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We present a geometric domain decomposition method and its implementation, which produces
good domain decompositions in terms of three basic criteria: (1) The boundary of the subdomains
create good angles, i.e., angles no smaller than a given tolerance Φ0, where the value of Φ0 is
determined by the application which will use the domain decomposition. (2) The size of the
separator should be relatively small compared to the area of the subdomains. (3) The maximum
area of the subdomains should be close to the average subdomain area. The domain decomposition
method uses an approximation of a Medial Axis as an auxiliary structure for constructing the
boundary of the subdomains (separators). The N -way decomposition is based on the “divide and
conquer” algorithmic paradigm and on a smoothing procedure that eliminates the creation of any
new artifacts in the subdomains. This approach produces well shaped uniform and graded domain
decompositions, which are suitable for parallel mesh generation.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling; J.6 [Computer-Aided Engineering]:

General Terms: Algorithms

Additional Key Words and Phrases: domain decomposition, parallel mesh generation, Delaunay
triangulation

1. INTRODUCTION

Although the Domain Decomposition (DD) problem has been studied for more
than 20 years in the context of parallel computing, there are many aspects of this
problem which are unsolved. DD methods have been used for solving numerically
partial differential equations using parallel computing (cf. [Smith et al. 1996].
Here we examine the Geometric Domain Decomposition problem (GDD) in the
context of parallel mesh generation. We focus on the formulation, solution and
implementation of the GDD problem for a continuous 2-dimensional (2D) domain
Ω into non-overlapping subdomains Ωi, so that the subdomains Ωi create no new
artifacts, such as small angles between the separators ∂Ωi, and the separators and
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Fig. 1. Left: Part of the Chesapeake bay geometry decomposed uniformly by the MADD method.
The angles created by the separators are greater than 70◦. Right: Detail of the Delaunay mesh
of the decomposed geometry. The decompositions produced by the MADD are suitable for stable
parallel graded mesh generation.

the external boundary ∂Ω. These decompositions are suitable for stable parallel
graded mesh generation procedures (see Fig. 1), where the termination of these
procedures and the quality of the resulting elements depend on the features of the
subdomains. Furthermore, the same decompositions can be used for the next step,
by the parallel FEM or FD solver. However, the geometric domain decomposition
we describe does not depend on how the mesh is used, or what is the PDE solving
method.

Parallel mesh generation methods decompose the original meshing problem into
smaller subproblems that can be solved (i.e., meshed) in parallel. There are two
approaches that can be employed in order to decompose the problem: mesh data
decomposition and geometric domain decomposition techniques. Mesh data de-
composition techniques compute data-subsets of the mesh that can be processed
in parallel [Chrisochoides and Nave 2003; Kadow and Walkington 2003; Chernikov
and Chrisochoides 2004]. The decomposition for these approaches is an easier prob-
lem than the geometric domain decomposition problem, but communication and
local synchronization are unavoidable during the parallel mesh generation in order
to maintain the conformity and quality of the distributed mesh.

Geometric domain decomposition techniques partition the domain into subdo-
mains; the subdomains are created by inserting internal boundaries (separators)
into the domain. Parallel mesh generation procedures that follow this approach
require low communication [Chew et al. 1997], or no communication at all [Galtier
and George 1996; Said et al. 1999; Linardakis and Chrisochoides 2006], and thus
are very efficient. When communication is required by the parallel mesh generation
procedure, this will be analogous to the lengths of the separators. Hence, one of the
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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goals of the domain decomposition is to produce small separators. On the other
hand, the separators will be part of the geometry, and consequently part of the
final mesh, so the decomposition has to meet certain quality criteria (like the size
of the angles that it imposes), so that the quality of the mesh will not be distorted.

Geometric domain decomposition methods can be characterized as topology–based
or geometry–based. Typically topology–based techniques partition a mesh of the
domain, or the dual graph of a background mesh, giving a decomposition of the
domain. This approach is followed by the Metis library [Karypis and Kumar 1995b].
On the other hand, geometry–based techniques take into account the geometric
characteristics of the domain. For example, the Recursive Coordinate Bisection
approach [Berger and Bokhari 1985] recursively bisects the domain along the axes,
while the Inertial method [Nour-Omid et al. 1986] uses the inertia axis of the domain
to produce a decomposition. Finally, libraries like Chaco [Hendrickson and Leland
1995a] provide both topology and geometry-based approaches.

2. THE GEOMETRIC DOMAIN DECOMPOSITION PROBLEM

We examine the GDD problem in the context of parallel mesh generation. In the rest
of this paper we define as a domain Ω the closure of an open connected bounded set
in R2. The boundary ∂Ω is defined by a planar straight line graph (PSLG), which
is formed by a set of line segments, intersecting only at their end points. Formally
a 2-way domain decomposition is defined as follows. We assume the domain Ω is
the closure of an open connected bounded set and the boundary ∂Ω is a PSLG
that formed a set of linear segments which do not intersect1. A complete separator
H ⊆ Ω is a finite set of simple paths (a continuous 1-1 map h : [0, 1] → Ω), which
we call partial separators, that do not intersect and define a decomposition Ω1,Ω2

of Ω, such that: Ω1 and Ω2 are connected sets, with Ω1 ∪ Ω2 = Ω, and for every
path P ⊂ Ω, which connects a point of Ω1 to a point of Ω2, we have P ∩H 6= ∅.

Guaranteed quality mesh generation algorithms [Chew 1989; 1993; Ruppert 1995]
produce elements with good aspect ratio and good angles. These algorithms require
that the initial boundary angles are within certain good bounds. For example,
Ruppert’s algorithm [Ruppert 1995] requires boundary angles (the angles formed by
the boundary edges) no less than 60◦, in order to guarantee the termination. When
these algorithms are used in parallel, domain decomposition based, mesh generation
procedures, the separators are treated as external boundary of each subdomain. So,
the domain decomposition should create separators that meet the requirements of
the mesh generation algorithm. Therefore the constructed separator should form
angles no less than a given bound Φ0, which is determined by the sequential mesh
generation procedure that will be used to mesh the individual subdomains. Even in
cases like [Triangle ], where a mesh generator can handle small input angles, these
angles are artifacts and will be permanent, distorting the quality of the final mesh
produced by the parallel mesh generator.

