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Abstract. We present a method for creating large 2D graded, guaranteed quality, Delaunay
meshes on parallel machines. The method decouples the mesh generation procedure for each subdo-
main, and thus eliminates the communication between processors, while the final mesh is of guar-
anteed quality. This work extents our previous result on the uniform Delaunay Decoupling method
[19], by allowing the element size to be governed by a sizing function, or a background mesh, and
thus to produce large graded meshes. The graded Delaunay decoupling method demonstrates high
efficiency, ten billion elements can be created in five minutes, with very small over-refinement (about
2%), and also results high speed-ups. This parallelization approach is effective, using off-the-self,
well tested and fine tuned, sequential mesh generation libraries without modification.
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1. Introduction. In [19] we described a decoupling procedure for uniform par-
allel guaranteed quality Delaunay mesh generation. In this paper we extend the
decoupling method for generating large graded Delaunay meshes in parallel. A sizing
function, or a background mesh, is used to control the mesh element size, and thus the
gradation of the mesh. The sizing function is considered to be a real (hence isotropic)
continuous positive function defined over the whole domain. On the other hand, the
background mesh consists of a set of nodes in the domain, that store the desired ele-
ment size. The decoupling procedure eliminates the communication during the mesh
generation procedure, by applying a sequential mesh generator independently on each
subdomain. This approach is proved to be proved to be effective, efficient and stable.

The Parallel Delaunay decoupling method consists of two major steps: the domain
decomposition step, and the decoupling procedure step. The domain decomposition
is governed by the same sizing function, or the background mesh, as the mesh gen-
eration procedure. The gradation of the mesh should to be small to result a good
quality mesh, and large meshes will be locally almost uniform. We propose a domain
decomposition procedure that identifies regions of the domain where the mesh has
bounded gradation. This is achieved by imposing gradation bounds that the sizing
function should satisfy in the interior of every subdomain. The mesh gradation along
neighboring subdomains is also bounded, which in turn will allow the decoupling of
the mesh generation procedure. Moreover, the decomposition takes into account geo-
metric quality criteria, like the angles formed by the separators, as well as work-load
balancing issues. This domain decomposition procedure is described in Section 4.

The second step is the decoupling procedure. The separators created by the
domain decomposition are refined during a preprocessing step before the parallel
mesh generation procedure. The refining procedure results a decoupling property
that allows the subdomains to be meshed in parallel and independently, thus with no
communication, and at the same time guarantees the conformity and quality of the
global mesh. The decoupling step is described in Section 5.

After decoupling the subdomains, a state-of-art mesh generator (Triangle [43]) is
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used without modifications, as a sequential mesh generation library. Other off-the-
self sequential Delaunay mesh generators can be used as well. The mesh generator is
applied independently and in parallel on all the subdomains. In Section 6 we describe
the parallel implementation and our experimental results.

In the rest of the paper we define the domain Ω to be the closure of an open
connected bounded set in R2, and the boundary ∂Ω to be a planar straight line
graph (PSLG), which is formed by a set of line segments, intersecting only at their
end-points.

2. Background. In order to generate a mesh on a multicomputer environment
it is necessary to decompose the mesh generation problem. This can be achieved
in two ways: by a mesh data-decomposition approach, or by a geometric domain
decomposition approach. Mesh data-decomposition approaches decompose the mesh
data structure, without inserting physical separators into the geometry. On the other
hand, geometric domain decompositions partition the domain by inserting separators
into the geometry, and these separators will be a permanent part of the geometry.
Methods that follow a mixed approach have also been proposed [11].

Mesh data-decomposition methods are attractive and have been studied exten-
sively, because they do not have have to face the difficult geometric domain decom-
position problem. A data-decomposition approach is used by Löhner and Cebral [23],
who employ an octree decomposition of the domain to partition the current front in
an advancing front mesh method. For parallel Delaunay mesh generation an octree
decomposition is used by Chernikov and Chrisochoides [5] to identify parts of a De-
launay mesh that can be refined independently. Another common data-decomposition
approach is to create an initial mesh, and then decompose it using a graph partitioner.
The refining procedure can applied on each part of the mesh, with some communi-
cation to maintain the conformity; this approach has been followed by Chrisochoides
and Nave [9]. Finally, Kadow and Walkington [15] employ a projective method [1] and
alternate cuts to create in parallel, and decompose, an initial Delaunay triangulation;
the triangulation is further refined in parallel, and the communication is controlled
via an encroachment zone along the cuts.

Geometric domain decomposition approaches insert separators into the domain,
and these are treated as a constrained part of the geometry. The separators will be
a permanent part the geometry, they should satisfy certain quality conditions, like
the angles they form. These conditions impose additional difficulty to parallel mesh
generation methods that use geometric decompositions. On the other hand these
methods have the advantage of low cost of communication during the parallel run.
Such a method is the parallel constrained Delaunay Triangulation, proposed by Chew
et al. [8]. The core Delaunay mesh refinement procedure is fast (although memory
intensive), and the increasing processing power of the CPUs reveal the network as the
bottleneck for parallel processing; therefore it is natural to attempt to eliminate the
communication. A projective method that eliminates the communication for parallel
Delaunay triangulation was proposed by Blelloch et al. [1]. A parallel mesh generation
procedure with no communication for distributed memory machines is described by
Said et al. [36]. The procedure though does not preserve the Delaunay properties
globally and does not provide quality guarantees along the separators. A similar, more
elaborated, approach is described by Ivanov et al. [14]. The procedure gives super-
linear speedup, but presents the same disadvantages as in [36]. In [13] J. Galtier and
P. L. George present a parallel projective Delaunay meshing method which guarantees
the quality of the elements and eliminates communication, but may suffer setbacks in
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the form of regenerating part of the mesh.
In order to guarantee the stability (in terms of the quality and size of the final

