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Abstract In surgical simulation, it is common practice
to use tetrahedral meshes as models for anatomy. These
meshes are versatile, and can be used with a number of
different physically based modelling schemes. A variety
of mesh generators are available that can automatically
create tetrahedral meshes from segmented anatomical
volumes. Each mesh generation scheme offers its own set
of unique attributes. However, few are readily available.
When choosing a mesh generator for simulation, it is crit-
ical for it to output good-quality, patient-specific meshes
that provide a good approximation of the shape or vol-
ume to be modelled. To keep computation time within
the bounds required for real-time interaction, there is
also a limit imposed on the number of elements in the
mesh generated. To the authors knowledge, there has
been little work directly assessing the suitability of mesh
generators for surgical simulation. This paper seeks to
address this issue by assessing the use of six mesh gen-
erators in a surgical simulation scenario, and examining
how they affect simulation precision. This paper aims to
perform these comparisons against high-resolution refer-
ence meshes, where we examine the precision of meshes
from the same mesh generator at different levels of com-
plexity.
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1 Introduction

Surgical Simulation is a current area of research for many
groups, both commercial and academic. The promise of
being able to simulate part or all of the human body
holds enormous potential for improving patient safety
through application in clinical training and in surgical
planning. As with all simulation scenarios, high-fidelity
models of the objects are required to make the simula-
tion accurate and reliable. A surgical simulation typically
needs to run at real-time rates, meaning that the visual
update has to run at a minimum of 30Hz, and, if needed,
the haptic (force) feedback needs to typically run at least
at 500Hz.

The real-time constraint restricts the simulation model
complexity, meaning that appropriate choices of mod-
elling scheme are necessary. These simulations need to
include a method for modelling the biomechanics of the
tissue, and a scheme for generation of a model of the
anatomy being simulated. For the biomechanical, physically-
based modelling (PBM) scheme, we require a physical
model that can faithfully reproduce the behaviour of tis-
sue at real-time rates. To match this, the model genera-
tion scheme must generate a model that, when matched
with PBM, both provides a suitable level of accuracy and
can be computed at the needed rates.

PBM of tissue has been approached in many fash-
ions. Finite Element Analysis (FEA), whilst the most
computationally expensive approach, has proven to be
the most effective, both in terms of precision and faith-
ful modelling of tissue properties. Despite the computa-
tional cost, FEA is possible in near or actual real-time.
Initial work by Terzopoulous et al. [47] proved the fea-
sibility of this approach, with later work by Cotin et al.
bringing real-time FEA to surgical simulation [13].

FEA is now used to simulate parts of surgical proce-
dures for training and pre-operative planning. The area
in which it has seen most activity is in that of laparas-
copic surgery, where the area to be simulated is in a
closed, controllable environment. Outside of time-critical
applications, FEA is widely used as a clinical tool in a
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variety of areas, such as nonrigid registration [19,48,12],
planning and prediction in craniofacial surgical proce-
dures [22], articulation in joints [50], tumour growth [10],
prediction of tissue deformation from needle insertion for
biopsies [3], robotic surgery validation [49] and a large
variety of other biomechanically-driven simulations.

Biomechanical FEA methods solve a partial differ-
ential equation (PDE) over a continuous problem re-
gion. To be able to solve this on a computer, the prob-
lem region must be decomposed into a series of discrete
subdomains, each with their own material and mechan-
ical properties. This discretisation is often referred to as
meshing, and in 3D usually comes in the form of the
generation of a series of tessellated volumetric elements,
which together are the finite elements to be solved over.
This tessellation is often referred to as a volumetric grid
or mesh.

In a clinical environment, it is desirable to obtain a
solution to FEA problems as quickly as possible. In sur-
gical simulation, this constraint is even tighter, requiring
a solution in fractions of a second. A common approach
is to reduce the number of finite elements that are to
be solved over. However, if the number of elements de-
creases, the precision of the simulation potentially also
decreases. The shape and quality1 of the elements them-
selves affect the solution [42].

(a) (b) (c)

Fig. 1 Three Finite Elements - (a) tetrahedral, (b) hexahe-
dral, (c) pyramidal

3D Finite elements come in many types, some ex-
amples of which are shown in Figure 1. The two most
commonly used are hexahedral and tetrahedral. Auto-
matic generation of hexahedral meshes from anatomical
data remains an open problem, as they can be difficult to
generate automatically. A more common choice of FE el-
ement in medical simulations are tetrahedra. There are a
large number of automatic methods to generate tetrahe-
dral meshes with a wide variety of geometric properties.

In surgical simulation, it is common practice to use
tetrahedral meshes as models for anatomy, and can be
used with a number of different PBM schemes. A num-
ber of available mesh generators can create tetrahedral
meshes from segmented anatomical volumes. Each mesh
generation scheme offers its own set of unique attributes.
However, few are readily available. When choosing a
mesh generator for simulation, it is critical for it to out-

1 This is usually measured by a geometric criteria, such as
the aspect ratio of the elements.

put good-quality2 meshes that provide a good approxi-
mation of the shape or volume to be modelled. Adding
a further constraint is that the meshes do not generate
more elements than are needed, to keep computational
time low.

To the authors knowledge, there has been little work
directly assessing the suitability of mesh generators for
surgical simulation [20]. We present an in-depth exten-
sion to our recent previous study [26] by assessing the
use of six mesh generation techniques in a surgical simu-
lation scenario, and examining the effects this choice has
on simulation precision. We perform these comparisons
against high-resolution reference meshes, where we ex-
amine the deformation precision of meshes from the same
mesh generator at different levels of complexity (resolu-
tion).

To this date, it remains a challenging problem to
model and simulate tissue. Actual tissue characteristics
are difficult to obtain in a consistent fashion, and there is
still open speculation as to which biomechanical approx-
imations are most suitable for particular tissue types. In
addition, surgical simulation at real-time rates - graphi-
cal or haptic - places severe restrictions on the size and
complexity of the mesh that can be used. Experiments
that compare deformed physical phantoms against sim-
ulated material do exist. In particular, we believe that
the truth cube experiment by Kerdok et al. [27] is a suf-
ficiently thorough test of mesh generation techniques as
the geometry of a cube is relatively simple. It has been
proven that mesh quality does have a significant impact
on the convergence rate and precision of Finite Element
simulations [42]. The interaction of this with the number
of nodes in the mesh - which is most often a constant in
surgical simulation - has not been examined.