The performance of the parallel mesh generation is affected by the required com-
munication and the work-load balance among the processors. If there is com-
munication, this is usually proportional to the size of the separator, therefore,

1This definition does not allow internal boundaries. The algorithm we present can be extended
to handle internal boundaries, if needed.

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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Fig. 2. Left: The Pipe geometry. The angles produced by graph-based partitioners, like Metis,
depend on the background mesh, and can be as small as the smaller angle of the mesh. The angles
marked with dots are “small” (less than 60◦). Right: Part of the Chesapeake bay geometry. When
the geometry is complicated, methods like the Recursive Coordinate Bisection and the Inertial
Method can produce arbitrary small angles between the separators and the domain boundary, and
also can place separators arbitrary close to the boundary.

one of our objectives in the domain decomposition step is to minimize the size of
the separators. On the other hand, the load balancing problem is best addressed
by over-decomposing the domain [Chrisochoides 1996]. Over-decomposition allows
both static and dynamic load balancing methods to distribute equally the work-
load among the processors more effectively [Barker et al. 2004; Linardakis and
Chrisochoides 2006]. These methods though will be less effective, if some of the
subdomains represent a much larger work-load than the average2. Therefore, we
should keep the maximum area of the subdomains close to the average subdomain
area3.

In conclusion, a geometric domain decomposition is suitable for stable parallel
mesh generation, if it satisfies the following criteria.

C1. Create good angles, i.e., angles no smaller than a given tolerance Φ0 < π/2.
The value of Φ0 is determined by the sequential, guaranteed quality, mesh
generation algorithm (for Ruppert’s algorithm we use the value Φ0 = 60◦).

C2. The length of the separator should be relatively small.
C3. The maximum area of the subdomains should be close to the average subdo-

main area.

Previous DD approaches are very successful for traditional parallel PDE solvers,
but they were not developed for parallel mesh generation procedures, and thus do

2Small work loads do not create load-balancing problems, on the contrary, the resulting granularity
can be used to improve the load balance, especially on heterogenous environments.
3The area of the subdomains does not always reflect to work-load of the mesh generation proce-
dure. However, for well shaped subdomains, as the ones produced by MADD, and Delaunay mesh
generators, the work-load is analogous to the area of the subdomain [Linardakis and Chrisochoides
2006]

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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Fig. 3. Left: The Delaunay triangulation of the Pipe domain. The circumcenters of the triangles
approximate the medial axis. Right: The circumcenters are the Voronoi nodes. The separator is
formed by selecting a subset of the Voronoi nodes and connecting them with the boundary.

not address the problem of the formed angles. For example, graph based partition-
ing algorithms, like Metis, give well-balanced decompositions with small separators,
but the angles formed by the separators depend on the background mesh, and they
can be as small as the smallest angle of the mesh (see Figs. 2 Left, and 19). On
the other hand, methods like the Recursive Coordinate Bisection and the Inertial
Method can create arbitrary small angles, and also place the separators arbitrary
close to the boundary (see Fig. 2 Right), so they are unsuitable for parallel mesh
generation procedures. The geometric domain decomposition approach we present
addresses all of the three above criteria, and is suitable for stable and efficient
parallel mesh generation procedures.

3. MEDIAL AXIS DOMAIN DECOMPOSITION METHOD

The Medial Axis Domain Decomposition (MADD) method was first introduced
in [Linardakis and Chrisochoides 2006] in the context of the Delaunay Decoupling
method and it is based on an approximation of the medial axis (MA) of the do-
main. The MA was introduced in [Blum 1967], and has been studied and utilized
extensively (cf. [Attali et al. ]. The approximation of the MA in the MADD method
is used as an auxiliary structure to determine separators that form good angles. In
this paper we present an expanded and improved version of the MADD method
which includes a graded N-way domain decomposition procedure, and a smoothing
procedure for improving the quality of the separators.

A circle C ⊆ Ω is said to be maximal in a domain Ω, if there is no other circle
C ′ ⊆ Ω such that C ( C ′. The closure of the locus of the circumcenters of all
maximal circles in Ω is called the medial axis Ω and will be denoted by MA(Ω).
The intersection of the boundary of Ω and a maximal circle C is not empty. The
points C∩∂Ω, where a maximal circle C intersects the boundary, are called contact
points of c, where c is the center of C. If b is a contact point of c, then the
angles formed by the segment cb and the boundary are at least π/2 [Linardakis and
Chrisochoides 2006].

The medial axis of the domain can be approximated by Voronoi nodes of a dis-
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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Fig. 4. Left is a part of the Delaunay triangulation and right are the partial separators. Triangle
a1a3a5 is a junction triangle, while the other triangles are not.

cretization of the domain [Brandt and Algazi 1992]. The Voronoi nodes are the
circumcenters of the Delaunay triangulation of the discretized domain (see Fig. 3
right). As the Voronoi nodes approximate the MA, the segments that connect them
to the boundary tend to create angles close to π/2. The approximation of MA(Ω)
is achieved in two steps: (1) discretization of the boundary, and (2) computation
of a boundary conforming Delaunay triangulation using the points from step (1).
The circumcenters of the Delaunay triangles are the Voronoi nodes of the boundary
points. The separators will be formed by either connecting these circumcenters to
two of the vertices of the Delaunay triangles, giving two segments, or from edges
of the Delaunay triangles, giving one segment. In both cases these segments are
chosen so that they form good angles, with each other and the external boundary,
and they are called partial separators. A complete separator will be formed by a set
of one or more partial separators. Fig. 3 depicts the boundary conforming mesh of
the cross section of a rocket and the medial axis approximation (left), and a 2-way
separator for the same geometry (right).

