
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
8-10 September 2003, Lviv, Ukraine

0-7803-8138-6/03/$17.00 ©2003 IEEE 372

“Green” Multi-layered “Smart” Memory Management System1

Andriy Kot 1), Nikos Chrisochoides 2)
1) The College of William and Mary, PO Box 8795 Williamsburg VA 23187 USA,

kot@cs.wm.edu, http://www.cs.wm.edu/~kot
2) The College of William and Mary, PO Box 8795 Williamsburg VA 23187 USA,

nikos@cs.wm.edu, http://www.cs.wm.edu/~nikos

1 This research is supported in part by NSF Career Award #CCR-0049086 and #EIA-9972853

Abstract: In this project, we investigate the feasibility of
using outdated machines with slow processors for
tolerating disk latencies for computation and data
intensive parallel adaptive and irregular applications.

Keywords: - Runtime, Software, Petaflops, Architectures,
Out-of-Core, Parallel and High Performance Computing

1. INTRODUCTION

Memory speed increases rather slow as it is compared
to the processor speed. Outdated machines while slower
at the processor speed have about the same memory
performance. That creates an opportunity to recycle older
machines as a “smart” memory for newer ones. Reusing
of mechanically non-recyclable computers also helps to
make computing to be environmentally aware or “green”.

We propose the design of “Green” Multi-layered
“Smart” (GMS) memory management system based on a
simplified version of the percolation model originally
proposed for the HTMT Petaflops design [1]. Our
approach is application-centric. The problem with explicit
memory management for adaptive and irregular
application is that their computation and communication
patterns are variable and unpredictable at runtime. This
results in using valuable memory space even if this means
the system will remain idle.

Our parallel execution model treats parallel
applications as a set of “small” executable fragments (in
the HTMT design are called parcels). Parcel consists of a
chunk of code and a number of input parameters. An
input parameter can hold an actual data or data
dependency. In this project, we assume SPMD model so
we reduce the parcels to objects with a number of user-
defined handlers attached to them. The type, number, and
arguments of the handlers are determined at runtime and
they are input dependent.

Our preliminary data indicate the maximum GMS
overhead is 0.28% on the very fast machines, at the cost
of 23.90% and 7.35% at the outdated machines of data
servers and control unit respectively. In addition, we
observe the same speedup as the traditional object-
oriented, distributed computing approach. These are very
encouraging data, considering the fact that the size of our
test case is not sufficient to show the full potential of the
GMS system.

2. ARCHITECTURE

The GMS system consist of three layers of hardware
and software respectively: (1) the Data Servers (DS), (2)

Control Unit (CU) and (3) Computing Engine (CE). Fig.
1 depicts the GMS architecture:

�

�����
��	
���	�

�����
��	
���	�

�
�����
���
��� �
�����
	�
��
�

���
���
	 � �
	������	

�����
��
�

������
��
�

�

���
���
	

�����������
�����

���������
 ����
 !� "

����	��
#��� !�#"

$���
�
	%
	�
!$�"

Fig. 1 – Subcluster organization.

The DS runs on a number of relatively slow (i.e.,
outdated in terms of their processors speed), but still
useful in terms of memory speed machines. The DS plays
the role of a “smart” storage subsystem. It is independent
from the rest of the subsystems. This will allow the plug-
and-play with different implementations in hardware and
software. In the DS layer, the sub-system holds the
application data (i.e. objects) until all of the dependencies
of their handlers are resolved. Moreover, the DS layer
stores all processed objects and the results of the
application. For the current implementation of the DS, we
use out-of-core scheme presented by Salmon et al [2]. In
his paper, Salmon describes out-of-core way to do a
parallel N-body simulation. He stores the data structures
(arranged in the octrees) using the algorithm specific
mapping between data objects and memory pages. Then,
he uses the most recently used paging scheme with
prioritized control. We adopted the most recently used
paging scheme with prioritized control from Salmon’s
work. In our future implementations, we will also
consider introducing the support detecting the effective

373

mapping between the application data structures and
memory pages.