Given the difficulty of accurately modelling the biome-
chanics of real tissue, a ground truth for the deformation
of a geometrically complex, Finite Element object is at
present difficult to obtain. We approach this problem by
using a simpler analytical model - in this case, uniaxial
compression of primitives - to obtain an understanding
of how the number of nodes in a mesh affects simulation
precision. Based on this analysis, we select a cutoff mesh
resolution for which the potential error in deformation
is minimised. This cutoff is minimum resolution criteria
for generating reference meshes against which all others
are compared to in measuring deformation accuracy.

In Section 1.1, we detail some of the previous work
that has been undertaken in this area along with a broad
motivation for the study. Section 2 details the method-
ology of the experiments, detailing the mesh generation
strategies used, a description of the physical models, an
evaluation of the error in the experimental apparatus and
the experimental setup itself. Section 3 examines the re-
sults of the deformation experiments, and is concluded in
Section 4 with a discussion and some potential directions
for future work.

2 i.e. meshes with good element quality
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1.1 Motivation

Biomechanical simulations of soft tissue are commonly
modelled via FE techniques. Validation of these simula-
tions has focused on measuring the error between a digi-
tal approximation and a physical experiment. Kedrok et
al. [27] and Miller et al. [35] are both recent examples of
such experiments, where the deformation of a physical
object with embedded markers is imaged. These mark-
ers indicate known deformations, and are replicated and
measured against in a FE approximation. These mod-
els require a good approximation of mechanical tissue
parameters, such as elastic modulus or stiffness coeffi-
cients [36,51]. FE-assisted non-rigid registration is some-
what more practical to evaluate, where the accuracy of
the technique can be compared directly against non-FE-
based registration algorithms using real clinical data [12,
8].

For a given FEA to run, a corresponding mesh of
the problem domain needs to be generated. The mesh is
coupled with a set of initial boundary conditions and the
simulation can be run using an FE solver 3. Subsequently,
FEA accuracy is affected by both the choice of mesh and
the FE solver used. In the mesh, good quality (e.g. good
aspect ratio) elements are required for the FE solver to
converge to an acceptable solution [4,42,24]. It is possible
that extremely poor quality elements will prevent the
simulation converging to a solution.

Poor quality approximations can be improved via h-
refinement (mesh) and p-refinement (polynomial degree)
of the solution. Few software packages are available that
perform p-refinement automatically, and in parallel, but
are largely too complex to implement and analyse [28].
Individual mesh generation schemes may also introduce
artifacts into the FE simulation, especially in terms of
boundary shape and structure. Alliez et al. [1] assert that
structured mesh generation schemes may cause bias in
FE schemes because edges in the mesh tend to be aligned
to a finite set of axes, but this point does not appear to
be qualified.

Increasing the number of degrees of freedom (num-
ber of nodes) in our study improves the precision of the
FE solution [32]. This comes at the cost of computation
time, however. In time-critical applications, such as sur-
gical simulation, this imposes an upper limit on the mesh
size that can be simulated. Different mesh generators of-
fer a variety of approaches to generating quality meshes
from a limited number of nodes. However, there has been
little work on how FE simulation precision is affected by
use of low- to medium-resolution (2, 000−15, 000 nodes)
meshes.

To address this, we present a study which compares
the deformation fields generated by deforming low- to
medium- resolution FEA meshes generated by six dif-
ferent mesh generators. We assess the observed preci-

3 An FE solver is the specific algorithm in FEA that is used
to solve the PDE that the system represents.

sion of six tetrahedral mesh generation approaches - red-
green crystalline [17], Tetgen [43], SolidMesh [33,34] and
GHS3D [46], CHEW [6] (an alternative approach also us-
ing GHS3D) and the in-house developed adaptive octree,
or OT. For our physical modelling, we use two biome-
chanical models - linear elasticity, and compressible Neo-
hookean elasticity.

2 Method

Fig. 2 The proposed scheme for estimating the error char-
acteristic of a particular mesh when it is deformed and com-
pared against a reference deformation field. The technique
initially rasterises the deformation field error (L2 norm) and
the element quality as images. These images are then com-
pared using the MQL2 metric to establish an error charac-
teristic.

This paper aims to measure the differences in defor-
mation fields generated by different meshing strategies
in an FE simulation environment. The inputs, which are
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a series of segmentations, from the study described by
Clatz et al. in [11], are fixed, For each case (i.e. each seg-
mentation), a known boundary displacement is applied.

The variables in our experiment are the mesh genera-
tion technique and the mesh resolution used, along with
the two chosen biomechanical models - linear elasticity
and Neohookean elasticity. A high-resolution, reference
mesh is used as a gold-standard reference for each clinical
case examined, and it provides the standard deformation
field against which the other meshes are compared.

We propose a novel scheme for estimating the best-
case error performance of a particular mesh generator
for generating meshes that simulate biomechanical de-
formation. Figure 2 provides a schematic summary of
the implemented technique.

To present a meaningful discourse on the method,
both the mesh generation strategies (Section 2.1) and
the corresponding physical models (Section 2.2) are dis-
cussed, alongside an evaluation of the error inherent in
the experimental apparatus and how this affects selection
of a reference resolution for the gold-standard meshes
(Section 2.3). This is followed by a description of the er-
ror metrics used in Section 2.4, and concluded with the
experimental setup itself (Section 2.5).

2.1 Mesh Generation Strategies

A number of excellent survey papers [39,9,21] have been
published in recent years that cover the wide variety of
available tetrahedral mesh generators. We will examine,
in closer detail, three of the main approaches [18]:

1. Constrained Delaunay (CDT) The mesh is initialised
with a surface Delaunay triangulation of the bound-
ary points, with subsequent Delaunay refinement and
recovery of the domain boundary [44,1]. CDT can
give certain guarantees on mesh quality in 3D.

2. Advancing Front (AFT) The mesh is built layer by
layer starting from the surface triangulation and pro-
gressing towards the object centre [31,33]. While heuris-
tic, in practical terms the resulting mesh quality is
good.