Our goal is to create decompositions that form angles no less than a tolerance Φ0.
The partial separators we choose are of two types (see Fig. 4): (a) non-boundary
edges of the Delaunay triangulation that form angles ≥ Φ0 with the boundary,
and (b) segments that connect a triangle circumcenter with the triangle vertices.
The first type of partial separator is easy to identify. We only have to scan the
non-boundary edges of the Delaunay triangulation and select the ones that create
angles at least equal to our tolerance bound Φ0. In order to identify the second
type of partial separator we define a special type of triangles. Let D be a Delaunay
triangulation of a discretization D of the boundary ∂Ω. We call a triangle t ∈ D a
junction triangle if:

(1) it includes its circumcenter c,
(2) at least two of its edges are not in D,
(3) at least two of the segments defined by the circumcenter and the vertices of t

form angles ≥ Φ0, both with the boundary and each other.

The second type of partial separators are included in junction triangles. In Fig. 4,
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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triangle a1a3a5 satisfies all the above criteria and is a junction triangle. The other
triangles are not junction triangles. a1a2a3 and a1a5a6 do not include their circum-
center and violate property (1); a3a4a5 has two edges on the boundary, violating
property (2); a1a6a7 does not include a partial separator that has acceptable an-
gles (both angles at a1 and a7 are less than the tolerance Φ0, where Φ0 = 60◦),
so it violates property (3). The partial separators are either internal Delaunay
edges, like a1a2, a1a3 and a6a7, or are formed by connecting the circumcenter of
a junction triangle to its vertices. In our example a1ca3, a1ca5 and a3ca5 are the
three possible partial separators inside the junction triangle a1a2a3. The partial
separators always connect two points of the boundary, since D is a boundary con-
forming triangulation. The complete separator is formed by choosing a subset of
partial separators that will guarantee the decomposition of the geometry into two
connected subdomains.

The existence and the quality of a complete separator depends on the number
and quality of the partial separators, which in turn depends on the level of the
discretization of the boundary segments. It is a difficult problem to pre-determine
the level of the refinement that would give an optimal decomposition. Increasing
the boundary refinement results a better approximation of the medial axis, and
more – and better in terms of the C1-C3 criteria – partial separators. However,
over-refinement creates a number of problems. First, it increases the time for de-
composing the geometry, since the time for creating the Delaunay triangulation
depends on the number of input points. Furthermore, it will take more time to
identify the partial separators and form a complete separator. Second, it could
result into arithmetic rounding errors when calculating geometric entities, like cir-
cumcenters and angles.

There are three parameters that effect the level of required refinement of the
boundary: (1) the number of subdomains we want to create, (2) the characteristics
of the initial geometry, and (3) the angle lower bound Φ0. In our implementation
we compute a refining size based on the average length of the initial boundary
edges and on the square root of the number of subdomains (see Section 6). The
angle lower bound Φ0 can be as large as 80◦, depending on the geometry and the
refining factor; for values larger than this the algorithm may not find a separator
that satisfies the angle lower bound condition.

4. THE MADD ALGORITHM

The MADD algorithm uses as a starting point the approximation of the medial
axis by the Delaunay triangulation D, as described in the previous section. Any
algorithm that gives a Delaunay boundary conforming triangulation can be used to
create it. For our implementation we have used Triangle [Shewchuk 1996], which is
considered to be a state of art Delaunay mesher for planar geometries. The MADD
algorithm uses the Delaunay triangulation to identify a set of candidate partial
separators. Then it will form a complete separator by a set of partial separators,
that will guarantee the decomposition of the domain into two subdomains. The
selection of partial separators is based on minimizing the size of the separators,
while maintaining the balance of the areas.

The MADD algorithm maps the Delaunay triangulation D into a graph GD,
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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Fig. 5. An example of creating the MADD graph. Left is a part of the Delaunay triangulation
and the creation of the corresponding initial graph GD. Center, the procedure of contracting the
graph by combining the vertices of GD. The vertices connected by doubled lines are combined.
Right is the final graph G′

D that corresponds to this part.

which is a modified element dual graph. The information encapsulated in this
graph includes: (a) the topology of D, (b) the length of the partial separators, and
(c) the area of the subdomains that will be created. This information will be used
to : (1) guarantee that the inserted partial separators form a complete separator,
(2) minimize the length of separators, and (3) keep the subdomain areas balanced.
After GD is constructed, the graph is contracted, so that only the partial separators
of D are represented as graph edges (see Section 4.2). Then the contracted graph
is partitioned in a way that minimizes the cut cost and gives balanced subdomain
weights. In our implementation we have used Metis [Karypis and Kumar 1995b],
which is considered to be a state of art graph partitioner. Finally the graph parti-
tion is translated back into insertions of partial separators, which results a 2-way
decomposition (see Section 4.3). The major steps of the algorithm are:

(1) Create a modified element dual graph GD from the Delaunay triangulation D.
(2) Contract GD into the graph G′

D, so that only the candidate partial separators
are represented as edges of G′

D.
(3) Partition the graph G′

D, optimizing the cut-cost to subgraph weight ratio.
(4) Translate the cuts of the previous partition into the corresponding partial sep-

arators and insert them into the geometry.

4.1 Construction of the Graph GD

In this step the junction triangles of the Delaunay triangulation D are divided
into three triangles, and the final triangulation is represented as a weighted dual
graph. Each of the three triangles included into a junction triangle are represented
by three graph vertices. Non-junction triangles are represented by a single graph
vertex. Vertices that represent adjacent triangles are connected by a graph edge.
The weight of each vertex is set equal to the area of the corresponding triangle,
while the weight of a graph edge connecting two vertices is set equal to the length
of the common triangle edge that is shared by the two corresponding triangles.