global mesh), and the termination of the parallel procedure, it is necessary to produce
quality geometric domain decompositions and also to prove that the decoupling pro-
cedure guarantees the conformity of the final mesh, without compromising its quality.
In [19] the authors describe such a decoupling procedure for uniform Delaunay meshes.
In this paper we extend the decoupling method for creating graded Delaunay meshes
in parallel with no communication.

2.1. Graded mesh generation. Delaunay mesh generation procedures, as the
ones proposed by Chew [6, 7], Ruppert [34, 35], and further developed by Shewchuk
[39, 41], create boundary conforming triangular meshes of good quality. The area of
the elements in Delaunay meshes can grow fast, as we move away from the boundary,
resulting meshes of optimal size (up to a constant factor)[35, 26]. The gradation re-
flects the geometric properties of the domain, but it does not reflect the computational
characteristics of the model. Regions of the domain where is harder to approximate
the solution should be meshed more intensively.

The way to control the element size of a mesh is to employ a sizing function that
determines the element size. In the anisotropic case this function can be viewed as a
tensor field over the domain [2], while in the isotropic case as a real function. In this
paper we consider only the isotropic case. The sizing function can be defined over
the whole domain, or over a background mesh on the domain (alternatively the sizing
function can be defined over a control space). The objectives of the sizing function
are two-fold: to capture the complexity of the geometry, and to optimize the quality
of the mesh with regard to a specific model.

The complexity of the geometry lies on the properties of the boundary, which
in turn can be used to specify a sizing function. Some of these geometric properties
used to determine a sizing function are the angle variation between boundary faces
[21, 22], the curvature of the boundary [10, 28, 12, 29, 17, 44], and the proximity
between different boundary entities [44, 32, 33].

The behavior of the model can be assessed based on previous experience and
error estimations. Sources of activity can be translated to geometrical entities, which
in turn give sizing functions [21, 22, 44] usually in terms of the distance from the
source. Another way is to utilize an initial, relatively coarse, mesh to obtain error
estimations. This mesh can be used as a background mesh for generating a new
mesh, with element sizes governed by the error estimations. The element size at each
point of the domain can be determined through an interpolation procedure [28, 29].
Alternatively, Cartesian [12], and octree based background grids have been proposed
to control the element sizes.

Bounding the gradation improves the quality of the mesh, and several methods
have been proposed for smoothing sizing function. For the discrete cases the use of
interpolation smoothing methods is common [3, 28, 18], while for the continuous case
gradient limiting methods can be applied [31].

3. The Geometric Domain Decomposition Problem. Creating good geo-
metric domain decompositions for graded mesh generation is a challenging problem
because of the several constraints the decomposition has to satisfy. Some mesh gen-
eration algorithms, like Ruppert’s [35], require the boundary angles to be above a
bound, in order to guarantee the termination. This problem is solved in later versions
of the algorithm (see [40, 4, 30]), but inevitably small boundary angles will result
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into meshes with poor element quality, and with more elements than necessary. Geo-
metric decompositions create permanent separators, and the created angles will also
be permanent, so they should be of good quality. We formalize this condition in the
following.

Condition 1. If Φ is any angle created between two separators, or between a
separator and the boundary ∂Ω, then

Φo ≤ Φ,

where Φo < π/2 is a predefined constant.
A second problem is the size of the separators. Permanent separators create an

artificial internal boundary on the geometry. In the cases that the parallel mesh
generator is based on some communication, this communication occurs along the
internal boundary [8], and it is analogous to the size of the separators. On the
other hand, decoupling methods eliminate the communication, but will result some
over-refinement along the separators. In both cases, a small length of separators is
desirable.

Another concern is the creation of small artifacts, i.e. the insertion of separators
with internal points too close to the boundary. These artifacts will cause the creation
of unnecessary small elements, and thus unnecessary large meshes. What constitutes
a small artifact depends on the geometry, but also on the size of the mesh. We observe
that separators that form good angles (greater than a bound) tend to “stay away”
from each other and from the boundary, and thus do not create small artifacts. The
requirements described above are satisfied by the Medial Axis domain decomposition
method, which is summarized in Section 4.1.

The mesh gradation is commonly controlled by a sizing function, or by a back-
ground mesh. The gradation produced by the sizing function should be bounded,
and, especially in the case of large meshes, we expect the mesh to be locally near
uniform. Our goal during the domain decomposition is to identify bounded gradation
regions of the domain. This can be achieved by imposing a constant upper bound to
the gradation of the sizing function inside each subdomain. Moreover, neighboring
parts of the mesh should not present large size difference, and so the gradation among
neighboring subdomains should also be bounded. Decompositions with the above
properties can be used to decouple the mesh generation procedure.

We formulate the above two conditions as follows. For any subdomain Di, let
m(Di) denote the minimum element area and M(Di) the maximum element area
inside Di, as these are defined by the sizing function or the background mesh.

