors 8 16 32 48 64 96

Whirlwind 5427 9920 16195 21890 29035 23571

Tornado 3852 7025 11408 15526 20312 23571
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These data (and some more from [25, 3, 19, 78]) suggest that the tightly
coupling methods should be used as a last resort. In addition, these data
suggest that work-load imbalances are no longer a problem and it should not
limit our creativity in the second round of our search for practical and effective
parallel mesh generation methods. Runtime software systems like PREMA [3]
can handle work-load imbalances quite successfully.

7 Future Directions

It takes about ten to fifteen years to develop the algorithmic and software in-
frastructure for sequential industrial strength mesh generation libraries. More-
over, improvements in terms of quality, speed, and functionality are open
ended and permanent which makes the task of delivering state-of-the-art par-
allel mesh generation codes even more difficult.

This survey demonstrates that without compromising in the stability of
parallel mesh generation methods it is possible for all three mesh generation
classes of techniques to develop parallel meshing software using off-the-shelf
sequential meshing codes.

An area with immediate high benefits to parallel mesh generation is do-
main decomposition. The DD problem as it is posed in Section 3 is still open
for 3D geometries and its solution will help to deliver stable and scalable
methods that rely on off-the-shelf mesh generation codes for Delaunay and
Advancing Front Techniques. The edge subdivision methods are independent
off the domain decomposition.

A longer term goal should be the development of both theoretical and
software frameworks like PDR to implement new mesh generation methods
which can: (1) take advantage of multicore architectures with more than two
hardware contexts for the next generation of high-end workstations and (2)
scale without any substantial implementation costs for clusters of high-end
workstations.

Finally, a long term investment to parallel mesh generation is to attract
the attention of mathematicians with open problems in mesh generation and
broader impact in mathematics. For example, develop theoretical frameworks
able to prove the correctness of single threaded guaranteed quality Delaunay
theory in the context of partial order [71].
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