The CU runs on big memory, fast network and faster
than DS processors SMP machine (CU node should have
very fast link, such as shared memory, to the application
node) and controls the percolation flow and places the
right application-defined handlers with the right
data/objects in the right CE node at the right time. The
CU is the most complex block of the system. It consists
of a single k-way shared memory machine. We design the
CU as a multithreaded unit. A directory in CU contains
the information about the locations of all objects in the
DS. The pending objects/handlers queue contains
references to the objects that have pending handlers, so it
is a queue of ready-to-execute active messages. The
Assembler prepares objects for execution and is
responsible for delivering them into the input queue. The
Terminator destroys the objects that are finished, and then
it frees resources and stores the results (for a subsequent
use or iteration) to slower but larger memory (DS). The
scheduler is not a separate block but its functionality is
distributed between the Assembler, the Terminator, and
the CE nodes.

Finally, the CE runs on number of very fast, but “low”
in memory nodes (independent workstations or
processors) relative to aggregate memory one can put
together by using older and slower machines with disks
for the DS subsystem. The CE schedules and executes the
application-defined handlers to completion. An open
research issue is the optimization of resources (cycles and
bandwidth) of the CE nodes.

An important design issue is the scalability of our
system using a large number of the semi-independent sub-
clusters whose workload is balanced automatically (see

Fig. 2). However, in this paper we focus on the design
of a single sub-cluster so that scalability will be possible
with additional but minimal effort. A single sub-cluster
can use two different networks: a relatively outdated and
slow network for the DS layer and a faster network to
connect the CU with the CE layers.

3. SOFTWARE IMPLEMENTATION

We use the DMCS (Data Movement and Control
Substrate) [3] and MOL (Mobile Object Layer) [4] as a
low-level communication systems which support AMs
(Active Messages) [5] in the context of object/data
movement (i.e., up and down movement from a
subsystem to a subsystem) during the percolation cycle.

The DMCS provides single-sided communication, as
get/put communication operations and remote procedure
invocation or remote service requests (RSRs) DMCS’s
RSRs and communication operations invoke user-defined
handler functions like AMs on target processors. DMCS
forms the basis for both data migration and computation
invocation in the GMS system.

The MOL extends the DMCS by providing a global
namespace in the context of object mobility. Mobile
objects are application-defined data objects and are not
restricted to exist in contiguous memory. A mobile object
may be referenced by any processor in the parallel
system by using its associated mobile pointer, which is
a system-wide unique identifier.

���� ������	

��
����

�
��

������ �

������ 	

�
���

��� �

����
���� ������

�

��������� �������

Fig. 2 – Hardware organization of the GMS cluster.

The MOL's communication operations extend the
DMCS RSRs by allowing applications to invoke
transparently computation handlers at the location of a
mobile object, regardless of where it is in the parallel
system. In this way, applications can deal directly with
data objects without the tedious bookkeeping associated
with maintaining up-to-date knowledge of each data
object’s current location.

4. PERCOLATION CYCLE

At bootstrap, the GMS specifies the roles to the nodes
of the parallel machine. It assigns: (i) exactly one CU
node and one node to be the front-end of the application,
which is used by the application to interact with the rest
of the system, (ii) N CE nodes and M DS nodes,
depending on the user preferences and total number of
available nodes.

The application node initially creates user objects and
feeds the computation requests to the system. It is also
responsible in resolving the object data-dependencies (at
the user level in this version of the GMS implementation).

The percolation cycle has several stages:

1. The application injects objects into the system for
execution. At this point, depending on the size of the
objects and the load of the DS nodes, the system stores
the object at the appropriate DS nodes. Their pending
handlers are stored into the pending objects/handlers
queue and the local directory is updated;

2. Assembler picks the objects (in some order) from the
pending objects/handlers queue. It analyzes (in current
implementation it just checks for the location of the object
and any pending handlers ready for execution) the object
and it queries the DS layer for the necessary data (e.g., an
argument to object’s handler might be another object),
and then it assembles the necessary parts and puts them
into the input queue;

3. Next the scheduler picks the now ready to execute
objects from the input queue and assigns them to the CE
nodes where they run to completion all their pending

374

handlers; after completion the objects and all of their
associated data are sent to the output queue;
4. Finally, the Terminator picks the objects from the
output queue and it stores them in the DS layer. If, in the
mean time, there are new Active Messages with pending
handlers it stores all of them into the pending
objects/handlers queue and updates the local directory in
CU.

5. PROGRAM EXECUTION

Next, we describe the execution and the percolation
for application objects within the GMS system.