Condition 2. For a predefined constant R1 > 1 we should have

M(Di) ≤ R1m(Di),

for all subdomains Di.
Condition 3. For a predefined constant R2 > 1 we should have

m(Di) ≤ R2m(Dj),

for all neighboring (sharing a common internal boundary) subdomains Di and Dj.
We expect the gradation inside a subdomain to be at most as large as among

neighboring subdomains, so we require R1 ≤ R2. An interesting theoretical problem
is to find an optimal domain decomposition, in terms of the number of subdomains,
that satisfies the above two conditions.
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Fig. 4.1. Part of the Chesapeake bay decomposed uniformly by the MADD method, and meshed
using the decoupling procedure.

4. Graded Medial Axis Domain Decomposition. In this section we de-
scribe a geometric domain decomposition procedure that satisfies the conditions that
where formulated in the previous section. The procedure is based on the Medial Axis
domain decomposition [20], which is applied iteratively until the conditions 2 and 3
are met. We examine both the cases of a sizing function f and of a background mesh
G as control mechanisms for the maximum size of the elements. The sizing function
f is considered to be positive and continuous over the whole domain Ω, while the
background mesh G is an unstructured mesh over the domain.

4.1. The Medial Axis Domain Decomposition. The Medial Axis domain
decomposition (MADD) was first introduced in [19], and an improved method is
presented in [20]. The MADD method uses an approximation of the Medial Axis
as an auxiliary structure to determine separators that form good angles. A refined
Delaunay triangulation of the domain is used to approximate the medial axis. The
triangulation is mapped to a graph, which is contracted and decomposed; in turn it
results a geometric decomposition of the domain (see Fig. 4.1).

The core algorithm decomposes a domain into two subdomains, so that the angles
angles created by the separators are no less than a tolerance Φo, the subdomains have
approximately the same area, and the separators are relatively small. N -way decom-
positions are produced by iteratively applying the MADD on the subdomains. The
criteria for selecting which subdomains will be decomposed determine the gradation
of the final decomposition. A sizing function or a background mesh is employed to
determine which subdomains will be decomposed, and so to produce graded decom-
positions that reflect the element size and gradation values of the mesh.

The MADD satisfies the requirements described in the beginning Section 3, and
especially Condition 1. In the following sections we describe the algorithm that pro-
duces decompositions that satisfy all the conditions of Section 3.

4.2. Domain Decomposition controlled by a sizing function. We will
apply the MADD procedure iteratively, so that the final decomposition satisfies the
conditions 2 and 3. Given a decomposition Dn, we identify the set Bn of subdomains
that do not satisfy either condition 2 or condition 3. Namely, if for some subdomain
Di ∈ Dn we have M(Di) > R1m(Di), then Di ∈ Bn, and if for two neighboring
subdomains Di, Dj ∈ Dn we have that m(Di) > R2m(Dj), then Di, Dj ∈ Bn. The
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largest subdomain of Bn is decomposed using the MADD procedure, giving a new
decomposition Dn+1. The procedure is repeated until all subdomains satisfy these
two conditions. Algorithm 1 outlines this iterative procedure.

Algorithm 1.
1. input initial decomposition D1 = {Ω}
2. identify the set B1 ⊆ D1 of non-acceptable subdomains
3. i = 1
4. while Bi 6= ∅ do
5. let B ∈ Bi be the largest subdomain
6. apply MADD to B
7. i = i + 1
8. let Di be the new decomposition
9. identify the set Bi ⊆ Di of non-acceptable subdomains

10. endwhile

The termination of the algorithm will guarantee that the produced decomposition
satisfies both the conditions 2 and 3. In order to prove the termination we will use
the observation that the MADD produces decomposition topologies equivalent to the
Euclidian topology, i.e., the maximum diameter of the subdomains tends to zero, when
we apply iteratively the MADD on the largest subdomain. This notion is formally
expressed as follows: Let Dn be a sequence of decompositions, each produced from the
previous by applying the MADD to the largest subdomain. Then, maxD∈Dn δ(D) →
0, where δ(D) = max ‖y − x‖, x, y ∈ D is the diameter of the subdomain D.

Commonly the objectives of graph partitioners are two-fold. The first objective is
to create balanced decompositions, a quality that can be described as follows: There is
a constant b1 < 1, so that after we decompose any subdomain D into the subdomains
Di, Dj , we have max{|Di|, |Dj |} ≤ b1|D|. The second objective is the creation of small
separators, which is usually formulated as minimizing the ratio |∂Di|

|Di| . These objectives
allow us to prove that the MADD produces decomposition topologies equivalent to
the Euclidean.

Lemma 4.1. Let Dn be a sequence of decompositions, each produced from the
previous by applying the MADD to the largest subdomain, for which the following two
conditions hold: There is a constant b1 ∈ R, b1 < 1, such that max{|Di|, |Dj |} ≤
b1|D|, for any subdomains Di, Dj obtained by decomposing a subdomain D. There
is a constant b2 ∈ R such that |∂Di|

|Di| ≤ b2 for any subdomain Di. Then we have
maxD∈Dn

δ(D) → 0, where δ(D) = max ‖y − x‖, x, y ∈ D is the diameter of the
subdomain D.

Proof. The proof is performed in three steps:
Step 1. Let An = maxD∈Dn

|D|. We will show that An → 0. The sequence {An}
is clearly decreasing, so we only need to find a subsequence {A′

n} ⊆ {An}, such that
A′

n → 0.
Let A′

n = maxD∈D2n |D|. We will prove by induction that A′
n ≤ bn

1 |Ω|. For
n = 0, and D1 = {Ω}, the relation is obviously true. Suppose the claim is true for
some n = m, we will prove it is true for n = m + 1.

For any subdomain D ∈ D2m decomposed into two subdomains Di, Dj we have

max{|Di|, |Dj |} ≤ b1|D| ≤ b1b
m
1 |Ω| = bm+1

1 |Ω|.
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Next we will show that any subdomain D ∈ D2m , with |D| > bm+1
1 |Ω|, will be

decomposed. Observe that the decomposition D2m contains |D2m | = 2m subdomains,
and any new subdomain will have area less or equal to bm+1

1 |Ω|. The decomposition
D2m+1 is obtained from D2m after decomposing 2m = |D2m | subdomains. So, all the
subdomains D ∈ D2m , with |D| > bm+1

1 |Ω|, will be decomposed.
From the above we conclude that for any subdomain D ∈ D2m+1 we have |D| ≤

bm+1
1 |Ω|, and thus A′

n ≤ bm+1
1 |Ω|.

From the induction we have A′
n → 0, and consequently An → 0.

Step 2. It is easy to see that maxD∈Dn
|∂D| → 0. For any subdomain D we have

|∂D| ≤ b2|D|, and so

max
D∈Dn

|D| → 0 ⇒ max
D∈Dn

|∂D| → 0.

Step 3. The subdomains are connected, so we have δ(D) ≤ |∂D|. Consequently

max
D∈Dn

|∂D| → 0 ⇒ max
D∈Dn

δ(D) → 0,

and the lemma is proved.
There are no strict mathematical proofs, in general, that a graph partitioner will

achieve the two objectives mentioned above. In practice though, we have observed
that state-of-art partitioners, like Metis [25], will give decompositions that meet these
two objectives for all the geometries we have tested, and for very large scale decom-
positions. We proceed to give a proof of termination of the algorithm under the
conditions of the previous lemma.

Lemma 4.2. If for a sequence of decompositions Dn we have maxD∈Dn δ(D)) → 0,
then there is a decomposition Dk that satisfies the conditions 2 and 3.

Proof. We have that f is continuous over a compact domain, and thus is uniformly
continuous. Moreover f is bounded below by a constant positive number. Then for
any ε > 0 there is a δ > 0, such that if ‖x − y‖ ≤ δ, we have f(x)

f(y) ≤ 1 + ε. Let δ be
such that the inequality is satisfied for 1 + ε = min(R1, R2).

If D = {Di} is a decomposition such that max{δ(Di)} ≤ δ, then D obviously
satisfies the conditions 2 and 3. Let Dk such that maxD∈Dk

δ(D) < δ. Such decom-
position exists, because maxD∈Dn δ(D) → 0, and satisfies the conditions 2 and 3.

Theorem 4.3. Under the conditions of Lemma 4.1, Algorithm 1 terminates,
giving a decomposition that satisfies the conditions 2 and 3.

Proof. If Algorithm 1 terminates, then by the construction it will produce a
decomposition that satisfies the conditions 2 and 3. We will prove the termination by
contradiction.

We observe that if B′ ∈ Bn+1, then B′ ⊆ B for some B ∈ Bn. We have from
Lemma 4.1 that maxB∈Bn δ(B) → 0. Suppose that the algorithm does not terminate,
then for some k we will have maxB∈Bk

δ(B) < δ, where δ is defined in Lemma 4.2.
Then, from the same lemma, Bk satisfies the conditions 2 and 3, which contradicts
the definition of Bk.

4.3. Domain Decomposition controlled by a background mesh. Another
way for controlling the size of the elements is to use a background mesh. This approach
is common when error estimations on an existing mesh are used to govern the creation
of a new mesh. We use an unstructured background mesh G = {gi}, where each of
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Fig. 4.2. Left: The Pipe domain decomposed into 804 subdomains using a sizing function
that corresponds to sources at the centers of the holes. Right: The Pipe domain decomposed into
487 subdomains using a background mesh, the element size being smaller near the center.

its nodes gi is assigned a sizing value f(gi). This value determines the element size at
the neighborhood of the node. In the cases where the sizing value is assigned to the
elements, instead of the nodes, of the background mesh, we can use an interpolation
procedure to obtain sizing values on the nodes.

As in the case of a function, we assign to each subdomain D two values, m(D) =
min{f(g)| g ∈ D ∩ G} and M(D) = max{f(g)| g ∈ D ∩ G}. The decomposition
should satisfy the conditions 2 and 3, stated in Section 3. The procedure described
by Algorithm 1 will produce such a decomposition for a background mesh. There are
though two questions we should answer, in order to show that this algorithm can be
used for a background mesh: 1. What the values m(D) and M(D) should be, when
no mesh nodes of G are in D? 2. The termination of the algorithm in the case of
a continuous function f is based on the continuity of f ; can it be guaranteed in the
case of the background mesh?

Both questions are addressed by employing an interpolation scheme, which is used
when no node of G is contained in a subdomain D.

4.4. Subdomain interpolation procedure. When no background node is
contained in a subdomain D, then the minimum and the maximum element size
in D will be computed using interpolation. Let D such a subdomain, with D∩G = ∅.
We compute the desirable area of the elements in D by geometric interpolation, using
the values of its neighboring subdomains. Let m1 = minm(D′) and m2 = maxm(D′),
where the minimum and maximum values are taken over all the neighboring (sharing
common boundary) subdomains D′ of D. Then we assign m(D) = M(D) =

√
m1m2.

We choose the geometric mean to compute the new values because it best complies
with the nature of conditions 2 and 3. Specifically, the value max m(D1)

m(D2)
, where

D1, D2 ∈ {D,D′}, is minimized when m(D) is obtained by the geometric mean.
Moreover, the geometric interpolation induces a continuous function in the following
sense: as the size of the decomposition grows, the values m(Di)

m(Dj)
and M(Di)

M(Dj)
for neigh-

boring subdomains tend to 1. In other words, the discrete sizing values given by the
geometric interpolation procedure approximate a continuous function, and following
the arguments in Section 4.2, Algorithm 1 terminates.
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5. Graded Delaunay Decoupling Procedure. The Delaunay decoupling pro-
cedure is aiming to generate Delaunay meshes in parallel and independently for each
subdomain, thus eliminating the communication cost. This procedure was first intro-
duced in [19] for uniform meshes, and is based on the notions of the decoupling zone
and the decoupling path.

Let Ω be the domain, and D = {Di} a geometric decomposition by a set of
piecewise linear separators P. Let M be a Delaunay mesh generation procedure.

Definition 5.1. The set of the open diametral circles of all the segments that
form P is be called the decoupling zone of P with respect to M, if after applying M
independently on the subdomains Di, this set is empty (see Fig. 5.1). We denote the
decoupling zone of P by ZP , and we call P a decoupling path with respect to M.

H P

Fig. 5.1. Left: A separator H inserted by MADD. Middle: Refining H gives a decoupling path
P; the decoupling zone ZP is depicted. Right: Ruppert’s algorithm was applied on the subdomains
independently, with a uniform element area restriction. ZP is empty and P is invariant, the final
mesh is Delaunay conforming.

The decoupling path presents the following property [19].
Proposition 5.2. Let Mi be the mesh produced by M on the subdomain Di.

If P is a decoupling path with respect to M, then the union ∪Mi is a conforming
Delaunay triangulation.

Proposition 5.2 proves that, after the construction of a decoupling path, the
subdomains can be meshed independently, and the final mesh will be Delaunay con-
forming. In the rest of the section we prove the existence and the construction of the
decoupling path for graded Delaunay mesh generation.

5.1. The Graded Delaunay Decoupling Path. Let H be the set of the piece-
wise linear separators produced by the domain decomposition procedure. The decou-
pling path is constructed by refining the initial separators H, so that they form a
decoupling path P. The termination conditions of the Delaunay mesh generation al-
low us to compute a length size that should be used for refining H into a decoupling
path P. The two most popular Delaunay mesh generation procedures are Ruppert’s
algorithm [35] and Chew’s algorithm [6], along with their variations. We will describe
the construction of a decoupling path for Ruppert’s algorithm. For uniform meshes
it is known the following ([19]).

Theorem 5.3. Let k = min{lfsmin(ΩH), 1
2

√
A√
2
}, where lfsmin(ΩH) is the mini-

mum local feature size of Ω∪H and A is a constant bounding below the maximum trian-
gle area. If for all the edges E ∈ P of the refined separators we have 2√

3
k ≤ |E| < 2k,

|E| being the length of E, then P is a decoupling path with respect to Ruppert’s algo-
rithm, under the constrains of maximum circumradius to shortest edge ratio less or
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equal to
√

2 and maximum triangle area bound greater or equal to A.
The sizing function can be constructed so that it captures the local feature size

[44, 32, 33]. Moreover, for large enough meshes, we have 1
2

√
A√
2
≤ lfsmin(ΩH), and

consequently k = 1
2

√
A√
2
. Parallel mesh generation targets very large meshes, so in

these cases we only have to consider the sizes of the triangles as these are determined
by the sizing function.

Theorem 5.3 assumes that the triangle area bound A is constant, and thus cannot
be applied as is in the case of graded meshes. It can still be used though in the graded
case, for the construction of the decoupling path in the following way. Let D = {Di}
a decomposition of Ω and m(Di) as defined in Sections 4.2 and 4.3. We can apply
Theorem 5.3 on each individual subdomain Di, obtaining the following result.

Proposition 5.4. Let ki = 1
2

√
m(Di)√

2
. If for all the edges E ∈ P∩Di, that belong

to the internal boundary of Di, we have 2√
3
ki ≤ |E| < 2ki, then the edges of P ∩Di

will remain invariant after applying Ruppert’s algorithm on Di, with the constrains
of maximum circumradius-to-shortest-edge ratio equal to

√
2 and maximum triangle

area bound greater or equal to m(Di).
Each separator E of P is shared by two subdomains, and in order to prove that

the whole set of separators P forms a decoupling path, we have to examine if E
remains invariant after applying the mesh generator independently to both subdo-
mains. By applying Proposition 5.4 to each of the neighboring subdomains we obtain
the following result.