Fig. 5 (left) depicts the step for constructing the graph GD. Triangles a1a2a3,
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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a1a5a6, a3a4a5 and a1a6a7 are not junctions, and each is represented by one vertex,
d1, d6, d5, and d7 respectively. Triangle a1a3a5 is a junction triangle and is divided
in three triangles: a1ca3, a1ca5 and a3ca5, where c is the circumcenter of a1a3a5.
These triangles are represented by the vertices d2, d4, and d3 respectively. The
weight of each vertex is equal to the area of the corresponding triangle. For example,
the vertex d2 has weight equal to the area |a1ca3|. Vertices that represent adjacent
triangles are connected by a graph edge, with weight equal to the length of their
common triangle edge. For example, the vertices d1 and d2 are connected by a
graph edge with weight equal to the length |a1a3|, while the vertices for d2 and d3

are connected by a graph edge with weight equal to |ca3|. The above procedure is
described by Algorithm 1.

Algorithm 1.
1. for all the triangles aiajak in D do
2. if aiajak is a junction triangle then
3. let c be the circumcenter of aiajak;
4. create three vertices corresponding to triangles

aicaj , aicak, ajcak with weight equal to their areas;
5. else
6. create one vertex with weight equal to |aiajak|;
7. endif
8. endfor
9. for all vertices d ∈ GD do

10. find the adjacent triangles and connect the corresponding
vertices by a graph edge with weight equal to the length of
their common triangle edge;

11. endfor

4.2 Graph Contraction

In this step the graph GD produced from the previous step is contracted into a new
graph G′

D, so that only the acceptable partial separators are represented as edges in
G′
D. In order to contract the graph GD we iterate through all the graph edges and

eliminate those that correspond to not acceptable triangle edges. A triangle edge
is not acceptable if at least one of the angles that it creates is less than Φ0. The
graph edge that corresponds to non-acceptable triangle edges is deleted, and the
two graph vertices that were connected by the eliminated edge are combined into
one vertex; the new vertex represents the total area of the triangles represented by
the contracted vertices.

Fig. 5 (center) illustrates the procedure of contracting the graph. The triangle
edge a3a5 forms small angles with the boundary and is not acceptable. The corre-
sponding graph edge d3d5 is eliminated, while the vertices d3 and d5 are combined
into a new vertex. The new vertex represents the polygon a3ca5a4 and its weight
is equal to the polygon area, which is the sum of the two previous areas. The new
vertex also inherits all the external graph edges of the two previous vertices, which

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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Fig. 6. An example of contraction of the vertices inside of a junction triangle. Left is a part of
the Delaunay triangulation and the creation of the corresponding initial graph GD. Center, the
procedure of contracting the graph, in this case the two vertices of the junction triangle a1a3a5

are combined. Right is the final graph G′
D and the corresponding candidate partial separators.

in this case are the two edges d3d4 and d2d3. The same procedure is followed for
eliminating the edges d4d6 and d6d7. In Fig. 5 right the final graph G′

D is depicted
with the corresponding areas and partial separators.

In Fig. 6 we have a slightly different geometry, which depicts the elimination of
an internal edge of a junction triangle. The triangle edge ca3 forms a small angle
with the boundary, so it is not acceptable and it is eliminated. The two vertices
d2 and d3 in the junction triangle a1a3a5, which are separated by this edge, are
combined into a new vertex. The new vertex inherits two graph edges connecting
it to the same vertex d4. These two edges have a total weight equal to the length
of the partial separator a1ca5. The above procedure is described by Algorithm 2.

Algorithm 2.
1. for all edges didj ∈ GD do
2. if the corresponding triangle edge

forms an angle < Φ0 then
3. delete the edge didj ;
4. create a new vertex d with weight equal to the

sum of the weights of the vertices di, dj ;
5. transfer all the external graph edges of

di and dj to the new vertex d;
6. endif
7. endfor

4.3 The Construction of the Separator

The result of the previous step is a graph G′
D, whose edges represent the partial

separators that can be used to decompose the domain. The next step is to partition
the graph in two connected subgraphs and translate this partition into a geometric
domain decomposition.
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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D with the corresponding areas. Center The graph is

partitioned by deleting two graph edges. Right The corresponding partial separator is inserted
to the geometry.

The weights of the vertices of G′
D represent the size of the corresponding areas,

while the weights of the edges represent the length of the corresponding partial
separators. The objective of the graph partitioner is to minimize the ratio of the cut-
cost to the subgraph weight. The graph partitioning problem is challenging and has
been the source of good algorithms and software [Kernighan and Lin 1970; Barnard
and Simon 1994; Hendrickson and Leland 1995b; 1995c; Karypis and Kumar 1995a;
Walshaw et al. 1997], The graph contraction step, described in the previous section,
has the additional merit of reducing significantly the size of the graph, resulting a
smaller partitioning problem. In our implementation we have used Metis library of
graph partitioning algorithms [Karypis and Kumar 1995b].

After partitioning the graph G′
D into two connected subgraphs, the final step is

to construct the separator of the geometry, by translating the graph edge cuts to
insertions of partial separators. The partial separators, that correspond to edges
cut by the graph partitioner, are inserted into the geometry. In Fig. 7 (left) the
graph G′

D is depicted, the graph partition cuts of the two edges d2d3 and d2d4

(middle), and the corresponding partial separator a1ca5 is inserted to the geometry
(right). The construction of the separator is described in Algorithm 3.

Algorithm 3.
1. for all the edges didj ∈ G′

D do
2. if di and dj belong to different subgraphs then
3. insert the partial separator, corresponding to didj ,

into the geometry;
4. endif
5. endfor

If the graph G′
D has at least two vertices, then a 2-way partition exists and

it will give a decomposition of the domain into two subdomains (for the proof
see [Linardakis and Chrisochoides 2006]). Provided that the graph partitioner gives
a small cut cost and balanced subgraph weights, the length of the separator will
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Fig. 8. N -way partitions, where N = 2, 4, 8, 16, by the MADD divide and conquer method.

be relatively small and the areas of the subdomains will be approximately equal.
Moreover, since all the partial separators, by the construction of G′

D, form good
angles, the constructed separator will also form good angles. There are cases though
where the graph partition will result the insertion of two partial separators that
meet in the same boundary point. The angle formed between these two separators
might be less than the bound Φ0, giving a non-acceptable decomposition. We have
added a routine that checks for these cases, modifies and repartitions the graph,
so that only angles ≥ Φ0 are created during the insertion of separators. In general
these cases correspond to high cut costs, due to the length of the two intersecting
separators, and in our experiments they rarely occured.

In summary, the constructed separator meets the decomposition criteria C1 - C3
described in Section 2.

5. N-WAY DECOMPOSITION

The procedure described in the previous section decomposes the domain into two
subdomains, our goal though is to obtain much larger number of subdomains. N -
way decompositions can be obtained by applying the MADD procedure recursively,
in a divide and conquer way (see Fig. 8). In the first step the domain is decomposed
into two subdomains. Next, the largest subdomain is chosen and is decomposed
again into two subdomains. The procedure is repeated until we have created the
required number of subdomains. The N -way decomposition is described by Algo-
rithm 4.

Algorithm 4.
1. Read the definition of the domain Ω;
2. Initialize and maintain a list of the subdomains;
3. while the current number of subdomains is less than N do
4. decompose the largest subdomain in two subdomains

using the MADD algorithm;
5. update the list of the subdomains;
6. endwhile

The recursive approach has both advantages and disadvantages. The MADD
algorithm is applied from scratch for every subdomain that is decomposed, so the
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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Fig. 9. The Pipe domain decomposed in 64 subdomains using the MADD algorithm. On the left
no smoothing is used. Most of the separators don’t meet at their end-points, and they create small
segments on their common boundaries. On the middle the smoothing procedure is used, giving
conforming separators. Right, the points of the first type (a) and second type (b) are depicted.

whole procedure, from the creation of the Delaunay triangulation to the graph par-
tition and the insertion of separators, is repeated, discarding any previous informa-
tion. Another disadvantage rises from the fact that each subdomain is decomposed
independently from the neighboring subdomain. This might cause the insertion of
separators that create unnecessary small segments on their common boundary of
two neighboring subdomains (see Fig. 9, left). In order to solve this problem we
introduce a smoothing procedure, which is described in Section 5.1.

The major advantage of the divide and conquer approach is that it adapts to the
current geometry. The Delaunay triangulation of the subdomains are re-calculated,
after we insert the separators, incorporating the information of the so far decom-
position. The new separators are formed taking into account the current shape
of the geometry. Fig. 8 demonstrates this fact. In contrast, if we used an N -way
graph partitioning approach, this information would not be avaliable, resulting poor
decompositions.

5.1 Smoothing the Separators

One of the the disadvantages of independently decomposing each subdomain is the
possible creation of small features. The independent computation of the separators
might create small segments along their common boundary (see Fig. 9, left). The
size of these segments depends on the level of the boundary refinement. As we
increase the number of segments, we also increase the probability of creating these
small segments. On the other hand, the graph partitioner has information only
about the size of the separators, and not about their quality, i.e., the angles that
they form. Although all the permissible separators form angles greater than a
predefined lower bound Φ0, we would like to choose the ones that are not only
small, but also form the best possible angles (that is near π/2). In order to deal
with these two issues we introduce a smoothing procedure that improves the quality
of the decomposition.

The smoothing procedure takes place in two steps. The first step takes place
during the construction of the graph GD. In this step we incorporate into the
weight of the graph edges two types of additional information: (a) the quality of
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the angles that the corresponding separators form, and (b) the conformity with
existing separators (i.e. if the separator’s end-points meet at the end-points of an
existing separator). The weight of each graph edge is multiplied by a coefficient f0,
which reflects the quality of the minimum angle φ that the corresponding separator
forms. This coefficient is computed as f0 = 1

φ−Φ0+1 , for φ ≤ π/2, and 1
π/2−Φ0+1 ,

for φ ≥ π/2. The coefficient f0 takes values from 1
π/2−Φ0+1 , when φ ≥ π/2, up to

1, when the minimum angle is equal to the minimum acceptable bound φ = Φ0.
So, the weight of the graph edge is decreased proportionally to the quality of the
minimum angle.

We would also like to encourage the graph partitioner to choose separators that
conform with existing separators, i.e., that meet on the common boundary with
the existing partial separators of the adjacent subdomains. To this end we identify
two types of boundary points (see Fig. 9, right). Points of the first type are either
initial points part of domain boundary, or are end-points of an existing separator.
In order to encourage the graph partitioner to choose conforming separators, we
decrease the weight of the graph edges when these correspond to separators defined
from points of the first type. These are end-points of existing separators (or of
the initial boundary), and new separators that meet at these points are conforming
with the existing separators. The second type of points are the middle points of
segments defined by the first type points. We also reduce the weight of the graph
edges corresponding to separators defined from second type points. In this way we
increase the probability that a separator will be chosen that has end-points either
on existing end-points (first type points), or away from them (second type points).

The previous step awards conforming separators, and the ones that form better
angles, but it does not guarantee that these will be chosen by the graph partitioner.
In order to improve further the quality of the separator we introduce a second
smoothing step, an ad hoc heuristic, after the graph partitioning procedure. Instead
of inserting the partial separators chosen by the graph partitioner, we examine all
the possible separators that are close to the initial ones, and insert the optimal,
according to an optimality function. The neighboring separators are defined by
the neighboring points to the end-points of the initial separator. The optimality
function computes the degree of quality based on : (a) the size of the separator,
(b) the minimum angle that it forms, and (c) the type of its end-points. The
computation of this function is similar as in the previous smoothing step.

The smoothing procedure, almost always, gives conforming separators that form
good angles. This depends though on the initial partition of the graph, the balance
of the decomposition, and of course, the geometric characteristics of the domain.