When an object is registered with the system, the
corresponding GMS object consists of the two parts: the
object itself as the user created it (to the system it is just a
pointer to some data) and the meta data. Meta data
contains object specific information (e.g., user functions
for moving the object from one node to another) and the
mobile pointer to the user data. After the object being
created it is “released”, which is the object data are
transferred to some of the DS node and the meta data are
transferred to the CU node. The mobile pointer that user
gets after the object’s creation points to the meta data
rather than to the object’s data itself.

After user created all needed (at present) objects,
he/she calls objects functions. The call request (from now
on, we will call it a message as in MOL) will be delivered
by the underlying communication layer to the node where
the meta data is residing. Meta data should be located on
the CU node, since system transferred it there upon the
“release” of the object.

Upon receiving the message, the CU checking
whether the targeted object was involved in other
computation already. If the object is not involved the CU
issues an order for the data of that object to migrate from
the DS node to the CE node (system picks the CE
depending on scheduling policy). Then the CU stores the
handler in a queue. Scheduler can also delay the message
depending on its specific policy and parameters (it will
not order a migration of the object in such case).

Upon receiving the order for migration from the CU,
the DS node packs an object data (using user-registered
packing routines) and sends it to the selected CE node. It
also sends an ack to the CU to acknowledge that the
object has left the DS and has moved (or is still moving)
to the CE.

Upon receiving the ack, the CU extracts the delayed
handler (or handlers) from the queue and sends them to
the data object on the CE node. CU also picks a new
storage node for the object and issue a request for
migration to this object. Because the MOL messages are
causal, this request will not reach the object until all
previously issued handlers were executed.

Upon receiving the migration request, the CE node
sends an ack to the CU after it uninstalls the object, then
sends packed object to the DS node. Upon receiving the
ack, the CU may try to schedule any delayed messages.

6. PERFORMANCE EVALUATION
In this section, we present preliminary performance

evaluation data using dense matrix-matrix multiplication
(MMM) algorithm. We have implemented the MMM

using both the GMS and MOL in order to compare the
performance of the GMS percolation based approach with
the traditional message passing approach. The algorithm
we use is not the most efficient MMM algorithm. GMS
performs not as good as implicit implementations of
matrix-matrix multiplication; it works reasonably well,
with overhead much smaller than actual computation. For
the testing purposes, we use object-oriented
implementation using the MOL. However, the MOL
implementation is also far from the best parallel MMM
implementation, MOL and the object-oriented model it
implies showed to be very good at solving adaptive
problem we are most interested. Since we do not have the
GMS implementation of an adaptive problem, we want to
compare GMS with the system that uses the same
programming model.

Our experimental set up consists of the following
hardware:
� 1 Dell PowerEdge 6600 with 4 Hyperthreaded
Pentium III Xeon 1.4GGz processors and 16GB of RAM
(seen as 8 processors under MPI) for the CE layer;
� 2 Dell PowerEdge 2450(2 processors per node)
Pentium III 933MGz processors with 1GB of RAM for
the DS layer;
� 1 Dell PowerEdge 6450 with 4 (only 2 used) Pentium
III 733 MHz processors and 2GB of RAM for CU and
application node;
� the accumulative secondary storage of the DS nodes
is 18Gb RAID;
� 1Gb Gigabit Ethernet network connection, single
switch.

In our implementation, we use ()3nΟ matrix-matrix

multiplication algorithm:

[]∑ ×=
k

ikkjji BAC , (1)

where A and B are the multipliers, C is the product
and i , j and k indexes from 0 to n where n is the

number of rows/columns in the matrix.
Because of the object-oriented nature of the system,

we rearrange the multiplications that though do not affect
the time (actual computing time) or correctness of the

execution. For every jiA , ,

kjjiki BAC ,,, ×=+ (2)

where A and B are the multipliers, C is the product
and i , j and k indexes from 0 to n where n is the

number of rows/columns in the matrix.
 In our implementation, we store matrix blocks

within objects, jiA , , jiB , and jiC , are stored within single

object. The implementation contains several steps as
following:
1) for every block A , compute a list of pairs of pointer
to the objects that contain appropriate B and C (as in
equation 2);
2) for every block A , call a process handler on the
object where that block is stored in with the list as an
argument;

375

3) on a call to process handler, go thru the list and call
multiply handlers on the objects that contain appropriate
B ‘s, giving the content of object’s A and appropriate
C pointer from the list as the arguments;
4) on a call to multiply handler, multiply the incoming
A block with the B block of the object, call append

handler on the object, pointer to which comes as the
second argument with the result as the argument;
5) on a call to append handler add the argument to the
C block, increase counter of updates, if counter becomes
equal to the number of the blocks in row/column send a
notification to the node 0 that the C block of the object is
ready;
6) on receiving of the confirmations for all the C
blocks save the resulting C matrix and terminate the
application.