3. Adaptive Space-tree (AST) The approaches of this
group start from a coarse structured discretisation of
the bounding box enclosing the object of interest with
subsequent refinement and boundary recovery [41,19,
25,18]. Some of these approaches also are based on
heuristic algorithms.

The choice of mesh generation software is limited,
with the best mesh generators traditionally implemented
in the commercial domain. We have selected representa-
tive mesh generation techniques from each of the three
categories described above:

– Red-green crystalline meshing (AST category, fur-
ther referred as RGM) [17]. The mesh size control is

Table 1 Comparison of the evaluated mesh generation meth-
ods

method initial ob-
ject

adaptivity max mesh
size con-
trol

RGM binary
mask

yes yes

OT binary
mask

yes yes

TG tri. surf. limited no
SM tri. surf. limited limited
GHS3D tri. surf. limited no
CHEW tri. surf. limited no

achieved by the appropriate choice of the initial lat-
tice spacing. Mesh adaptivity is controlled by user-
defined refinement criteria.

– Octree (AST category, OT) For in-house use, we have
developed a parallel, adaptive octree based mesh gen-
erator [25]. This scheme uses an octree of the binary
mask to be meshed to generate an initial mesh, which
is refined at the object boundary to better fit the orig-
inal surface.

– Tetgen (CDT category, TG), version 1.4.1, is an im-
plementation of the constrained Delaunay triangula-
tion and refinement [43]. The available implementa-
tion does not allow for mesh size to be controlled,
but user-controlled adaptive meshing (mesh density
variation) is possible.

– GHS3D is a commercial implementation of Delaunay
method (CDT category, GHS3D) [46]. CHEW [6]
uses GHS3D to generate the meshes but uses an al-
ternative scheme for surface mesh generation. Mesh
size can only be controlled easily by the input sur-
face size. The input has to be defined by a piecewise
linear complex (PLC). The implementation does not
allow to limit the mesh size. Mesh adaptivity can be
achieved by specifying the maximum element volume
and prescribed list of points to be inserted. [6]

– AFLR is a component of the SolidMesh commercial
package (AFT category, SM) [33,34]. The input has
to be a triangular mesh of good quality. Mesh adap-
tivity is limited by having smaller elements near the
mesh boundary only.

As shown in Table 1, most of the methods generate
meshes based on an initial triangular surface. When the
triangular mesh needed re-sampling, we used the method
described in [14] to find a triangular mesh of a prescribed
size. Except RGM, and OT the methods require a trian-
gular surface in order to generate a mesh. Surface recon-
struction from a segmented volume image is a separate
research issue; however, in order to avoid another dimen-
sion of complexity in this study, surface mesh generation
was standardised. We used the triangular surface mesh
extracted from RGM volume meshes as input for SM,
TG and GHS3D methods, and used the surface mesh
generation method detailed in [6] in CHEW. We ob-
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served that for the same surfaces, quality volume mesh-
ing with TG produced very large meshes unacceptable
for our study. Smaller size meshes were possible to gen-
erate by instructing TG not to insert new points on the
surface. However, this led to the meshes of significantly
lower element shape quality 4. The GHS3D implemen-
tation did not introduce any new points on the input
surface and produced high quality meshes, but again,
created meshes which were too large to be considered
in the study. We used an implementation of a technique
described in [14] to experimentally find a triangular sur-
face of such a size that the volume mesh meets the size
constraints imposed by the application of interest.

Techniques like RGM and OT work with the voxel
data directly, avoiding the in-between triangulation stage
necessary for the other methods. This also allows for de-
termination of mesh adaptivity in the voxel domain using
octrees, which is cheaper to calculate than adding adap-
ativity in an existing mesh.

2.2 Physical Models

Early volumetric models of tissue were based on mass-
spring systems. However, mass-spring systems are very
sensitive to the damping parameters and time-step se-
lected [7]. Poor choice of parameters lead to an unsta-
ble simulation where error can quickly accumulate. A
more precise approximation is possible by solving contin-
uum mechanics equations with FEA [14,15,40], which,
in some configurations, offers the same computational
speed as a mass-spring system, but with more precise
results [23].

Using FEA, several continuum mechanics models are
available, providing a spectrum of techniques that bal-
ance simulation size and fidelity against simulation speed.
In our study, we have chosen two mechanical models: lin-
ear elasticity and Neohookean elasticity. Linear elastic-
ity provides a good approximation of tissue for relatively
small deformations, whereas a nonlinear model such as
Neohookean elasticity is accurate under a wider range of
situations.

This is illustrated in the classic bar-bending exam-
ple, shown in Figure 3. Figure 3(a) shows the bar at rest,
without gravity pulling it down. Under large strains, lin-
ear elasticity does not preserve volume, as shown in the
artifact in Figure 3(b). A nonlinear model, shown in Fig-
ure 3(c) is stable under large strains.

We have used the salmon framework developed by
Nienhyus et al. [37] to simulate both mechanical models
for tetrahedral meshes. We drive the system by provid-
ing an initial set of displacements and anchored nodes -
commonly referred to in FE literature as boundary con-
ditions. Using an explicit time-integration scheme, the
system then iteratively converges to a solution, giving a
final set of global displacements.

4 This is expected behaviour described in the accompany-
ing documentation of Tetgen, as the possibilities to improve
mesh by inserting new points are limited.

(a) (b)

(c)

Fig. 3 Classic bar bending example. (a) is the bar at rest
state. Under gravity, (b) is the bar modelled using linear elas-
ticity, and (c) is the bar modelled with Neohookean elasticity.
Note the volume change in (b).

The system is only conditionally stable, as opposed to
our first, quasi-static, scheme [40], but can handle much
larger meshes and run in a much smaller computation
time. Analysis of the system with regards to its error
can be found in Section 2.3.

The material mechanical properties can be encoded
as two Lamé coefficients, λ and µ. The elastic modulus,
E, and a Poisson ratio ν can be expressed in terms of λ
and µ:

E = µ
3λ + 2µ

λ + µ
(1)

ν =
λ

2λ + 2µ
(2)

2.2.1 Linear Elastic Material

In the linear elastic material model, the simulated system
can be represented by the equation

σ = Cǫ (3)

where σ is the forces at the nodes, ǫ are the displace-
ments at the nodes and C is the assembled stiffness ma-
trix. Initially, the surgical simulation environment used
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in our study was based on a quasi-static linear elastic
model of deformation, which allows for both haptic and
visual feedback from interacting with a FE mesh [40,29].
Unfortunately, this does not scale well in terms of size,
and has a high cost in the pre-computation of the inverse
of the stiffness matrix, C−1. We instead use salmon [37],
which, while offering a lower degree of accuracy (see Sec-
tion 2.3), allowed for much larger meshes to be used, with
the simulations running at a much faster rate.