5.2 N-way Graded Decomposition

The procedure that we have described so far for N -way decompositions produces
uniform domain decompositions, i.e. the areas of the subdomains are approximately
equal. This approach is well suited for uniform mesh generation, but in many cases
we would like to have a graded, locally refined, mesh. Certain parts of the domain,
where the model indicates higher activity, require smaller size of mesh elements
and thus a denser mesh. These parts could be determined in advance, based on
the properties of the geometry and the model, or as a result of an error estimation
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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Fig. 10. Graded MADD based on boundary weights. Left, a model of the Chesapeake bay is
decomposed in 1250 subdomains, with weights on all the boundary points and interpolation factor
set to zero. Right, detail of the decomposition, the irregular inner polygons represent islands and
are part of the initial domain.

function from a previous FEM procedure. The local mesh refinement procedure
will result disproportional mesh sizes for the subdomains that include these critical
areas. In order to maintain balanced memory requirements, and consequently work-
load, during the mesh generation procedure, we have to follow a graded approach
in creating the domain decomposition. The areas of the created subdomains should
be proportional to the expected mesh size, and the subdomains that require higher
refinement should be decomposed into smaller subdomains.

The problem of determining the element size, and thus the gradation of a mesh,
has been studied extensively in the mesh generation and refinement literature (cf.
[Borouchaki et al. 1997; Löhner 1997; Owen and Saigal 1997; Deister et al. 2004; Zhu
et al. 2002]). Usually the size of the elements is computed as a function of: (a) the
geometry of the domain (curvature), (b) the distance from sources of activity in the
model (like heat sources), (c) a gradation control bound, and (d) error estimators,
typically computed from a previous solution over a coarse mesh. In most cases a
background mesh and an interpolation procedure is employed to define the desired
element size in each position of the domain.

In this section we describe a procedure that produces graded domain decompo-
sitions. using the MADD method. There are two ways to define the gradation of
the subdomains. The first is to define the required area for each subdomain. The
second is to assign a relative density weight for each subdomain, and use it as a
gradation criterion. While the first approach is a natural extension of the existing
approaches for defining the gradation of the mesh, it does not allow the user to pre-
define the number of subdomains she wants to create. The number of subdomains
depends not only on the expected size of the mesh, which can be estimated through
an area criterion, but also by the number of processors that we want to utilize and
the available memory. Using density weights allows us to produce graded decom-
positions and at the same time to predefine the number of subdomains that will be
created.

N -way graded domain decompositions can be produced in a similar way as the
non-graded ones, by recursively applying the MADD procedure. The only step that
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needs to be modified is the way we choose the subdomain to be decomposed in line
4 of Algorithm 4. In this step the subdomain with the greater area to required area
ratio, or with the greater density weight, is chosen to be decomposed, instead of the
subdomain with the larger area. In the case of using the area ratio, no subdomain
with area ratio greater than a user-defined bound will be in the final decomposition.
In the case of using a density weight criterion the parts of the geometry that have
been assigned greater density weights will be decomposed more intensively, and the
number of the created subdomains is predefined.

In our implementation the gradation of the decomposition can be controlled in
the following three ways:

(1) Using density weights on the boundary points.
(2) Using density-weight or required-area values over an unstructured background

mesh.
(3) Using a density-weight function or a required-area function over a structured

background grid.

Case (1). The use of density weights on the boundary points is the simplest
case, and can be viewed a sub-case of the case (2). We describe it separately
because it is simple to define, and in some cases (like crack propagation) we need
a better refinement near the boundary. The weights assigned to the boundary are
defined in the PSLG file that describes the geometry. Each point, in addition to
its coordinates, is assigned an integer density weight value. A value of zero means
that the point will not contribute to the density. Each subdomain is assigned a
density weight value, which is the sum of its boundary weights. An interpolation
factor allows the user to define the weights of the created internal boundaries; we
use a linear interpolation procedure. An interpolation factor of zero will assign zero
weights to the interfaces. Examples of this approach are depicted in Fig. 10.

Case (2). In this case we use a density-weight or required-area background mesh.
A set of points in the interior, or on the boundary, of the geometry is assigned ei-
ther with density weights, which indicate the required level of refinement at the
neighborhood of these points, or with required area values, which indicate the area
of the subdomain including this point. The points typically would be vertices of a
previous mesh (see Fig 12, left). The density weight of each subdomain is computed
as the sum of the weights of the points included in the subdomain. An example
of this approach is depicted in Fig. 11, which is a model used to study the incom-
pressible turbulent flow past a circular cylinder [Dong and Karniadakis 2005], and
in Fig. 12. The size of the background mesh should be proportional to the number
subdomains we want to create. Creating a large number of subdomains using few
background points will result poor quality of the subdomain gradation, with much
larger subdomains adjacent to small ones. This will increase the subdomain con-
nectivity and the cost for the start-up in the communication of the FEM solver. On
the other hand, too many background points will unnecessarily slow the procedure,
without improving the quality of the gradation.

Case (3). In this case we use a density weight function, or a required area func-
tion, to control the gradation of the decomposition. These functions are evaluated
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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Fig. 11. Graded MADD based on weighted background mesh. Top is the weight background
mesh vertices of the Cylinder domain, and bottom is the corresponding decomposition in 280
subdomains.

Fig. 12. Graded MADD based on weighted background mesh. Left is the weight background mesh
vertices of the Pipe domain, and right is the corresponding decomposition into 1250 subdomains.
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Fig. 13. Left, the Key is decomposed in 1250 subdomains using a linear weight function, propor-
tional to x coordinate. Right, the Pipe decomposed in 1315 subdomains using an area function
proportional to ρ12, where ρ is the distance from the center of the inner circle.

over a structured gird created on the fly during the decomposition procedure. The
density-weight function assigns a weight to each point of the created background
mesh, and, as in case (2), the density weight of each subdomain is computed as the
sum of these weights. An example of this approach is depicted in Fig. 13 (left).

The required-area function assigns to each point the maximum subdomain area
that is expected for the subdomain that includes this point. The required-area for a
subdomain is computed as the minimum of the required-area function values of all
the mesh points contained in the subdomain. In each step the subdomain with the
highest ratio of area over required area is chosen to be decomposed. The procedure
is repeated, until no ratio is greater than a user-defined bound (default is 1), or
until a maximum number of subdomains is reached. An example of this approach
is depicted in Fig. 13 (right).