Proposition 5.5. Let E ∈ P be any edge of the separators, with E ∈ Di∩Dj and
length |E| = l. If both relations 2√

3
ki ≤ l < 2ki and 2√

3
kj ≤ l < 2kj hold (for ki, kj as

defined in Proposition 5.4), then P is a decoupling path. Figure 5.2 depicts a graded

k
k

k

4

3

2

0

1k

k

  

Fig. 5.2. Left: Graded Delaunay mesh based on decoupling the subdomains. The sizing
function reflects sources at the centers of the holes. Right: Detail of the mesh; the decoupling zone
ZP for one subdomain is depicted by the circles.

Delaunay mesh created by decoupling the subdomains, and also the decoupling zone
for one subdomain.

We proceed to examine the prerequisites under which the hypothesis of the above
proposition is true. Let Di, Dj be two neighboring subdomains; without loss of gen-
erality we assume ki ≤ kj . Then there exists l that satisfies both conditions of
Proposition 5.5, if and only if, kj

ki
<
√

3. If kj

ki
≥
√

3, it is obvious that no such l
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exists. On the other hand, if kj

ki
<
√

3, then there is such l that satisfies both condi-
tions (for example we can choose l = kj). More general, for any l =

√
3ki − ε, with

0 < ε ≤
√

3ki − kj , both conditions are true. From the definition of ki, kj we observe
that kj

ki
<
√

3 ⇔ m(Dj)
m(Di)

< 3. Thus, by taking R2 < 3 in Condition 3, Section 3, the

relation kj

ki
<
√

3 holds, and thus the decoupling path P exists.

5.2. Construction of the Graded Delaunay Decoupling Path. The con-
dition R2 < 3 allows the theoretical existence of a decoupling path, but we have
to take into account that the decoupling path P will be constructed by refining
the existing separators H, which were created by the domain decomposition pro-
cedure. Let E′ ∈ H be an edge of the separator shared by Di, Dj , which must be
refined, so that the resulting subsegments satisfy the conditions of Proposition 5.5.
The refining procedure will break E′ into, say, ν subsegments. Then the conditions
2√
3
kj ≤ |E′|

ν ⇔ ν ≤
√

3|E′|
2kj

and |E′|
ν < 2ki ⇔ ν > |E′|

2ki
must hold, where kj ≥ ki.

In other words, an integer value should exist between the values |E′|
2ki

and
√

3|E′|
2kj

. A

sufficient condition for the above relation to be true is
√

3|E′|
2kj

− |E′|
2ki

≥ 1. In result, we
have for the length |E′| the condition

|E′| ≥ 2kjki√
3ki − kj

=
2kj√
3− kj

ki

(5.1)

in order for the created separators to satisfy the above relation, we have to keep the
denominator of the right side fraction bounded below. This can be done by defining
the R2 constant to be small enough. In our experiments we use the value R2 = 1.5,
so that the denominator is always greater than 0.5. Then, the relation 5.1 is satisfied
if

|E′| ≥ 4kj .

The decomposition is controlled by the gradation of the sizing function, and not
by the sizing values, so it is invariant when we decrease the sizing function by a
constant factor. While the values |E′| are kept invariant, the values kj decrease, and
thus, for large meshes, the relation 5.1 holds.

We sum our results for constructing the decoupling path in the following theorem.
Theorem 5.6. Let the relation 5.1 hold for all separators E′ ∈ H, which were

created by the domain decomposition procedure. Then the refined set of separators P
is a decoupling path for Ruppert’s algorithm, with the constrains of maximum circum-
radius to shortest edge ratio

√
2, and maximum triangle area bounded by the sizing

function f .
Proof. The above discussion shows that relation 5.1 guarantees that the refine-

ment of the separators will satisfy the hypothesis of Proposition 5.5. The conclusion
is driven by Proposition 5.5.

The above theorem allows the creation of graded meshes in parallel and with
no communication, since the subdomains can be meshed independently after they
have been decoupled. The final mesh will be globally Delaunay, satisfying the area
constrains defined by the sizing function, as well as the quality constrain of having
maximum circumradius to shortest edge ratio less or equal to

√
2.
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6. Implementation and Experimental Results. The meDDec program [24]
implements the parallel graded Delaunay decoupling procedure. It is written in c99
standard C using the LAM/MPI library. The Triangle library [38, 43] was used for
the creation of the Delaunay triangulation during the MADD procedure. Triangle
was also used as the off-the-shelf sequential mesh generator on each subdomain for
the parallel decoupled Delaunay mesh generation. The Metis library [16, 25] was used
for the graph partitioning step in the MADD procedure.

We ran three sets of experiments. A sequential set of experiments was performed
to assess the stability of the decoupling method, and specifically the resulting over-
refinement. A set of parallel experiments was performed on a homogenous environ-
ment in order to assess the efficiency of the method, and in particular the parallel
speedup. Another set of parallel experiments was performed on a heterogenous envi-
ronment in order to examine the efficiency of the method on an environment consisting
of machines with different processing power and memory.

Fig. 6.1. Part of the Pipe domain meshed by the decoupling procedure according to two sizing
functions. Left: The element size is given by the function d, which is analogous to the distance
from the inner hole. Right: The element size is governed by d4, which is analogous to the fourth
power of the distance from the inner hole.