2.2.2 Compressible Neohookean Elastic Material

The compressible Neohookean constitutive model imple-
mented by Nienhuys is an alternative version of the St.
Venant-Kirchoff tissue model. It is primarily used to de-
scribe rubbery material, which has been found to be a
better approximation than linear elasticity. The model
is nonlinear, and copes better under bending stresses, as
illustrated in Figure 3. The material is able to undergo
a more realistic, nonlinear response.

The system can be described as

S = µ(I − C
−1) + λT (T − 1)C−1 (4)

Supplementary to this, we define F as the deforma-
tion gradient tensor, where

F =
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∂x3

∂X3
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(5)

where x is the position at rest, and X is the position
at a given time. S is the second Piola-Kirchoff stress ten-
sor, C = FT F is the Right Cauchy-Green deformation
tensor, and T = det(F ).

2.3 Deformation Error Estimation

To measure the error in the simulation, we simulate an
artificial scenario and compare against an analytical re-
sult, the error is zero. For this paper, we simulate the
compression of a block of material along one axis - uni-
axial compression.

In uniaxial compression, a volume is anchored on one
face such that it is free to move in the yz-plane, but fixed
in movement along the x-axis. A load is applied to the op-
posing face, so that the volume is compressed or pulled,
causing it to move laterally in the y and z directions.
Two primitives are used - a cubic block, and a cylinder
(Figure 4). The analytical solution for deformation in the
nodes volume is the same for both primitives in uniaxial
compression.

As illustrated in Figure 5, at rest, the block has height
d0 and, from its centre line, width l0. When it is com-
pressed, we obtain new height d and width l. In this
state, we define ∆d = d − d0 and ∆l = l − l0

Fig. 4 Unit cylinder primitive used in deformation valida-
tion

d d0

l
l
0

y

x

z

Fig. 5 Uniaxial compression of a volume. At rest, volume
has a height of d0 and, from the centre line, a length of l0.
After applying a compression, the length changes to l and the
height to d. The box is anchored at its base so that it is free
to move in the yz-plane but fixed on the x-axis.

2.3.1 Linear Elastic Case

In the linear case, we have a strain tensor, ε. There are no
shear components, only movement along the Cartesian
axes. Along the x-axis, where the compression occurs

ε11 =
∆d

d0

(6)

In the yz-plane, we assume that the strain is equal in
both the y and z-axes. Hence

ε22 = ε33 = −νε11 = −ν
∆d

d0

(7)

Since l and l0 are also known, we can also state that

ε22 =
∆l

l0
(8)

These then can be rewritten as

∆l = −νl0
∆d

d0

(9)
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2.3.2 Neohookean Elastic Case

In the Neohookean case, we begin with equation 4. Since
the stretches are only along the axes, we can state:

F =





λ1 0 0
0 λ2 0
0 0 λ3



 (10)

where:

∂X0

∂x0

= λ1 =
d

d0

(11)

Since the lateral displacements in y and z are equal,
we can also assume that

λ2 = λ3 =
l

l0
(12)

And thus

∆l = l0(λ2 − 1) (13)

Given d and d0, we would like to determine ∆l. The
stresses in the y and z directions are equal to zero. Sub-
stituting equations 5 and 12 into equation 4

S22 = µ −

µ

λ2

2

+ λλ2

1λ
2

2 − λλ1 = 0 (14)

Solving for λ2

λ2 =

√

√

√

√

−µ + λλ1 +

√

(µ − λλ1)
2
+ 4λλ1

2µ

2λλ1
2

(15)

2.3.3 Reference Resolution Selection

There are two available solvers in salmon - static, and
dynamic. In the static solver, the selection of a timestep
is not necessary. Solution precision is then dependent
on the tolerances of the optimiser and the error func-
tion chosen. In the dynamic solver, an implicit integra-
tion scheme is used. This solver requires careful choice
of timestep and damping function. For this reason, and
for simplicity, the static solver was chosen.

In FE analysis, simulation precision drops propor-
tional to the number of nodes used in the system. The
uniaxial extension of a box is carried out using the salmon
solver using two constitutive models - linear and neo-
hookean. The material parameters are E = 3000 and
µ = 0.45.

The volumes are extended 5% in the x-axis. After a
solution is reached, the distance between the calculated
position of a node is compared against the analytical
location is recorded (i.e. dist = pobserved − ptheoretical).
This is performed for all the nodes in the mesh, and the
RMS of all these error values is recorded.

Meshes of unit cubes and cylinders were generated
at various resolutions, generating an RMS error for each
resolution for both the linear and neohookean models.

log(RMS) is plotted in Figure 6. For the neohookean
models, a gradual drop-off of error can be clearly seen
as mesh resolution is increased. The linear model error
is two orders of magnitude smaller than the neohookean
error, but shows less consistent behaviour, where the er-
ror rises again at 30k nodes. This inconsistency may be
related to bias caused by the bulk of edges being aligned
in a small set of directions, but cannot be substantiated
at this stage. Given the order of the RMS error (10−6-
10−7), this may not be a significant issue.

From inspection of Figure 6, the error in displace-
ment appears to converge to a stable value at around
25k nodes. This then serves as a baseline for the mini-
mum required resolution for gold-standard meshes to be
compared against for mesh deformation validation, and
is used in the selection of reference meshes in Section 3.

2.3.4 Maximum Extension Estimation

Fig. 7 Uniaxial compression tests on a tetrahedralised unit
cylinder, using a linear and Neohookean material model in
salmon. The upper curve shows that in the linear case, the
error is small - well outside of 5 significant figures. The uni-
axial case demonstrates error increasing as the loading does.
However, for small deformations (< 10% of the cube length),
the error remains outside of 3 significant figures.

We set up an experiment within salmon to test the
error in compression of a unit cylinder, comprising of
20000 nodes. This mesh was subject to a deformation
load along the x-axis, and its deformation response is
recorded in Figure 7 for a linear and Neohookean ma-
terial model. For the linear model, we were unable to
detect any error greater than 0.001% of the theoretical
value, even at extreme deformations (i.e. > 0.5 of object
length). However, for the Neohookean case, the error in-
creased as the compression did. For small deformation
(less than 10% of object length), the error remained less
than 0.1%. Using the uniaxial compression as a bench-
mark for deformation experiments to follow, this defines
the upper limit of precision within the salmon FE solver
for deformation experiments. The Lamé parameters used
were λ = 9310.3 and µ = 1034.5 [35].
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(a) (b)

Fig. 6 Uniaxial extension with linear and neohookean constitutive models using both unit cylinder and unit cube models.

2.4 Error Estimation Metrics

Alteroviz et al. have examined the problem of trying
to benchmark in [2] soft tissue deformation algorithms.
They present a number of metrics, such as the relative
error norm (REN), the interior error metric (IEM, or L2
norm) and exterior error metric. The REN and L2 norm
are commonly used in evaluating the precision and ac-
curacy of FE analysis, and are often used in determining
the convergence of the FE problem being solved [30,16,
28].

A wealth of literature is available detailing a pos-
teriori methods for determining the possible error in a
simulation, which can take into account model geome-
try and topology, and the value and local gradient of an
initial FE solution [30,52,38,45,5]. A global metric such
as the L2 norm or REN effectively reduces the entire
mesh down to a single datapoint, which, in a complex,
non-analytical case may not properly take into account
local changes in mesh quality and the range of boundary
conditions that may be applied in the simulation.

An effective error estimation metric should be able
to assess a particular mesh generator by establishing the
local relationship between the mesh quality in a partic-
ular area of the mesh, and the measured L2 (or REN)
error in that particular region. A particular mesh gen-
erator may be labelled as more effective if, for a given
number of nodes, the error rate predicted by the estima-
tion metric is lower than that of other mesh generators
it is compared to.

2.4.1 Re-sampling Deformation Fields

To remove bias in comparing one deformation field against
another, we need to re-sample both fields using the same
referential. In our case, we use a uniformly sampled point
distribution (i.e. on an isotropically sampled grid). Given

a deformation field, D, and sample point q, to obtain the
vector corresponding to the deformation field at q, Dq,
we use:

ResampleF ield(D, q) = Dq (16)

This is performed by first identifying the correspond-
ing tetrahedron in which point q lies. Using the barycen-
tric coordinates of q relative to the corners of the tetra-
hedron, Dq is the weighted sum of the deformation field
vectors at the corners of the tetrahedron.

We assume we have two meshes, ma and mb. When
a deformation fields DA and DB is applied to ma and
mb respectively, a given point, q, may be transformed. In
ma, qa = q + DAq and in mb, qb = q + DBq. Using this
re-sampling scheme, the fields then can be re-sampled as
DAresamp and DBresamp, which are no longer dependent
on the nodes of the original mesh to act as sampling
points.

2.4.2 MQL2 Metric

A direct, point-to-point relationship between mesh qual-
ity and deformation field error in any given mesh is dif-
ficult, if not impossible to establish without making an
initial attempt at solving the FE analysis. This process
(commonly a precursor to further h- or p-refinement) is
not practical in a clinical scenario. At the same time, re-
ducing the mesh quality and error norms down to a sin-
gle data point by averaging over the whole mesh, whilst
fast, obliterates subtle information about local changes
in mesh quality that are characteristic to each mesh gen-
erator.

We take an approach that is a compromise between
these two extreme ends of analysis. It is difficult to es-
tablish a direct relationship between a given, local mesh
quality value and the corresponding deformation error at
that point. Because the mesh is made up of a discrete set
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of neighbouring elements, each with their own mesh qual-
ity, the error caused by one element may spill over and
influence the error of neighbouring elements. For all the
points in a mesh that correspond to a particular quality
value, there will be a range of deformation error values
in at the corresponding deformation field error points.

We have found that this range is not bound at its
upper point - a given mesh quality element is heavily
affected by its neighbours - but it is bound at its lowest
point. We have found that the log10 of the best (i.e. low-
est) possible error value at a given point in the mesh is
linearly proportional to the mesh quality at that point.

Fig. 8 Cutaway view of cylinder mesh with perturbed nodes.
Mesh has 9514 nodes and 52488 tetrahedra.

To test this metric, we selected one of the cylinder
meshes used in uniaxial compression and randomly per-
turbed its internal points to create a range of elements
in the mesh with varying quality. A cutaway view of this
is shown in Figure 8.

The deformation field error and mesh quality are
sampled using the resampling algorithm described in Sec-
tion 2.4.1. At each sample point, the quality metric (L2)
and the mesh quality metric (AR) are recorded as a tu-
ple. This data is plotted as AR vs. L2 in Figure 9(a). It
is difficult to establish a direct relationship between AR
and L2 because, as previously mentioned, the maximum
L2 value for a particular AR value can be unbounded.
We divide the AR axis into a series of bins, and plot
the minimum value of L2 in each bin, as shown in Fig-
ure 9(b). There is a linear relationship between AR and
log(min(L2)). In Figure 9(b), this was verified using lin-
ear regression, with a regression coefficient of 0.901.

The equation of the fitted line is characteristic for
each mesh generation scheme. Less effective mesh gen-
eration schemes will have a line that has a greater gra-
dient - that is, worse schemes will degrade in terms of
deformation error at a faster rate than a better scheme.
The metric does not completely describe the efficacy of
a given mesh generation scheme, but the relationship
it describes can locally define the best-case scenario in

terms of deformation error based on the mesh quality at
a given point. Since every mesh generated has a differ-
ent distribution in terms of mesh quality, the efficacy of
a particular mesh will change from instance to instance.

2.5 Experimental Setup

The error metrics detailed above are dependent on a pair-
wise comparison of two deformation fields. We have six
mesh generation techniques, with which we have created
four resolution meshes for each case examined:

20k nodes < xlg
10k nodes < lrg < 20k nodes
5k nodes < med < 10k nodes

sml < 5k nodes

(a)

(b)

Fig. 9 Quality Metric (AR) vs. log(L2 norm) in the uniaxial
compression of a cylinder. Plot of all values is in (a). Dataset
was divided into bins based on AR. Min of each bin is plotted
in (b); linear regression is able to find a line fit to this data
with a regression coefficient of 0.901.
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If the same deformation is applied to each of these
meshes, each mesh can be compared directly against an-
other. The xlg classification is for the reference meshes,
which each must have > 25k nodes.

From this set of comparisons, we seek to assess two
goals - firstly, how mesh size affects the precision of the
deformation field (compared against all other meshes of
the same size). This gives us an indicator as to how dif-
ferent the deformation fields are for a particular mesh
generator, compared to the rest. Secondly, given a par-
ticular mesh generator, we examine how the error in the
deformation changes as the mesh resolution is dropped,
relative to the highest resolution mesh.

Five brain volume segmentations from the study de-
scribed by Clatz et al. in [11] have been selected to test
different mesh generation approaches. Six different mesh
generation approaches described in Section 2.1 were ap-
plied to generate meshes for each of the segmented masks.

We simulate an in-vitro brain deformation by anchor-
ing the nodes of the mesh at the medulla and applying a
deformation to the surface, similar to the approach taken
by Wittek et al. [49]. The anchor nodes are chosen on a
per-mesh basis by selecting the nodes that lie within a
sphere of a fixed centre and radius.

A contact field is applied to the mesh in order to gen-
erate an initial set of displaced nodes. To ensure consis-
tency, this is generated by simulating a plane compress-
ing the frontal lobes in a caudal direction. This deforma-
tion is used to drive the simulation. We simulate brain
tissue using the in-vivo stiffness parameters λ = 9310.3
and µ = 1034.5 [35]. Since our mechanical models are
only valid for small deformations (see Section 2.3.4), the
compression is set to be roughly 5% of rostral-caudal
length of the brain.

3 Results

3.1 Mesh sizes

Table 2 lists the average number of nodes for each mesh
type generated and used in the experiment. CHEW and
GHS3D have significantly larger number of degrees of
freedom. The available mesh generators were not all able
to create meshes within the size bounds as specified in
Section 2.5, so there are some missing data points. xlg-
GHS3D meshes were available for each of the five clini-
cal cases, with an average resolution of 28k nodes. These
meshes were used to generate the required reference de-
formation fields.

Table 3 records the average and worst-case mesh qual-
ity metrics for the different mesh generation techniques
at different resolutions. The aspect ratio (AR) of the
tetrahedral elements in the mesh is evaluated, with a
value closer to 1 indicating better overall element quality
in the mesh. Also recorded is the minimum dihedral an-
gle (angle between faces) in the tetrahedra of the meshes;
a value close to 60 degrees is ideal.

Table 2 Average mesh sizes across the 5 cases

Technique xlg lrg med sml
OT - 14440 - 2782

RGM - 10329 5948 2684
TG - - 5364 3222
SM - 10293 5879 3451

GHS3D 28572 14168 5228 -
CHEW 33070 13978 6487 -

Table 3 Mesh Quality table

Mesh
Generator-
size

AR
(avg)

AR
(max)

MDA
(avg)

MDA
(min)

ot-lrg 2.01 16.35 41.275 4.535
ot-sml 2.118 24.3 40.12 2.808
ghs3d-xlg 1.508 5.828 49.74 11.616
ghs3d-lrg 1.51 5.198 49.78 13.348
ghs3d-med 1.518 5.17 49.62 13.428
chew-xlg 1.508 4.128 49.84 14.94
chew-lrg 1.514 4.108 49.7 15.82
chew-med 1.518 4.092 49.6 15.46
sm-lrg 1.402 3.956 53.48 15.92
sm-med 1.408 3.586 53.38 18.52
sm-sml 1.364 3.61 54.26 18.92
rgm-lrg 1.446 4.492 52.78 24.74
rgm-med 1.458 3.664 52.56 28.66
rgm-sml 1.468 3.252 52.22 29.18
tg-med 2.312 391.6 45.04 0.28148
tg-sml 2.308 168.217 45.35 0.533

3.2 Deformation Field Evaluation

(a) (b)

(c) (d)

Fig. 10 Case2-RGM-lrg: (a) - original mesh, (b) - cutaway
of mesh, (c) quality image, (d) L2 image

An example mesh from the dataset, case2-RGM-lrg
is shown in Figure 10(a) and (b). A slice through its qual-
ity image is in (c), the corresponding L2 image slice in
(d). As shown in Figure 11(a), it is difficult or impossible
to extract a trend from the totality of the data presented.
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However, by taking the minimum value of L2 per buck-
eted AR value, as shown in (b), the MQL2 gradient is
extracted successfully (L2 = 1.54.10−15.10480AR), and
with a good degree of certainty - a regression coefficient
of 0.789. This strong correlation is kept for all the meshes
tested, with an average regression coefficient of 0.773.

Using the metric described in Section 2.4.2, we estab-
lish that:

min(L2) = J.KAR (17)

where J and K are the parameters extracted from lin-
ear regression. A table of these values, averaged across
the six cases for each combination of mesh generator and
resolution, is in Table 4. These values are plotted graph-
ically in Figures 12 and 13.

OT and TG generate meshes with poor average and
worst-case element quality (Table 3). For this particu-
lar experimental set-up, both these schemes appear to
perform better compared to their peers in terms of the
MQL2 metric. When reading the minimum L2 error for
a particular mesh generator at its average element qual-
ity value in Figures 12 and 13, the best-case error is still
less than that of the other mesh generators.

(a)
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Fig. 11 Case2-RGM-lrg: (a) Unbinned plot of AR vs. L2,
(b) Binned plot of AR vs. min(L2) with MQL2 line fit

Table 4 MQL2 values

Neohookean Linear
MeshGen-
Size

#nodes
(aver-
age)

J K J K

ot-lrg 14440 0.122 0.032 0.158 0.055
ot-sml 2783 0.170 0.112 0.166 0.088
rgm-lrg 10329 0.087 0.044 0.038 0.013
rgm-
med

5948 0.199 0.165 0.116 0.104

rgm-sml 2684 0.274 0.147 0.138 0.063
tg-med 5365 0.131 0.070 0.077 0.033
tg-sml 3223 0.183 0.109 0.117 0.032
sm-lrg 10294 0.067 0.030 0.034 0.011
sm-med 5880 0.244 0.193 0.110 0.118
sm-sml 3452 0.365 0.098 0.129 0.022
ghs3d-
lrg

14167 0.152 0.146 0.108 0.118

ghs3d-
med

5228 0.248 0.063 0.109 0.046

chew-lrg 13978 0.145 0.095 0.195 0.080
chew-
med

6487 0.333 0.129 0.227 0.080

In general, the Neohookean material model appears
to run with double the magnitude of error of the linear
material model. As expected, the average error as the
number of nodes drops is higher than the higher resolu-
tion cases. The variance of the solutions at lower reso-
lutions is also higher. This is also to be expected as the
solution is less deterministic at low resolutions. At large
and small resolutions, OT appears to consistently be the
best mesh generator. In terms of the other schemes avail-
able, however, at large and medium resolutions, there is
little difference between the schemes.

The best performing schemes are quite different in
their approach - OT is primarily driven by a structured
mesh generation scheme, and TG is a Delaunay-based
approach. Surface fidelity in this case does not appear
to affect the result, as both schemes generate different
boundary triangulations. The resulting suitability of a
mesh for a biomechanical simulation is a complex combi-
nation of mesh generator used, individual element qual-
ity and mesh complexity, rather than any one of these
factors on their own. The MQL2 metric provides a frame-
work in which these factors may be collectively assessed,
allowing an objective comparison of mesh generators for
a particular simulation configuration.

4 Conclusions and Future Directions

We have presented an evaluation of several mesh gener-
ation techniques, using a novel error metric, the MQL2
gradient. Using a series of analytical cases, we set up the
allowable bounds and parameters for the experiments.
We ran deformation experiments using FE analysis, com-
paring against a gold standard, using both linear and
Neohookean constitutive models. From these experiments,
we were able to draw out the characteristic performance
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Fig. 12 Plot of the Neohookean MQL2 values from Table 4.
(a) large, (b) medium and (c) small

of the tested mesh generators in terms of error, and were
able to determine desirable characteristics of a generated
mesh.

Whilst the upper limit on deformation error is un-
bounded, we have established that quality of an element
will locally affect the error in the solution. Locally, the
log of the minimum L2 error is proportional to the ele-
ment quality. The relationship between these two values
is characteristic for each mesh generator. The MQL2 er-

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1  2  3  4  5  6

m
in

(L
2 

no
rm

)

Aspect Ratio (AR)

OT
RGM

SM
GHS3D
CHEW

(a)

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1  2  3  4  5  6

m
in

(L
2 

no
rm

)

Aspect Ratio (AR)

RGM
TG
SM

GHS3D
CHEW

(b)

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1  2  3  4  5  6

m
in

(L
2 

no
rm

)

Aspect Ratio (AR)

OT
RGM

TG
SM

(c)

Fig. 13 Plot of the Linear MQL2 values from Table 4. (a)
large, (b) medium and (c) small

ror metric cannot globally predict the overall error in
a mesh deformation - but it can be used to establish a
global estimate of the best-case error in a deformation.

An important factor for the precision of deformed
meshes in surgical simulation is the number of nodes
used to construct the mesh. In terms of choice of mesh
generation technique, this translates to the requirement
of having a good degree control over the number of nodes
or tetrahedra that are generated.
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In general, the Neohookean material model appears
to run with two orders of magnitude greater the error
of the linear material model. As expected, the average
error as the number of nodes drops is higher than the
higher resolution cases. The variance of the solutions at
lower resolutions is also higher. This is also to be ex-
pected as the solution is less deterministic at low resolu-
tions. An ideal mesh generator would then have a lower
MQL2 value as resolution increases, and the variance
of solutions these values at this resolution would be ex-
pected to drop. At medium and large resolutions, the
choice of mesh generator is less significant - the driving
factor is that there are as many nodes as can be practi-
cally allowed, and that the mesh is of reasonable quality.
Another conclusion that can be drawn is that nonlinear
physical models, such as Neohookean elasticity, are more
sensitive mesh quality than their linear counterparts.

The choice of mesh generation scheme is largely driven
by the resolution of the mesh that is required. Individ-
ual mesh generation schemes performed characteristi-
cally better at at given resolution compared to its peers,
rather than performing better at all resolutions. For this
experiment, at high resolutions OT appears to perform
consistently well, keeping a relatively low deformation er-
ror for even badly shaped elements. At medium to small
resolutions, TG outperforms its peers.

This conclusion is drawn from a particular experi-
mental setup, and it is yet to be established how widely
this can be applied. What we have been able to demon-
strate, however, is that the suitability of a particular
mesh for a biomechanical simulation is a complex com-
bination of mesh quality, mesh complexity, and mesh
generator used, instead of any one of these factors in-
dividually. The presented MQL2 metric combines these
factors in a novel way, allowing for the direct compari-
son of mesh generation schemes for individual simulation
configurations.

This still leaves the question of whether structured
(such as octree-based) or unstructured (such as Delau-
nay) are much different from each other in terms of gen-
erated error at simulation resolution. Testing this broader
hypothesis will require further work outside of the scope
of this study.
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G.: Comparing a simplified FEM approach with the
mass-spring model for surgery simulation. Stud Health
Technol Inform 94, 103–109 (2003)

24. Hu, T., Desai, J.P.: Characterization of soft-tissue mate-
rial properties: Large deformation analysis. In: S. Cotin,
D.N. Metaxas (eds.) ISMS, Lecture Notes in Computer
Science, vol. 3078, pp. 28–37. Springer (2004)

25. Joshi, B.: Model Generation and Interaction in Surgi-
cal Simulation. Ph.D. thesis, BioMedIA Lab, CSIRO
and Graduate School of Biomedical Engineering, UNSW
(2007). Note: Submitted

26. Joshi, B., Fedorov, A., Chrisochoides, N., Warfield, S.,
Ourselin, S.: Application-driven quantitative assessment
of approaches to mesh generation. In: 2007 IEEE Inter-
national Symposium on Biomedical Imaging: from Nano
to Macro. IEEE (2007)