6. IMPLEMENTATION

The programming language for our implementation is ANSI C++, and the whole
library is encapsulated into the madd class. The [Triangle ] library ([Shewchuk
1996]) was used for the creation of the Delaunay triangulation during the MADD
procedure. Also, the [Metis ] library ([Karypis and Kumar 1995b]) was used for the
graph partitioning step in the MADD procedure. The MADD method requires a
graph partition into two connected subgraphs; we implemented a routine that re-
stores the connectivity in the cases where Metis returns non-connected components.
All the libraries where used without modifications.

The basic methods are described in Table I, a detailed description is provided
in the source program. The libraries for the area and weight function are loaded
dynamically through the ld dynamic linker. The file format (.poly) of the domains
is the same as in [Triangle ], and describes the domain in three sections: (a) a set of
boundary points in x y coordinates, (b) a set of segments, in 〈endpoint1〉 〈endpoint2〉
form, and (c) a set of holes in x y coordinates. The file format of the decomposi-
tions is similar. It describes the decomposition in four sections: (1) a set of points,
(2) a set of segments, (3) a set of subdomains defined by segments of section (2),
and (4) a set of holes for each subdomain. Examples of files are provided with the
software.
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.
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readPolyFile(char* name) Reads a poly file (the initial domain).

decompose(int subDomains) The main decomposition routine.

readBackgroundWeights(char* name) Reads weighted background mesh nodes from a file.

readBackgroundAreas(char* name) Reads area background mesh nodes from a file.

writePolyFileAll(char* fileName) Writes all the subdomains to different poly files.

writeSubdomainFile(char* name) Writes the decomposition in points, segments, and

subdomains - segments.

setWeightFunction(char *libraryName, Sets the weight function.

char *functionName)

setAreaFunction(char *libraryName, Sets the area function.

char *functionName)

setPhi(double phiValue) Sets minimum acceptable angle formed during the decomposition.

setDecAreaRatio(double ratioValue) Sets the min area ratio for decomposing a subdomain.

setUniformRefineLevel(double uniformValue) Sets the uniform refining and

decomposition factor.

setAdaptiveRefineLevel(double adaptiveValue) Sets the graded refining and

decomposition factor.

setMaxImbalanceLevel(double imbalanceValue) Sets the maximum acceptable imbalance

during the madd partition.

setMaxSmoothLevel(int smoothLevel) Defines the number of the smoothing iterations.

setInterpolationWeightLevel(double weightValue) Sets the interpolation coefficient

for the weights of new points.

Table I. The basic methods of the madd class.

A line command user interface is provided with the library. This interface pro-
gram (maddi) can receive and execute a number of simple commands; the basic
commands are are described in Table II. An example of a set of commands is:

read pipe.poly
set f=0.35
dec 400
write pipe400.poly
writeSubdomains pipe400.dat
exit

The user can set a number of optional parameters, through the set command,
that controls various functional aspects, like the level of refinement, the level of
smoothing, balancing, etc. The basic parameters are described in Table III.

The level of refinement is based on a user-defined uniform refinement factor r,
and the

√
N , where N are the number of subdomains. The square root function

of the number of subdomains was chosen in a heuristic way, based on the fact
that the square of the lengths of the separators is analogous to the areas of the
subdomains. The average area of subdomain is A/N , where A is the total area and
N the number of subdomains. So, the separator lengths will be proportional to√

1/N , and consequently the level of refinement should be analogous to
√

N . The
refinement level, and the decomposition times, for the Pipe and the Chesapeake
bay tend to reflect this “square root” behavior. This is not the case for the Key,
which has few initial segments, and requires more intense refinement in order to get
good decompositions. The refinement factor r defines a uniform refinement level,
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read <filename> Reads a poly file.

dec [<noOfSubdomains>] Decomposes the doamin.

write <filename> [all] Writes the decomposed poly file.

read_weights <filename> Reads weighted background mesh nodes from a file.

read_areas <filename> Reads area background mesh nodes from a file.

writeSubdomains <filename> Writes the decomposition into a file.

setWeightFunction <libraryName> <functionName> Sets the weight function.

setAreaFunction <libraryName> <functionName> Sets the area function.

set <parameter>=<value> Sets the <value> to the <parameter>.

exit Exits.

Table II. The basic commands for the maddi interface.

for example, if a boundary segment is to be divided to four subsegments, a factor
r = 2 will cause it to be divided into 8 subsegments. In all our experiments the
values for r were between 2 and 4. The gradation factor a controls the level of
gradation, in association with the uniform refinement factor r. The total density
weight of the subdomain is computed as

r × subdomain area + a× subdomain weight.

In this way the relation between a and b controls the intensity of the gradation.

7. EXPERIMENTAL RESULTS

For our experiments we used three model domains. The Pipe model is an approx-
imation of a cross section of a regenerative cooled pipe geometry. It consists of
576 boundary segments and 9 holes. The Key is a domain provided with Trian-
gle [Shewchuk 1996], and has 54 boundary segments and 1 hole. The Chesapeake
bay (Cbay) model defined from 13,524 points and it has 26 islands.

We ran three sets of experiments. In the first set of experiments we produced
uniform decompositions for the three test domains. In the second set of experi-
ments we produced graded decompositions, using the three approaches described
in Section 5.2: (a) we used weights on the boundaries to produce graded decompo-
sitions, (b) we experimented using weight and area background meshes, and (c) we
used weight and area functions over structured grids. The above experiments were
performed on a a Pentium IV 3GHz processor, and we used a lower angle bound
of f = 0.3333 rads (≈ 60◦). A third set of experiments was performed in order to
asses the quality and efficiency of the MADD and compare it to Metis, which is a
state of the art graph partitioner. For these experiments we decomposed the Key
geometry, using a Dual Pentium 3.4GHz processor.

Our results show that the time to decompose a domain is directly related to
the size of the domain (measured in number of segments), and the level of the
refinement we apply on it (see Figs. 14 -15). The problem size for all the major
routines (Delaunay triangulation, graph creation and partition) is proportional to
the number of the input segments, and thus we should expect this behavior. The
level of refinement is analogous to

√
N , where N are the number of subdomains.

The refinement level, and the decomposition times, for the Pipe and the Chesapeake
bay tend to reflect this “square root” behavior. This is not the case for the Key,
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f Defines the minimum angle bound created by the separators (in rads).
r Defines the uniform refinement level. The expected length of the segments, after

refining, is multiplied by 1/r. Equivalently, the number of the segments after refining
is multiplied by r.

a The gradation factor for density weights. The density weight of the subdomains is
multiplied by a, while the area is multiplied by the uniform refinement level r. The
total sum gives the density weight of the subdomain.

p The interpolation factor for density weights. The weights of the new points of the
separators are computed by linear interpolation of the weights of the separator end
points, multiplied by p. A value p = 0 eliminates the weights on the separators.

i The level of acceptable imbalance during the smoothing. The values should be be-
tween 0.6 and 0.9 (default is 0.75).

Table III. The basic parameters used in the set command.

which has few initial segments, and requires more intense refinement in order to
get good decompositions.

For the first group of graded decomposition experiments we used boundary
weights on the three domains. The user can control the gradation level, by set-
ting a gradation factor a, and the weight interpolation, p, that will be applied on
the interfaces. The parameters for the Pipe and the Key were r = 3, a = 3, p = 0.5,
while for the Cbay they were r = 2, a = 3, p = 0. One of the difficulties for decom-
posing a geometry based on boundary weights (and also weight or area functions)
is that the boundary refinement will have to be adaptive on the local weights. In
our implementation, segments that have greater weight will be refined more. These
difficulties can be solved by a computing on the fly, locally and independently, the
level of refinement required for each subdomain.

The second group of experiments was performed on the Pipe domain using a
background mesh of 1,010 points. Both area and weight values over the background
mesh were used, and they produced similar decompositions for the same number of
subdomains (see Fig. 12). The quality of the gradation depends on the ratio of the
number of mesh points to the number of subdomains, as well as the gradation of
the background mesh. Domain decomposition into a large number of subdomains,
while using a small number of background mesh points, will result poor gradation.

We also tested the Pipe and the Key domains using weight and area functions,
evaluated over a structured grid. This grid is created on the fly, when each subdo-
main is created; it includes a total of 21,684 points for the Pipe domain and 8,115
points for the Key. This high number of the points results in a good approximation
of the density for each subdomain (the decompositions are depicted in Fig. 13),
while the cost to create them is small (see Fig. 17). Of course, defining the func-
tions analytically has the advantage of avoiding the interpolation procedure, which
can have a significant cost. The weight and area functions are defined by the user
and are linked dynamically, during the execution of the program.

For the third set of experiments we partitioned the Key geometry up to 2,000
subdomains uniformly, and we compare the results obtained by MADD to those
obtained by Metis. For the Metis decompositions we created background Delaunay
meshes of size approximately 120 triangles per subdomain, The Delaunay mesh
generation procedure is the only one that provides quality guarantees, creating
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Fig. 14. Decomposition times for the uniform
MADD.
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Fig. 15. The refinement (number of segments)
for the uniform decompositions

angles no less than 30◦. The background mesh was translated into a weighted
graph, with weights reflecting the edge lengths and the triangle areas. For the
MADD we used an adaptive local refinement approach to produce the Medial Axis
approximation. The lower angle bound was set to 70◦.

Figure 18 depicts the minimum, median and 90% quantiles of the angles created
by MADD. As expected, the minimum angles are no less than 70◦, while most of
the angles are close to 90◦. In comparison, Metis gives minimum angles as small
as the ones in the background mesh (see Fig. 19). The efficiency of the MADD
depends on the geometry (Fig. 14), while the efficiency of Metis depends on the
size of the background mesh. For the Key geometry MADD performs better (see
Fig. 20), for the Pipe the decomposition times had small differences, while for the
Cbay domain Metis performed better. The average length of the separators per
subdomain is almost the same (Fig. 21), with MADD being slightly better. The
maximum ratio of the subdomain separator length to the subdomain area is the
same for the two methods, see Fig. 22. The maximum subdomain area is close to
the average subdomain area for the MADD method (Fig 23), while Metis results
almost perfect maximum subdomain area due to the near perfect balancing that it
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Fig. 16. Decomposition times for the weighted
boundary MADD.
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Fig. 17. Decomposition times for the graded
MADD using a weighted background mesh and
weight functions.
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Fig. 18. The angles created by MADD. The
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Fig. 19. The angles created by Metis. The
minimum, median and 90% quantiles are de-
picted.
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Fig. 20. The decomposition times for MADD
and Metis. The mesh generation time is in-
cluded.
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Fig. 21. The average separator length per sub-
domain.
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Fig. 22. The maximum ratio of subdomain
separator length/subdomain area.
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Fig. 23. The maximum area of the subdo-
mains.

All figures refer to uniform decompositions of the Key geometry.
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produces.

8. CONCLUSIONS AND FUTURE WORK

We propose a geometric domain decomposition method, based on the Medial Axis,
which produces good domain decompositions in terms of three basic criteria: (1) The
internal boundary of the subdomains forms good angles, i.e., angles no smaller than
a given tolerance Φ0. (2) The size of the separator is relatively small compared to
the area of the subdomains. (3) The maximum area of the subdomains is close
to the average subdomain area. The resulting decompositions do not create new
artifacts in the geometry and are suitable for stable and efficient parallel mesh
generation procedures. The MADD can also create graded decompositions, based
on density grids, or density functions; these decompositions are useful for graded
parallel mesh generation. The experimental data demonstrate that the method is
efficient, generating more than a thousand subdomains in less than two seconds,
and effective, resulting angles close to 90◦ and small length of separators.

Although it is straight forward to extend the MADD algorithm to three dimen-
sions, using a tetrahedral Delaunay mesh, there are no guarantees of the quality of
the resulting decomposition. The Voronoi points of the refinement do not converge
to the Medial Axis in three dimensions, and the formed angles are not guaranteed
to be close to 90◦. However, we believe that the Medial Axis can be a useful tool
for geometric domain decompositions in three dimensions, and this is a subject of
future work.
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