6.1. Experimental Set-up. The domain used for our experiments is the Pipe
model (Figs. 5.2, 6.1), which is an approximation of cross section of a rocket geometry.
We tested the performance for four sizing functions. The function fs reflects sources
at the centers of the holes and is analogous to fourth power of the distance of the
centers (see Fig. 5.2 left). The functions d, d2 and d4 are analogous to the distance
from the inner hole, raised to the power of one (Fig. 6.1 left), two and four (Fig. 6.1
right), respectively. The gradation constant R2 was set to 1.5, while R1 was set to
1.425.

Our experiments were performed on the SciClone cluster [37]. For the homoge-
nous environment experiments we used the tempest subcluster, consisting of 32 dual
cpus at 2.4 GHz, 4 GB memory. The heterogenous environment is composed by the
subclusters whirlwind (64 single cpus, 650 MHz, 1 GB memory), twister (31 dual
cpus, 900 MHz, 2 GB memory) and vortex (4 quad cpus, 1.28 GHz, 8 GB memory),
giving a total of 142 cpus.

6.2. Sequential Experiments. We have ran a set of sequential experiments
to observe the number of additional elements created by the decoupling procedure
for different sizing functions. The results are described in Table 6.1. The over-
refinement is analogous to the length of the separators, which in turn is analogous
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to the number of the subdomains. The gradation of the sizing function controls
the decomposition, and the number of the created subdomains increases, as the local
gradation gets larger. The over-refinement is relatively small, even for sizing functions
that show large gradation. For the function d4, the global gradation is 1/707281, while
the additional elements after decoupling are 2.28% of the non-decoupled sequentially
generated mesh size.

Size Sub- Triangle Decouple % Add. Global Size
Function domains elements elements elements gradation

d 1310 69221990 69625612 0.58 1/29
d2 4965 70787036 71685252 1.27 1/841
d4 19448 69614458 71198934 2.28 1/707281
fs 10214 70761174 72032140 1.80 1/77

Table 6.1
The number of additional elements created by the decoupling procedure, as compared to the

elements created by the sequential, non-decoupled, procedure.

6.3. Parallel Experiments. For the parallel mesh generation step we follow a
master/worker scheme. The decomposition is performed sequentially, and the decom-
posed geometry is read by the master processor. The master processor controls the
parallel mesh generation procedure. It maintains a sorted list of the non-processed
subdomains, in terms of the expected mesh size for each subdomain. It sends the
lager subdomain to the first avaliable processor, and the procedure is repeated until
all the subdomains are meshed.

An important parameter that affects the parallel performance is the good bal-
ance of the work-loads among the processors. Over-decomposition of the domain, i.e.
creating much more subdomains than the number of processors, has proved to be
an effective approach [19]. This approach allows work-load differences for processing
each subdomain to be absorbed, by assigning a set of subdomains to each processor.
Over-decomposition though is less effective when the work-loads for some of the sub-
domains are much larger than the average work-load of all the subdomains. Moreover,
the created meshes for each subdomain should fit into the avaliable memory1. We can
bound the mesh size generated for each subdomain, and consequently the work-load,
in the following way.

Condition 4. For a predefined constant T , that designates the maximum number
of elements per subdomain, we should have

|D| ≤ m(Di)T,

where Di is any subdomain, and |Di| denotes the area of Di.
The above condition can be met by further decomposing the subdomains that do

not satisfy it. Following the arguments of Section 4.2, the decomposition procedure
will terminate. The constant T depends on the machines to be used.

The parallel mesh generation control represents a greedy load balancing strategy.
This approach is effective, even for heterogenous environments, provided we have a
large enough over-decomposition. Figure 6.2 depicts the load balance for two different
decompositions. The load balance on the left is for 2,064 subdomains, and although

1The maximum mesh size we were able to create using Triangle [43] in 500MB memory, without
disk swapping, is about 6M elements.
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Fig. 6.2. Load balance on heterogenous environment of 141 cpus. Left: The load balance for
the d function. The decomposition is 2,064 subdomains and the created mesh is 5 billion elements.
Right: The load balance for the d4 function. The decomposition is 19,847 subdomains and the
created mesh is 5 billion elements.
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Fig. 6.3. The time performance for the
heterogenous environment (142 cpus).

Fig. 6.4. The speedup for the homoge-
nous environment.

is good, it is not perfect. The load balance on the right figure is for a much larger
decomposition, 19,847 subdomains where used, and it is almost perfect. Of course,
higher over-decomposition implies a higher overhead cost, and also higher communi-
cation cost. A study of optimal load balancing strategies, while keeping the overhead
and communication cost small, is part of our future work.

The time performance of the decoupled mesh generation procedure in the het-
erogenous environment is depicted in Figure 6.3. The times are independent of the
sizing function, and appear to be linear in terms of the created mesh size.