27. Kerdok, A., Cotin, S., Ottensmeyer, M., Galea, A., Howe,
R., Dawson, S.: Truth cube: Establishing physical stan-
dards for soft tissue simulation. Medical Image Analysis
7, 283–291 (2003)

28. Kirby, R.M., Warburton, T.C., Lomtev, I., Karniadakis,
G.E.: A discontinuous Galerkin spectral/ HP method
on hybrid grids. J Appl. Num. Math 33(1–4), 393–405
(2000)

29. Lee, B., Popescu, D., Ourselin, S.: Contact modelling
based on displacement field redistribution for surgical
simulation. In: Proceedings of The Second International
Workshop on Medical Imaging and Augmented Reality
(MIAR 2004), LNCS, vol. 3150, pp. 337–345. Springer
Verlag, Beijing, China (2004)

30. Lee, N., Bathe, K.: Error indicators and adaptive remesh-
ing in large deformation finite element analysis. Finite
Elements in Analysis and Design 16, 99–139 (1993)

31. Lohner, R., Parikh, P.: Three-dimensional grid genera-
tion by the advancing front method. International Jour-
nal for Numerical Methods in Engineering 8, 1135–1149
(1988)

32. Luo, X., Shephard, M.S., Remacle, J.F.: The Influence of
Geometric Approximation on the Accuracy of High Or-
der Methods. In: 8th International Conference on Numer-
ical Grid Generation in Computational Field Simulations
(2002)

33. Marcum, D.: Efficient generation of high-quality unstruc-
tured surface and volume grids. Engineering with Com-
puters 17(3), 211–233 (2001)

34. Marcum, D.: Solidmesh (2005). URL <url:http://www.
erc.msstate.edu/simcenter/docs/solidmesh/>

35. Miller, K., Chinzei, K.: Simple Validation of Biomechan-
ical Models of Brain Tissue. In: European Society of
Biomechanics Conference, UK, vol. 1, p. 104. Elsevier
Science (1998)

36. Miller, K., Chinzei, K.: Mechanical properties of brain
tissue in tension. J Biomech 35(4), 483–490 (2002)

37. Nienhuys, H.W., van der Stappen, A.F.: A surgery sim-
ulation supporting cuts and finite element deformation.
In: MICCAI ’01: Proceedings of the 4th International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 145–152. Springer-Verlag, Lon-
don, UK (2001)

38. Oden, J., Ainsworth, M.: A posteriori error estimation in
finite element analysis. Computer Methods in Applied
Mechanics and Engineering 142, 1–88 (1997)

39. Owen, S.: A survey of unstructured mesh generation tech-
nology. In: Proceedings of 7th International Meshing
Roundtable, pp. 239–267 (1998)

40. Popescu, D.C., Compton, M.: A Model for Efficient and
Accurate Interaction with Elastic Objects in Haptic Vir-
tual Environments. In: Proc. 1st International Confer-
ence on Computer Graphics and Interactive Techniques
in Australia and South East Asia (GRAPHITE’03’), pp.
245–250. ACM Press, Melbourne, Australia (2003)

41. Shephard, M.S., de Cougny, H.L., O’Bara, R.M., Beall,
M.W.: Automatic grid generation using spatially based
trees. In: J.F. Thompson, B.K. Soni, N.P. Weather-
ill (eds.) Handbook of Grid Generation, chap. 15. CRC
Press, Boca Raton, FL (1999)

42. Shewchuk, J.R.: What is a Good Linear Element? Inter-
polation, Conditioning, and Quality Measures. In: Pro-
ceedings of the 11th International Meshing Roundtable,
Ithaca, New York, USA, pp. 115–126. ACM Press (2002)

43. Si, H.: Tetgen: A quality tetrahedral mesh generator and
three-dimensional delaunay triangulator (2005). URL
<url:http://tetgen.berlios.de/>

44. Si, H., Gartner, K.: Meshing piecewise linear complexes
by constrained delaunay tetrahedralizations. In: Proceed-
ings of the 14th International Meshing Roundtable, pp.
147–163 (2005)

45. Stewart, J., Hughes, T.: A tutorial in elementary finite
element error analysis: A systematic presentation of a pri-
ori and a posteriori error estimates. Computer Methods
in Applied Mechanics and Engineering 158, 1–22 (1998)

46. Technologies, S.: Tetmesh-ghs3d (2005). URL <url:
http://www.simulog.fr/mesh/gener2.htm>

47. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elas-
tically deformable models. In: SIGGRAPH ’87: Proceed-
ings of the 14th annual conference on Computer graph-
ics and interactive techniques, pp. 205–214. ACM Press,
New York, NY, USA (1987). DOI http://doi.acm.org/
10.1145/37401.37427

48. Timoner, S.: Compact Representations for Fast Non-
rigid Registration of Medical Images. Tech. Rep. MIT-
CSAIL-TR-2003-001, Massachusetts Institute of Tech-
nology Computer Science and Artificial Intelligence Lab-
oratory (2003)

49. Wittek, A., Laporte, J., Miller, K., Kikinis, R., Warfield,
S.: Computing Reaction Forces on Surgical Tools for
Robotic Neurosurgery and Surgical Simulation. In: Aus-
tralasian Conference on Robotics and Automation 2004,
Australia, Australian Robotics & Automation Associa-
tion, vol. 1 (2004)

50. Yao, J., Funkenbusch, P.D., Snibbe, J., Maloney, M.,
Lerner, A.L.: Sensitivities of Medial Meniscal Motion and
Deformation to Material Properties of Articular Carti-
lage, Meniscus and Meniscal Attachments Using Design
of Experiments Methods. Journal of Biomechanical En-
gineering 128(3), 339–408 (2006)

51. Zauel, R., Yeni, Y.N., Bay, B.K., Dong, X.N., Fyhrie,
D.P.: Compression of the Linear Finite Element Predic-
tion of Deformation and Strain of Human Cancellous
Bone to 3D Digital Volume Correlation Measurements.
Journal of Biomechanical Engineering 128, 1–6 (2006)

52. Zhu, J.: A posteriori error estimation—the relationship
between different procedures. Computational Methods in
Applied Mechanics and Engineering 150, 411–422 (1997)


	Introduction
	Method
	Results
	Conclusions and Future Directions

