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using outdated machines with slow processors for 
tolerating disk latencies for computation and data 
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1. INTRODUCTION 

Memory speed increases rather slow as it is compared 
to the processor speed.  Outdated machines while slower 
at the processor speed have about the same memory 
performance.  That creates an opportunity to recycle older 
machines as a “smart” memory for newer ones.  Reusing 
of mechanically non-recyclable computers also helps to 
make computing to be environmentally aware or “green”.  

We propose the design of “Green” Multi-layered 
“Smart” (GMS) memory management system based on a 
simplified version of the percolation model originally 
proposed for the HTMT Petaflops design [1].  Our 
approach is application-centric. The problem with explicit 
memory management for adaptive and irregular 
application is that their computation and communication 
patterns are variable and unpredictable at runtime.  This 
results in using valuable memory space even if this means 
the system will remain idle. 

Our parallel execution model treats parallel 
applications as a set of “small” executable fragments (in 
the HTMT design are called parcels).  Parcel consists of a 
chunk of code and a number of input parameters.  An 
input parameter can hold an actual data or data 
dependency.  In this project, we assume SPMD model so 
we reduce the parcels to objects with a number of user-
defined handlers attached to them.  The type, number, and 
arguments of the handlers are determined at runtime and 
they are input dependent.   

Our preliminary data indicate the maximum GMS 
overhead is 0.28% on the very fast machines, at the cost 
of 23.90% and 7.35% at the outdated machines of data 
servers and control unit respectively. In addition, we 
observe the same speedup as the traditional object-
oriented, distributed computing approach. These are very 
encouraging data, considering the fact that the size of our 
test case is not sufficient to show the full potential of the 
GMS system. 
 
2. ARCHITECTURE  

The GMS system consist of three layers of hardware 
and software respectively:  (1) the Data Servers (DS), (2) 

Control Unit (CU) and (3) Computing Engine (CE).  Fig. 
1 depicts the GMS architecture:  
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Fig. 1 – Subcluster organization. 

The DS runs on a number of relatively slow (i.e., 
outdated in terms of their processors speed), but still 
useful in terms of memory speed machines.  The DS plays 
the role of a “smart” storage subsystem.  It is independent 
from the rest of the subsystems.  This will allow the plug-
and-play with different implementations in hardware and 
software.  In the DS layer, the sub-system holds the 
application data (i.e. objects) until all of the dependencies 
of their handlers are resolved.  Moreover, the DS layer 
stores all processed objects and the results of the 
application. For the current implementation of the DS, we 
use out-of-core scheme presented by Salmon et al [2].  In 
his paper, Salmon describes out-of-core way to do a 
parallel N-body simulation. He stores the data structures 
(arranged in the octrees) using the algorithm specific 
mapping between data objects and memory pages. Then, 
he uses the most recently used paging scheme with 
prioritized control. We adopted the most recently used 
paging scheme with prioritized control from Salmon’s 
work. In our future implementations, we will also 
consider introducing the support detecting the effective 
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mapping between the application data structures and 
memory pages. 

The CU runs on big memory, fast network and faster 
than DS processors SMP machine (CU node should have 
very fast link, such as shared memory, to the application 
node) and controls the percolation flow and places the 
right application-defined handlers with the right 
data/objects in the right CE node at the right time. The 
CU is the most complex block of the system.  It consists 
of a single k-way shared memory machine. We design the 
CU as a multithreaded unit.  A directory in CU contains 
the information about the locations of all objects in the 
DS.  The pending objects/handlers queue contains 
references to the objects that have pending handlers, so it 
is a queue of ready-to-execute active messages.  The 
Assembler prepares objects for execution and is 
responsible for delivering them into the input queue.  The 
Terminator destroys the objects that are finished, and then 
it frees resources and stores the results (for a subsequent 
use or iteration) to slower but larger memory (DS).  The 
scheduler is not a separate block but its functionality is 
distributed between the Assembler, the Terminator, and 
the CE nodes.   

Finally, the CE runs on number of very fast, but “low” 
in memory nodes (independent workstations or 
processors) relative to aggregate memory one can put 
together by using older and slower machines with disks 
for the DS subsystem. The CE schedules and executes the 
application-defined handlers to completion. An open 
research issue is the optimization of resources (cycles and 
bandwidth) of the CE nodes. 

An important design issue is the scalability of our 
system using a large number of the semi-independent sub-
clusters whose workload is balanced automatically (see 

Fig. 2). However, in this paper we focus on the design 
of a single sub-cluster so that scalability will be possible 
with additional but minimal effort.  A single sub-cluster 
can use two different networks: a relatively outdated and 
slow network for the DS layer and a faster network to 
connect the CU with the CE layers.   

 
3. SOFTWARE IMPLEMENTATION 

We use the DMCS (Data Movement and Control 
Substrate) [3] and MOL (Mobile Object Layer) [4] as a 
low-level communication systems which support AMs 
(Active Messages) [5] in the context of object/data 
movement (i.e., up and down movement from a 
subsystem to a subsystem) during the percolation cycle.   

The DMCS provides single-sided communication, as 
get/put communication operations and remote procedure 
invocation or remote service requests (RSRs) DMCS’s 
RSRs and communication operations invoke user-defined 
handler functions like AMs on target processors. DMCS 
forms the basis for both data migration and computation 
invocation in the GMS system.  

The MOL extends the DMCS by providing a global 
namespace in the context of object mobility.  Mobile 
objects are application-defined data objects and are not 
restricted to exist in contiguous memory.  A mobile object 
may be referenced  by any  processor in the  parallel 
system by  using its associated  mobile  pointer,  which  is  
a  system-wide  unique identifier.   
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Fig. 2 – Hardware organization of the GMS cluster. 

The MOL's communication operations extend the 
DMCS RSRs by allowing applications to invoke 
transparently computation handlers at the location of a 
mobile object, regardless of where it is in the parallel 
system.   In this way, applications can deal directly with 
data objects without the tedious bookkeeping associated 
with maintaining up-to-date knowledge of each data 
object’s current location. 

 
4. PERCOLATION CYCLE  

At bootstrap, the GMS specifies the roles to the nodes 
of the parallel machine. It assigns: (i) exactly one CU 
node and one node to be the front-end of the application, 
which is used by the application to interact with the rest 
of the system, (ii) N CE nodes and M DS nodes, 
depending on the user preferences and total number of 
available nodes. 

The application node initially creates user objects and 
feeds the computation requests to the system. It is also 
responsible in resolving the object data-dependencies (at 
the user level in this version of the GMS implementation). 

The percolation cycle has several stages: 

1. The application injects objects into the system for 
execution.  At this point, depending on the size of the 
objects and the load of the DS nodes, the system stores 
the object at the appropriate DS nodes. Their pending 
handlers are stored into the pending objects/handlers 
queue and the local directory is updated; 

2. Assembler picks the objects (in some order) from the 
pending objects/handlers queue.  It analyzes (in current 
implementation it just checks for the location of the object 
and any pending handlers ready for execution) the object 
and it queries the DS layer for the necessary data (e.g., an 
argument to object’s handler  might be another object),  
and then it assembles the necessary parts and puts them 
into the input queue; 

3. Next the scheduler picks the now ready to execute 
objects  from the input queue and assigns them to the CE 
nodes where they run to completion all their pending 
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handlers;  after completion the objects  and all of their 
associated data are sent to the output queue; 
4. Finally, the Terminator picks the objects from the 
output queue and it stores them in the DS layer. If, in the 
mean time, there are new Active Messages with pending 
handlers it stores all of them into the pending 
objects/handlers queue and updates the local directory in 
CU.   
 
5. PROGRAM EXECUTION  

Next, we describe the execution and the percolation 
for application objects within the GMS system. 

When an object is registered with the system, the 
corresponding GMS object consists of the two parts: the 
object itself as the user created it (to the system it is just a 
pointer to some data) and the meta data. Meta data 
contains object specific information (e.g., user functions 
for moving the object from one node to another) and the 
mobile pointer to the user data. After the object being 
created it is “released”, which is the object data are 
transferred to some of the DS node and the meta data are 
transferred to the CU node. The mobile pointer that user 
gets after the object’s creation points to the meta data 
rather than to the object’s data itself. 

After user created all needed (at present) objects, 
he/she calls objects functions. The call request (from now 
on, we will call it a message as in MOL) will be delivered 
by the underlying communication layer to the node where 
the meta data is residing. Meta data should be located on 
the CU node, since system transferred it there upon the 
“release” of the object. 

Upon receiving the message, the CU checking 
whether the targeted object was involved in other 
computation already. If the object is not involved the CU 
issues an order for the data of that object to migrate from 
the DS node to the CE node (system picks the CE 
depending on scheduling policy). Then the CU stores the 
handler in a queue. Scheduler can also delay the message 
depending on its specific policy and parameters (it will 
not order a migration of the object in such case). 

Upon receiving the order for migration from the CU, 
the DS node packs an object data (using user-registered 
packing routines) and sends it to the selected CE node. It 
also sends an ack to the CU to acknowledge that the 
object has left the DS and has moved (or is still moving) 
to the CE. 

Upon receiving the ack, the CU extracts the delayed 
handler (or handlers) from the queue and sends them to 
the data object on the CE node. CU also picks a new 
storage node for the object and issue a request for 
migration to this object. Because the MOL messages are 
causal, this request will not reach the object until all 
previously issued handlers were executed. 

Upon receiving the migration request, the CE node 
sends an ack to the CU after it uninstalls the object, then 
sends packed object to the DS node. Upon receiving the 
ack, the CU may try to schedule any delayed messages. 
 

6. PERFORMANCE EVALUATION 
In this section, we present preliminary performance 

evaluation data using dense matrix-matrix multiplication 
(MMM) algorithm. We have implemented the MMM 

using both the GMS and MOL in order to compare the 
performance of the GMS percolation based approach with 
the traditional message passing approach. The algorithm 
we use is not the most efficient MMM algorithm. GMS 
performs not as good as implicit implementations of 
matrix-matrix multiplication; it works reasonably well, 
with overhead much smaller than actual computation. For 
the testing purposes, we use object-oriented 
implementation using the MOL.  However, the MOL 
implementation is also far from the best parallel MMM 
implementation, MOL and the object-oriented model it 
implies showed to be very good at solving adaptive 
problem we are most interested. Since we do not have the 
GMS implementation of an adaptive problem, we want to 
compare GMS with the system that uses the same 
programming model. 

Our experimental set up consists of the following 
hardware: 
� 1 Dell PowerEdge 6600 with 4 Hyperthreaded 
Pentium III Xeon 1.4GGz processors and 16GB of RAM 
(seen as 8 processors under MPI) for the CE layer; 
� 2 Dell PowerEdge 2450(2 processors per node) 
Pentium III 933MGz processors with 1GB of RAM for 
the DS layer; 
� 1 Dell PowerEdge 6450 with 4 (only 2 used) Pentium  
III 733 MHz processors and 2GB of RAM for CU and 
application node; 
� the accumulative secondary storage of the DS nodes 
is 18Gb RAID; 
� 1Gb Gigabit Ethernet network connection, single 
switch. 

In our implementation, we use ( )3nΟ  matrix-matrix 

multiplication algorithm: 
 

[ ]∑ ×=
k

ikkjji BAC ,   (1) 

 
where A  and B  are the multipliers, C  is the product 
and i , j  and k indexes from 0  to n where n  is the 

number of rows/columns in the matrix. 
Because of the object-oriented nature of the system, 

we rearrange the multiplications that though do not affect 
the time (actual computing time) or correctness of the 

execution. For every jiA , , 

 

kjjiki BAC ,,, ×=+   (2) 

 
where A  and B  are the multipliers, C  is the product 
and i , j  and k indexes from 0  to n where n  is the 

number of rows/columns in the matrix. 
 In our implementation, we store matrix blocks 

within objects, jiA , , jiB ,  and jiC ,  are stored within single 

object. The implementation contains several steps as 
following: 
1) for every block A , compute a list of pairs of pointer 
to the objects that contain appropriate B  and C (as in 
equation 2); 
2) for every block A , call a process handler on the 
object where that block is stored in with the list as an 
argument; 
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3) on a call to process handler, go thru the list and call 
multiply handlers on the objects that contain appropriate 
B  ‘s, giving the content of  object’s A  and appropriate 
C pointer from the list as the arguments; 
4) on a call to multiply handler, multiply the incoming 
A  block with the B  block of the object, call append 

handler on the object, pointer to which comes as the 
second argument with the result as the argument; 
5) on a call to append handler add the argument to the 
C block, increase counter of updates, if counter becomes 
equal to the number of the blocks in row/column send a 
notification to the node 0 that the C block of the object is 
ready; 
6) on receiving of the confirmations for all the C  
blocks save the resulting C matrix and terminate the 
application. 

We used this very implementation to test performance 
of both MOL and GMS (with few system specific 
changes).  

In  
Fig. 3 we show the MOL timing for multiplying 

matrices of size 6250000 doubles (50000000 bytes) that 
divided in 25 (5 by 5) blocks. 
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Fig. 3 – MOL timing. 

Every bar shows the time that it takes to execute the 
test with some number of processors (1 through 14), it is 
wall clock time, the longest that it takes to execute among 
all the nodes. The bottom part of a bar is the actual 
computation time – the time that processors actually 
spend in computing. The middle part is the MOL 
overhead. The top part is the other overheads, such as 
communication, not directly related to the MMM 
computations, lower level communication library 
overhead, etc., that time processors performs tasks that 
are not directly related to computing. 

We can see that the overhead (mean all the additional 
computation and communication) is almost constant 
except for the single processor where no data movement 
is performed. The computing time is changing 
proportionally to the number of processors for the first 
eight and then we see some slow down. It is because first 
eight processors are fast processors we will later use in 

CE layer and the later four are the slower ones we will 
use for supporting tasks (DS, CU and application node). 

In Fig. 4 we show the GMS CE timing for multiplying 
matrices of size 6250000 doubles (50000000 bytes) that 
divided in 25 (5 by 5) blocks. There are 14 logical 
processors in the system however only eight of them are 
used for the computation (1 though 8). The bottom bar is 
the actual computing time (max among all nodes). The 
middle bar is the overhead in the CE node; these are the 
computations that are not directly related to the 
application’s computations. The bottom part is the idle 
time, it include the time CE receiving data from the 
network, send data to the network and just stays idle 
waiting for data. 

In Fig. 5 we show the GMS all timing: total time 
versus the average time DS nodes spend computing, 
versus the time CU node spends computing. From this 
data, we can see that CU spends very few cycles 
comparing to the others, this gives us further flexibility to 
enhance and improve the control mechanisms for the 
system in the future versions. 
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Fig. 4 – GMS CE timing. 

Fig. 6 shows the speedup curves for MOL and GMS. 
We can see the perfect speedup as the straight line. The 
MOL speedup present for all 14 processors. Both GMS 
speedups are the same, the difference is that GMS (CE) 
only considers CE processors and GMS (all) considers all 
processors. 

We can see that with eight computing processors 
GMS beats MOL with all processors and comes very 
close to MOL with fourteen processors. It shows that the 
supporting processors can indeed decrease the time we 
have to spend in the computing processors. 

As one of the goal in this research we plan to improve 
the performance of the GMS by controlling the 
percolation depending on the execution flow, which 
includes the order of the percolation, the postponement of 
the promotion (percolation to the CE) or the retirement 
(percolation to the DS), grouping the objects for 
percolation etc. We do not know yet how exactly we will 
implement each of the features, but we can try to “fake” 
the support of the system for some of them. From the 
description of our implementation of matrix-matrix 



376 

multiplication reader can see that we send n (which is 
number of blocks in the row/column) messages with A  
block and n  messages with update for C to every object. 
According to the description of the GMS, every time 
there is a message for execution, the object must promote 
to execute it (of course if there are more than one message 
they all will be executed in one promotion). So far, we 
have very simple control over the promotion/retirement 
policy thus the object will promote as soon as the first 
message is available. This means that in the worst case 
every object have to percolate 12 +n  times instead of 
only 3 in the best case. 

In Table 1 we present the timing results on which the  
Fig. 3, Fig. 4 and Fig. 5 are build upon (there are no 
results for GMS for 10 and 14 processors as only up to 8 
processors can be involved into the computation). 
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Fig. 5 – GMS all timing. 
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Fig. 6 – Speedup. 

We changed the GMS code in order for it to “know” 
the matrix block object and be aware of number of 
messages it still needs to receive before it can promote. 
Of course, this approach is very application specific and 

we cannot use it in a general case, the only reason for it is 
to see whether we will get any improvement out of this. 

Here is the timing for both GMS and “tweaked” GMS 
system (Fig. 7). 
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Fig. 7 – GMS vs. GMS tweaked. 

We can see that, though the tweaked version is faster, 
the difference is very small. It is easy to explain. We do 
decrease the number of percolations; however, the 
number of messages is the same. In our problem (matrix-
matrix multiplication), the messages are roughly of the 
same size as the object and the total size of the all 
messages is order of magnitude bigger than the total size 
of all objects. Thus, we do not get much improvement 
here. Still, we believe that for problems with bigger size 
of objects such optimization (we do not now how we will 
do it yet though) might be very beneficial. 
 
7. CONCLUSION 

The Green “Smart” Memory Management System 
(GMS) system handles and processes requests for 
handlers’ execution at least as effective as the 
conventional systems (like MOL).  Additional knowledge 
of data dependencies and the ability to change the 
execution flow based on that data allow that  the GMS 
system can  exploit execution patterns that programmer 
by himself  might not be able to discover.   

As the results, the speedup for 8 processor is 2.56 
versus 2.29 in the traditional implementation (though the 
implementation we used is object-oriented and thus not 
the most optimal for test problem) implementation with 8 
processors (2.67 for traditional with 14 processors; there 
are 8 computing processors in our GMS test system, 
though 6 additional ones are allocated for the serving 
purposes, which makes total of 14). 

The GMS does its job at least as effective as MOL, 
for in-core problems. Though the GMS system and its 
variation of the percolation model were design for very 
big out-of-core problems, the size of our benchmark is 
much better suited for the traditional in-core 
computations. Despite this GMS shows comparable 
results and we expect much better for large out-of-core 
problems. 
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Table 1. Computation time, traditional (MOL) and GMS overheads 

 
8. FUTURE WORK 

We will focus on the applications with variable and 
unpredictable data access pattern and/or the applications 
that require support for out-of-core execution.  Our 
challenge is to minimize the overhead introduced by the 
percolation execution model and GMS in order to realize 
the benefit of: (1) lower overhead for memory reads 
compared to overheads of disk reads, and (2) the 
utilization of slow but additional free nodes that perform 
the memory management (including disk I/O and 
caching).   
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