We used this very implementation to test performance
of both MOL and GMS (with few system specific
changes).

In
Fig. 3 we show the MOL timing for multiplying

matrices of size 6250000 doubles (50000000 bytes) that
divided in 25 (5 by 5) blocks.

0

100

200

300

400

500

600

1 2 4 8 10 14

������ �	
���������

�
��

�
��
�

��� ���� �	�
 ��� ��

�
�� ���

 ��

�
���

Fig. 3 – MOL timing.

Every bar shows the time that it takes to execute the
test with some number of processors (1 through 14), it is
wall clock time, the longest that it takes to execute among
all the nodes. The bottom part of a bar is the actual
computation time – the time that processors actually
spend in computing. The middle part is the MOL
overhead. The top part is the other overheads, such as
communication, not directly related to the MMM
computations, lower level communication library
overhead, etc., that time processors performs tasks that
are not directly related to computing.

We can see that the overhead (mean all the additional
computation and communication) is almost constant
except for the single processor where no data movement
is performed. The computing time is changing
proportionally to the number of processors for the first
eight and then we see some slow down. It is because first
eight processors are fast processors we will later use in

CE layer and the later four are the slower ones we will
use for supporting tasks (DS, CU and application node).

In Fig. 4 we show the GMS CE timing for multiplying
matrices of size 6250000 doubles (50000000 bytes) that
divided in 25 (5 by 5) blocks. There are 14 logical
processors in the system however only eight of them are
used for the computation (1 though 8). The bottom bar is
the actual computing time (max among all nodes). The
middle bar is the overhead in the CE node; these are the
computations that are not directly related to the
application’s computations. The bottom part is the idle
time, it include the time CE receiving data from the
network, send data to the network and just stays idle
waiting for data.

In Fig. 5 we show the GMS all timing: total time
versus the average time DS nodes spend computing,
versus the time CU node spends computing. From this
data, we can see that CU spends very few cycles
comparing to the others, this gives us further flexibility to
enhance and improve the control mechanisms for the
system in the future versions.

0

100

200

300

400

500

600

700

1 2 4 6 8

������ �	
���������

�
��

�
��
�

������ ����	
�	�
 ���	
 ��	
�	�
�

Fig. 4 – GMS CE timing.

Fig. 6 shows the speedup curves for MOL and GMS.
We can see the perfect speedup as the straight line. The
MOL speedup present for all 14 processors. Both GMS
speedups are the same, the difference is that GMS (CE)
only considers CE processors and GMS (all) considers all
processors.

We can see that with eight computing processors
GMS beats MOL with all processors and comes very
close to MOL with fourteen processors. It shows that the
supporting processors can indeed decrease the time we
have to spend in the computing processors.

As one of the goal in this research we plan to improve
the performance of the GMS by controlling the
percolation depending on the execution flow, which
includes the order of the percolation, the postponement of
the promotion (percolation to the CE) or the retirement
(percolation to the DS), grouping the objects for
percolation etc. We do not know yet how exactly we will
implement each of the features, but we can try to “fake”
the support of the system for some of them. From the
description of our implementation of matrix-matrix

376

multiplication reader can see that we send n (which is
number of blocks in the row/column) messages with A
block and n messages with update for C to every object.
According to the description of the GMS, every time
there is a message for execution, the object must promote
to execute it (of course if there are more than one message
they all will be executed in one promotion). So far, we
have very simple control over the promotion/retirement
policy thus the object will promote as soon as the first
message is available. This means that in the worst case
every object have to percolate 12 +n times instead of
only 3 in the best case.

In Table 1 we present the timing results on which the
Fig. 3, Fig. 4 and Fig. 5 are build upon (there are no
results for GMS for 10 and 14 processors as only up to 8
processors can be involved into the computation).

0

100

200

300

400

500

600

700

1 2 4 6 8

������ �	
���������

�
��

�
��
�

����� ���	 �� ��	
��	 ���	 �� ����

Fig. 5 – GMS all timing.