Sizing function d d2 d4 fs

Mesh Size 10.4 B 10.6 B 10.4 B 10.6 B
Subdomains 2,526 5,086 19,839 10,404
Decomposition Time 1.23 2.55 14.4 5.92025
Meshing Time 277.57 278.76 271.58 288.801

Table 6.2
Performance results for the homogenous environment (64 cpus). The times are in seconds and

the mesh size is in billions of elements. The meshing time includes the decomposition read and
distribute time.
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The performance for the homogenous environment is presented in Table 6.2. The
results show that we can create 2 billion elements in less than one minute. The speedup
is depicted in Figure 6.4. We have created about 81 million elements per processor, and
calculated the speedup against the sequential run of Triangle for a mesh of 30 million
elements (with no disk swapping). The parallel times include the decomposition cost.
The decoupling procedure gives super-linear speedup, a result commonly observed
for decoupling approaches. This is due to the slightly non-linear time of the mesh
generation procedure, and probably because of the larger accumulative cache size.
Moreover, we observe better speedup as we increase the number of processors. This
is explained by the fact that we always define one processor to be the master, and
dedicate it to control the mesh generation procedure.

7. Conclusions and Future Work. We presented a decoupling procedure
method for creating large 2D graded, guaranteed quality, Delaunay meshes on parallel
machines. The element size is controlled through a sizing function, or a background
mesh. A geometric domain decomposition is described that produces graded decom-
positions, suitable for decoupling the mesh generation procedure. The decoupling
method allows a sequential, off-the self and state-of-art, mesh generator to be applied
independently on each subdomain, and thus eliminates the communication during the
parallel mesh generation procedure. We have proved that the final global mesh will
by conforming and of of the same quality as the sequential. Our experimental results
on a cluster of workstations demonstrate the efficiency, scalability and stability of the
decoupling procedure, for both homogenous and heterogenous environments.

The proof of the decoupling property of the refined separators has the same
precondition as Ruppert’s algorithm. For the sequential mesh generation procedure
the input angles should be greater than 60◦, and the same holds for the decoupling
procedure. Improvements have been proposed to enable the sequential Delaunay mesh
generation algorithm to terminate when the input angles are less than 60◦ [40, 30].
We have observed in out experiments that the decoupling procedure gives conforming
meshes, even in the case of small input angles. A theoretical result that will guarantee
the decoupling property in the presence of small input angles is part of our future
work

Acknowledgments. The Triangle library [43, 38], created by Jonathan Shewchuk,
was used as an off-the-self sequential Delaunay mesh generator. The Metis library
[25, 16], by George Karypis et al, was used for the graph partitioning step in the
MADD procedure. Showme [42] and mview [27] were used to create the figures.
This work was performed using computational facilities at the College of William and
Mary which were enabled by grants from Sun Microsystems, the National Science
Foundation, and Virginia’s Commonwealth Technology Research Fund.

The first author gratefully acknowledges the financial support from the Virginia
Institute of Marine Science under the grants ONR N00014-05-1-0831 and NOAA
NA04NOS4730254.

REFERENCES

[1] G. E. Blelloch, G. L. Miller, J. C. Hardwick, and D. Talmor, Design and implementation
of a practical parallel Delaunay algorithm, Algorithmica, 24 (1999), pp. 243–269.

[2] H. Borouchaki, P. L. George, F. Hecht, P. Laug, and E. Saltel, Delaunay mesh gen-
eration governed by metric specifications, Part I. Algorithms and Part II. Applications,
Finite Elements in Analysis and Design, 25 (1997), pp. 61–83 and 85–109.



16 L. LINARDAKIS AND N. CHRISOCHOIDES

[3] H. Borouchaki, F. Hecht, and P. J. Frey, Mesh gradation control, in 6th International
Meshing Roundtable, Sandia National Laboratories, Oct. 1997, pp. 131–141.

[4] S. W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray, Quality meshing for polyhedra with
small angles, in Proc. 20th Annu. Sympos. Computational Geometry, 2004, pp. 290–299.

[5] A. Chernikov and N. Chrisochoides, Practical and efficient point insertion scheduling
method for parallel guaranteed quality Delaunay refinement, in Proceedings of the 18th
annual international conference on Supercomputing, Malo, France, 2004, pp. 48–57.

[6] L. P. Chew, Guaranteed quality triangular meshes, Tech. Report TR-89-983, Department of
Computer Science, Cornell University, 1989.

[7] , Guaranteed-quality mesh generation for curved surfaces, in 9th Annual Symposium on
Computational Geometry, San Diego, California, 1993, ACM, pp. 274–280.

[8] L. P. Chew, N. Chrisochoides, and F. Sukup, Parallel constrained Delaunay triangulation,
in ASME/ASCE/SES Special Symposium on Trends in Unstructured Mesh Generation,
Evanston, IL, 1997, pp. 89–96.

[9] N. Chrisochoides and D. Nave, Parallel Delaunay mesh generation kernel, International
Journal for Numerical Methods in Engineering, 58 (2003), pp. 161–176.

[10] H. de Cougny and M. Shephard, Surface meshing using vertex insertion, in Proceedings of
the 5th International Meshing Roundtable, 1996, pp. 243–256.

[11] H. de Cougny and M. Shephard, Parallel volume meshing using face removals and hierarchi-
cal repartitioning, Computer Methods in Applied Mechanics and Engineering, 174 (1999),
pp. 275–298.

[12] F. Deister, U. Tremel, O. Hasan, and N. P. Weatherill, Fully automatic and fast
mesh size specification for unstructured mesh generation, Engineering with Computers,
20 (2004), pp. 237–248.

[13] J. Galtier and P.-L. George, Prepartitioning as a way to mesh subdomains in parallel, in
5th International Meshing Roundtable, Pittsburgh, Pennsylvania, 1996, pp. 107–122.
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