0

2

4

6

8

10

12

14

16

0 5 10 15

������ �	
���������

�
��

�
��
�

��	
��� �
�

������� ��������

Fig. 6 – Speedup.

We changed the GMS code in order for it to “know”
the matrix block object and be aware of number of
messages it still needs to receive before it can promote.
Of course, this approach is very application specific and

we cannot use it in a general case, the only reason for it is
to see whether we will get any improvement out of this.

Here is the timing for both GMS and “tweaked” GMS
system (Fig. 7).

0

100

200

300

400

500

600

0 2 4 6 8 10

������ �	
���������

�
��

�
��
�

���� 	
 ����
 ���� �����	
�

Fig. 7 – GMS vs. GMS tweaked.

We can see that, though the tweaked version is faster,
the difference is very small. It is easy to explain. We do
decrease the number of percolations; however, the
number of messages is the same. In our problem (matrix-
matrix multiplication), the messages are roughly of the
same size as the object and the total size of the all
messages is order of magnitude bigger than the total size
of all objects. Thus, we do not get much improvement
here. Still, we believe that for problems with bigger size
of objects such optimization (we do not now how we will
do it yet though) might be very beneficial.

7. CONCLUSION

The Green “Smart” Memory Management System
(GMS) system handles and processes requests for
handlers’ execution at least as effective as the
conventional systems (like MOL). Additional knowledge
of data dependencies and the ability to change the
execution flow based on that data allow that the GMS
system can exploit execution patterns that programmer
by himself might not be able to discover.

As the results, the speedup for 8 processor is 2.56
versus 2.29 in the traditional implementation (though the
implementation we used is object-oriented and thus not
the most optimal for test problem) implementation with 8
processors (2.67 for traditional with 14 processors; there
are 8 computing processors in our GMS test system,
though 6 additional ones are allocated for the serving
purposes, which makes total of 14).

The GMS does its job at least as effective as MOL,
for in-core problems. Though the GMS system and its
variation of the percolation model were design for very
big out-of-core problems, the size of our benchmark is
much better suited for the traditional in-core
computations. Despite this GMS shows comparable
results and we expect much better for large out-of-core
problems.

377

Table 1. Computation time, traditional (MOL) and GMS overheads

8. FUTURE WORK

We will focus on the applications with variable and
unpredictable data access pattern and/or the applications
that require support for out-of-core execution. Our
challenge is to minimize the overhead introduced by the
percolation execution model and GMS in order to realize
the benefit of: (1) lower overhead for memory reads
compared to overheads of disk reads, and (2) the
utilization of slow but additional free nodes that perform
the memory management (including disk I/O and
caching).

9. REFERENCES
[1] G. Gao, K. Theobald, A. Marquez, and T. Sterling.

The HTMT program execution model, CAPSL
Technical Memo 09, University of Delaware, July
1997.

[2] K. Barker, N. Chrisochoides, J. Dobbelaere, D. Nave,

and K. Pingali. Data Movement and Control Substrate,
Concurrency and Computation Practice and
Experience, Vol 14, pp 77-101, 2002.

[3] N. Chrisochoides, K. Barker, D. Nave, and
C. Hawblitzel. Mobile Object Layer: A Runtime
Substrate for Parallel Adaptive and Irregular
Computations, Advances in Engineering Software,
Vol 31 (8-9), pp. 621-637, August 2000.

[4] J. Salmon, M. Warren. Parallel Out-of-core Methods
for N-body Simulation, Proceedings of the Eighth
SIAM Conference on Parallel Processing for
Scientific Computing, 1997.

[5] Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein and Klaus Erik Schauser. Active Messages:
A Mechanism for Integrated Communication and
Computation, 19th International Symposium on
Computer Architecture, pp. 256-266, 1992.

������ �	
���������
 � � �
�
�

��� ����	
��

��� �
����
 ������ ���������� ����������� ����������� ����������� ����������� �����������

�� �!��"��� �
����
������ � ���������� ��������� ���������� ���������� ����������

�
"�� �!��"���# �
����
������ ����������� ����������� ����������� ����������� ����������� �����������

��� �� ��	
��
�� �
	� ����� �������� �������� �������� ��������

��� �� ��� !��" ����� �����# ������ ������ ������

$�!� �� ��� !��"% ����� ������� ������� ������� �������

