
Algorithm, Software, and Hardware

Optimizations for Delaunay Mesh Generation

on Simultaneous Multithreaded Architectures

Christos D. Antonopoulos a Filip Blagojevic d

Andrey N. Chernikov c,∗ Nikos P. Chrisochoides c

Dimitrios S. Nikolopoulos b

aDepartment of Computer and Communications Engineering, University of

Thessaly, Volos, Greece

bDepartment of Computer Science, Virginia Tech,

Blacksburg, VA 24061

cDepartment of Computer Science, The College of William and Mary

Williamsburg, VA 23187

dLawrence Berkeley National Lab

Berkeley, CA 94720

Preprint submitted to Elsevier 24 March 2009

Abstract

This article focuses on the optimization of PCDM, a parallel, 2D Delaunay mesh

generation application, and its interaction with parallel architectures based on si-

multaneous multithreading (SMT) processors. We first present the step-by-step ef-

fect of a series of optimizations on performance. These optimizations improve the

performance of PCDM by up to a factor of six. They target issues that very often

limit the performance of scientific computing codes. We then evaluate the interaction

of PCDM with a real SMT-based SMP system, using both high-level metrics, such

as execution time, and low-level information from hardware performance counters.

Key words: Parallel, Mesh, Generation, SMT, Optimizations, Finite Element,

∗ Corresponding author.

Email addresses: cda@inf.uth.gr (Christos D. Antonopoulos),

fblagojevic@lbl.gov (Filip Blagojevic), ancher@cs.wm.edu (Andrey N.

Chernikov), nikos@cs.wm.edu (Nikos P. Chrisochoides), dsn@cs.vt.edu

(Dimitrios S. Nikolopoulos).

URLs: http://inf-server.inf.uth.gr/∼cda (Christos D. Antonopoulos),

http://www.cs.vt.edu/∼filip (Filip Blagojevic),

http://www.cs.wm.edu/∼ancher (Andrey N. Chernikov),

http://www.cs.wm.edu/∼nikos (Nikos P. Chrisochoides),

http://www.cs.vt.edu/∼dsn (Dimitrios S. Nikolopoulos).

2

1 Introduction

Simultaneous multithreading (SMT) and multicore (CMP) processors have

lately found their way in the product lines of all major hardware manufactur-

ers [29–31]. These processors allow more than one threads to simultaneously

execute on the same physical CPU. The degree of resource sharing inside

the processor may range from sharing one or more levels of the cache (CMP

processors), to almost fully sharing all processor resources (SMT processors).

SMT and CMP chips offer a series of competitive advantages over conventional

ones. They are, for example, characterized by better price to performance and

power to performance ratios. As a consequence, they gain more and more

popularity as building blocks of both multi-layer, high performance compute

servers and off-the-shelf desktop systems.

The pervasiveness of SMT and CMP processors changes radically the soft-

ware development process. Traditionally, evolution across different processor

generations alone, would allow single-threaded programs to execute more and

more efficiently. This trend, however, tends to diminish. SMT and CMP pro-

cessors support, instead, thread-level parallelism within a single chip. As a

result, parallel software is necessary in order to unleash the computational

power of these chips by a single application. Needless to say, rewriting ex-

isting sequential software or developing from scratch parallel software comes

at an increased cost and complexity. In addition, the development of efficient

code for SMT and CMP processors is not an easy task. Resource sharing inside

the chip makes performance hard to analyze and optimize, since performance

is dependent not only on the interaction between individual threads and the

hardware, but also on non-trivial interference between threads on resources

3

such as caches, TLBs, instruction queues, and branch predictors.

The trend of massive code development or rewriting restates traditional soft-

ware engineering tradeoffs between ease of code development and performance.

For example, programmers may either reuse functionality offered by system

libraries (synchronization primitives, STL data structures, memory manage-

ment, etc.), or reimplement it from scratch, targeting high performance. They

may or may not opt for complex algorithmic optimizations, balancing code

simplicity and maintainability with performance.

In this paper we present the programming and optimization process of a 2D

Parallel Constrained Delaunay Mesh (PCDM) generation algorithm on SMT

and multi-SMT systems, with the goal of understanding the performance im-

plications of SMT processors on adaptive and irregular parallel applications,

and laying out an optimization methodology, with elements that can be reused

across irregular applications. Mesh generation is a central building block of

many applications, in the areas of engineering, medicine, weather prediction,

etc. PCDM is an irregular, adaptive, memory-intensive, multi-level and multi-

grain parallel implementation of Delaunay mesh generation. We select PCDM

because it is a provably efficient algorithm that can both guarantee the quality

of the final mesh, and achieve scalability on conventional clusters of SMPs, at

the scale of 100 or more processors [14].

The main contribution of this paper is a set of algorithmic and systemic op-

timizations for adaptive and irregular parallel algorithms on SMT processors.

In particular, the paper provides a better understanding of multi-level and

multi-grain parallelization for layered multi-processors, where threads exe-

cuting and sharing resources on the same processor are differentiated from

4

threads executed across processors. The algorithmic optimizations presented

in this paper pertain to parallel mesh generation algorithms, whereas the sys-

temic optimizations pertain to broader classes of parallel applications with

irregular execution and data access patterns, such as N-body simulations and

ray-tracing algorithms.

We discuss in detail the exploitation of each of the three parallelism granular-

ities present in PCDM on a real, SMT-based multiprocessor. We present the

step-by-step optimization of the code and quantify the effect of each partic-

ular optimization on performance. This gradual optimization process results

in code that is up to six times faster than the original, unoptimized one.

Moreover, the optimized code has sequential performance within 12.3% of

Triangle [40], the best to our knowledge sequential Delaunay mesh genera-

tion code. The exploitation of parallelism in PCDM allows it to outperform

Triangle, even on a single physical (SMT) processor. As a next step, we use

low-level performance metrics and information attained from hardware per-

formance counters, to accurately characterize the interaction of PCDM with

the underlying architecture.

The rest of the paper is organized as follows: In Section 2 we discuss related

work in the context of performance analysis and optimization for layered par-

allel architectures. In Section 3 we briefly describe the parallel Delaunay mesh

refinement algorithm. Section 4 discusses the implementation and optimiza-

tion of the multi-grain PCDM on an SMT-based multiprocessor. We study the

performance of the application on the target architecture both macroscopically

and using low-level metrics. Finally, Section 5 concludes the paper.

5

2 Related Work

Although layered multiprocessors have established a strong presence in the

server and desktop markets, there is still considerable skepticism for deploy-

ing these platforms in supercomputing environments. One reason seems to be

that the understanding of the interaction between computationally-intensive

scientific applications and these architectures is rather limited. Most existing

studies of SMT and CMP processors originate from the computer architec-

ture domain and use conventional uniprocessor benchmarks such as SPEC

CPU [26] and shared-memory parallel benchmarks such as SPEC OMP [6]

and SPLASH-2 [47]. There is a notable absence of studies that investigate

application-specific optimizations for SMT and CMP chips, as well as the

architectural implications of SMT and CMP processing cores on real-world

applications that demand high FPU performance and high intra-chip and off-

chip memory bandwidth. Interestingly, in some real supercomputing installa-

tions based on multi-core and SMT processor cores, multi-core execution is

de-activated, primarily due to concerns about the high memory bandwidth

demands of multithreaded versions of complex scientific applications [2].

This paper builds upon an earlier study of a realistic application, PCDM,

on multi-SMT systems [5], to investigate the issues pertinent to application

optimization and adaptation to layered shared-memory architectures. Similar

studies appeared recently in other application domains, such as databases [18,

48] and have yielded results that stir the database community to develop

more architecture-aware DataBase Management System (DBMS) infrastruc-

ture [25]. Another recent study of several realistic applications, including

molecular dynamics and material science codes, on a Power5-based system

6

with dual SMT-core processors [24], indicated both advantages and disadvan-

tages from activating SMT, however the study was confined to execution times

and speedups of out-of-the-box codes without providing further details.

3 Delaunay Mesh Generation

In this paper we focus on the parallel constrained Delaunay refinement al-

gorithm for 2D geometries. Delaunay mesh generation offers mathematical

guarantees on the quality of the resulting mesh [15, 22, 32, 38, 41]. In particu-

lar, one can prove that for a user-defined lower bound on the minimal angle

(below 20.7◦) the algorithm will terminate while matching this bound and

produce a size-optimal mesh. It has been proven [33] that a lower bound on

the minimal angle is equivalent to the upper bound on the circumradius-to-

shortest edge ratio which we will use in the description of the algorithm.

Another commonly used criterion is an upper bound on triangle area which

allows to obtain sufficiently small triangles.

The sequential Delaunay refinement algorithm works by inserting additional

— so-called Steiner — points into an existing mesh with the goal of removing

poor quality triangles, in terms of either shape or size, and replacing them

with better quality triangles. Throughout the execution of the algorithm the

Delaunay property of the mesh is maintained: the mesh is said to satisfy the

Delaunay property if every triangle’s circumscribing disk (circumdisk) does

not include any of the mesh vertices. Usually Steiner points are chosen in the

centers (circumcenters) of circumdisks of bad triangles, although other choices

are also possible [12]. For our analysis and implementation we use the Bowyer-

Watson (B-W) point insertion procedure [8, 46] which consists of the following

7

steps: (1) the cavity expansion step: the triangles whose circumdisks include

the new Steiner point p are identified; they are called the cavity C (p); (2) the

cavity triangulation step: the triangles in C (p) are deleted from the mesh; as

a result, an untriangulated space with closed polygonal boundary ∂C (p) is

created; (3) p is connected with each edge of ∂C (p), and the newly created

triangles are inserted into the mesh.

We explore three levels of granularity in parallel Delaunay refinement: coarse,

medium, and fine. At the coarse level, the triangulation domain Ω is decom-

posed into subdomains Ωi which are distributed among MPI processes and

used as units of refinement. When Steiner points are inserted close to subdo-

main boundaries, the corresponding edges are subdivided, and split messages

are sent to the MPI processes refining subdomains that share the specific edge,

to ensure boundary conformity [14]. At the medium granularity level, the units

of refinement are cavities; in other words, multiple Steiner points are inserted

concurrently into a single subdomain. Since the candidate Steiner points can

have mutual dependencies, we check for the conflicts and cancel some of the

insertions if necessary. The problem of Delaunay-independent point insertion

along with parallel algorithms which avoid conflicts is described in [10–13]. In

this paper, however, we study a different approach which allows to avoid the

use of auxiliary lattices and quadtrees, at the cost of rollbacks. Finally, at the

fine granularity level, we explore the parallel construction of a single cavity

(cavity expansion). This is achieved by having multiple threads check different

triangles for inclusion into the cavity.

8

4 Implementation, Optimization and Performance Evaluation

In the following paragraphs we discuss the implementation and the optimiza-

tion process of the three granularities of parallelism in PCDM and their com-

binations into a new multi-grain implementation we describe in [4]. We also

provide insight on the interaction of the application with the hardware on a

commercial, low-cost, SMT-based multiprocessor platform. Table 1 summa-

rizes the technical characteristics of our experimental platform. The platform

is a 4-way SMP system, with Intel Hyperthreaded (HT) processors. Intel HT

processors are based on the simultaneous multithreading (SMT) architecture.

Each processor can execute two threads simultaneously. Each thread has its

own register file, however it shares the rest of the hardware of the proces-

sor (cache hierarchy, TLB, execution units, memory interface etc.) with the

other thread. Intel HT processors have become popular in the context of both

technical and desktop computing, due to the fact that they offer SMT capa-

bilities at no additional cost 1 . The system has 2 GB of main memory and

runs Linux (2.6.13.4 kernel). The compiler used to generate the executables

is g++ from the 3.3.4 GNU compiler collection (gcc). Experimental results

from larger parallel systems, as well as a direct comparison between differ-

ent single-grain and multi-grain parallelization strategies appears in [4]. This

paper focuses on the optimizations of PCDM, at each of the three levels of

parallelization granularity.

Intel HT processors offer ample opportunities for performance analysis through

1 The cost of an Intel HT processor was initially the same as that of a conventional

processor of the same family and frequency. Gradually, conventional processors of

the IA-32 family were withdrawn.

9

Processor 4, 2-way Hyperthreading, Pentium 4 Xeon, 2 GHz

Cache 8 KB L1, 64B line / 512KB L2, 64B line / 1MB L3, 64B line

Memory 2 GB RAM

OS Linux 2.6.13.4

Compiler g++, gcc 3.3.4

Table 1

Configuration of the Intel HT Xeon-based SMP system used to evaluate the multi-

grain implementation of PCDM and its interaction with layered parallel systems.

the performance monitoring counters [27]. The performance counters offer

valuable information on the interaction between software and the underlying

hardware. They can be used either directly [37], or through higher level data

acquisition and analysis tools [1, 9, 19].

Throughout this section we present experimental results applying PCDM on

a rocket engine pipe 2D cross-cut domain. The specific engine pipe has been

used during the development process of a real rocket engine by NASA. A

slight modification to the pipe, not backed up by a thorough simulation and

study, resulted in a catastrophic crack, destroying both the pipe and the engine

prototype. In the experiments, we generate a 2D mesh of the pipe, consisting

of 10 million triangles. The reported execution times include the preprocessing

overhead for the domain decomposition, the MPI startup cost, the overhead

of reading the subdomains from disk, and the mesh refinement, i.e., the main

computational part of the algorithm. We do not report the time required to

output the final mesh to disk.

The rest of Section 4 is organized as follows: in Subsection 4.1 we discuss and

evaluate the optimizations related to the coarse-grain parallelization level of

10

PCDM. In Subsection 4.2 we focus on the optimization process of the medium-

grain parallelization level of PCDM. Subsection 4.3 briefly discusses the imple-

mentation of fine-grain PCDM and presents a low-level experimental analysis

of the interaction of fine-grain PCDM with the hardware. Finally, in Subsec-

tion 4.4, we discuss the potential of using the additional execution contexts of

an SMT processor as speculative precomputation vehicles.

4.1 Coarse-grain PCDM

As explained in Section 3, the coarse granularity of PCDM is exploited by

dividing the whole spatial domain into multiple sub-domains, and allowing

multiple MPI processes to refine different sub-domains. Different MPI pro-

cesses need to communicate via split messages only whenever a point is

inserted at a subdomain boundary segment, thus splitting the segment. Such

messages can even be sent lazily; multiple messages can be aggregated to a

single one, in order to minimize messaging overhead and traffic on the system.

We have empirically set the degree of message aggregation to 128.

Each subdomain may be associated with a different refinement workload. We,

thus, use domain over-decomposition as a simple, yet effective load balancing

method. In our experiments we create 32 subdomains for each MPI process

used 2 .

Table 2 summarizes the execution time of the coarse-grain PCDM implemen-

tation for the generation of 10M triangles on our experimental platform. We

2 The degree of overdecomposition is a tradeoff between the effectiveness of load

balancing and the initial sequential preprocessing overhead

11

Unoptimized Optimized

1 MPI/processor 2 MPI/processor 1 MPI/processor 2 MPI/processor

1 processor 54.0 45.1 28.4 23.5

2 processors 27.2 23.0 14.8 11.8

4 processors 13.9 12.0 7.5 5.9

Table 2

Execution time (in sec) of the original (unoptimized), and the optimized coarse-

grain PCDM implementation.

report execution times from using both 1 MPI process per physical processor

or 2 MPI processes per physical processor (one per SMT execution context),

both before and after applying the optimizations described in the following

paragraphs. The optimizations resulted in code that is approximately twice as

fast as the original code. Furthermore, the optimizations improved the scala-

bility of the coarse-grain PCDM on a single SMT processor with two execution

contexts. SMT speedups of the original code range from 1.15 to 1.19. SMT

speedups of the optimized code range from 1.20 to 1.27. This scalability im-

provement comes in addition to improvements in sequential execution time.

The charts in Figure 1 itemize the effect of each optimization on execution

time. The left chart depicts the execution time of the initial, unoptimized

implementation (original), of the version after the substitution of STL data-

structures (STL) described in section 4.1.1, after the addition of optimized

memory management (Mem Mgmt) described in section 4.1.2, and after ap-

plying the algorithmic optimizations (Algorithmic) described in section 4.1.3.

Similarly, the right diagram depicts the % performance improvement after the

application of each additional optimization over the version that incorporates

all previous optimizations. Due to space limitations, we report the effect of

12

Coarse-Grain PCDM Optimizations -
Exec. Time

0

10

20

30

40

50

60

1 2 4
Processors

Ex
ec

uti
on

 Ti
me

 (s
ec

)
Original
STL
Mem Mgmt
Algorithmic

Coarse-Grain PCDM Optimizations - Perf.
Improvement (%)

0
5

10
15
20
25
30
35
40

1 2 4
Processors

Pe
rf.

 Im
pr

ov
em

en
t (%

)

STL
Mem Mgmt
Algorithmic

Fig. 1. Effect of optimizations on the performance of coarse-grain PCDM. Cumula-

tive effect on execution time (left diagram). Performance improvement (%) of each

new optimization over the coarse-grain PCDM implementation with all previous

optimizations applied.

optimizations on the coarse-grain PCDM configurations using 1 MPI process

per physical processor. Their effect on configurations using 2 MPI processes

per physical processor is quantitatively very similar.

4.1.1 Substitution of Generic STL Data-Structures

The original, unoptimized version of coarse-grain PCDM makes extensive use

of STL structures. Although using STL constructs has several software engi-

neering advantages in terms of code readability and code reuse, such constructs

often introduce unacceptable overhead.

In PCDM, the triangles (elements) of the mesh that do not satisfy the quality

bounds are placed in a work-queue. For each of these so called bad triangles,

PCDM inserts a point into the mesh, at the circumcenter of the element. The

insertion of a new point forces some elements around it to violate the Delaunay

property. The identification of these non-Delaunay elements is called a cavity

13

expansion.

During the cavity expansion phase, PCDM performs a depth-first search of

the triangles graph, the graph in which a triangle is connected with the three

neighbors it shares faces with. The algorithm identifies triangles included in

the cavity, and those that belong to the closure of the cavity, i.e., triangles

that share an edge with the boundary of the cavity. The population of these

two sets for each cavity is a priori unknown, thus the original PCDM uses

STL vectors for the implementation of the respective data structures, taking

advantage of the fact that STL vectors can be extended dynamically. Similarly

newly created triangles, during cavity re-triangulations, are accommodated in

an STL vector as well.

We replaced these STL vectors with array-based LIFO queues. We have con-

servatively set the maximum size of each queue to 20 elements, since our

experiments indicate that the typical population of these queues is only 5–6

triangles for 2D geometries. In any case, a dynamic queue growth mechanism

is present and is activated in the infrequent case triangles overflow one of the

queue arrays. Replacing the STL vectors with array-based queues improved

the execution time of coarse-grain PCDM by an average 36.98%.

4.1.2 Memory Management

Mesh generation is a memory intensive process, which triggers frequent mem-

ory management (allocation / deallocation) operations. The unoptimized im-

plementation of coarse-grain PCDM includes a custom memory manager. The

memory manager focuses on efficiently recycling and managing triangles, since

they are by far the most frequently used data structure of PCDM.

14

After a cavity is expanded, the triangles included in the cavity are deleted and

the resulting empty space is then re-triangulated. The memory allocated for

deleted triangles is never returned to the system. Deleted triangles are, instead,

inserted in a recycling list. The next time the program requires memory for

a new triangle (during retriangulation), it reuses deleted triangles from the

recycling list. Memory is allocated from the system only when the recycling

list is empty.

During mesh refinement, the memory footprint of the mesh is monotonically

increasing, since during the refinement of a single cavity the number of deleted

triangles is always less than or equal to the number of created triangles. As

a result, memory is requested from the system during every single cavity ex-

pansion. The optimized PCDM implementation pre-allocates pools (batches)

of objects instead of allocating individual objects upon request. We exper-

imentally determined that memory pools spanning the size of 1 page (4Kb

for our experimental platform) resulted in the best performance. When all

the memory from the pool is used, a new pool is allocated from the system.

Batch memory allocation significantly reduces the pressure on the system’s

memory manager and improves the execution time of coarse-grain PCDM ap-

proximately by an additional 6.5%. The improvement from batch allocation

of objects, stems from reducing the calls to the system memory allocator and

from improved cache-level and TLB-level locality. Although generic sequential

and multi-threaded memory allocators also manage memory pools internally

for objects of the same size [7, 21, 23, 39] each allocation-deallocation of an

object from/to a pool, carries the overhead of two library calls. Custom batch

memory allocation nullifies this overhead.

15

4.1.3 Algorithmic Optimizations

Balancing algorithmic optimizations that target higher performance or lower

resource usage, with code simplicity, readability and maintainability is an

interesting exercise during code development for scientific applications. When

high performance is the main consideration, the decision is usually in favor of

the optimized code.

In the case of PCDM, we performed limited, localized modifications in a sin-

gle, critical computational kernel of the original version. The modifications

targeted the reduction or elimination of costly floating-point operations on

the critical path of the algorithm.

The specific kernel evaluates the quality of a triangle, by comparing its mini-

mum angle with a predefined, user-provided threshold. Lets assume that ̂C is

the minimum angle of triangle ABC and ̂L is the threshold angle. The origi-

nal code would calculate ̂C from the coordinates of triangle points, using the

inner product formula ̂C = arccos 〈−→a ,
−→
b 〉

‖−→a ‖·‖
−→
b ‖

for the calculation of the angle ̂C

between vectors −→a and
−→
b . The kernel would then compare ̂C with ̂L to decide

whether the specific triangle fulfilled the user-defined quality criteria or not.

However, the calculation of ̂C involves costly arccos and sqrt operations (the

latter for the calculation of ‖−→a ‖ · ‖
−→
b ‖).

The algorithmic optimizations are based on the observation that, since ̂C

and ̂L represent minimum angles of triangles, they are both less than π
2
. As a

result, cos ̂C and cos ̂L both ∈ (0, 1), with cos being a monotonically decreasing

function of the angle in the interval (0, π
2
). Therefore, instead of comparing

̂C with ̂L one can equivalently compare cos ̂C with cos ̂L. This eliminates a

time-consuming acos operation every time a new triangle is created.

16

Furthermore, since cos ̂C and cos ̂L are both positive, one can equivalently

compare cos2 ̂C with cos2 ̂L. This, in turn, eliminates the sqrt operation for

the calculation of ‖−→a ‖ · ‖
−→
b ‖.

The specific algorithmic optimizations improved further the execution time of

coarse-grain PCDM by an average 8.82%.

4.2 Medium-grain PCDM

The medium-grain PCDM implementation spawns threads inside each MPI

process. These threads cooperate for the refinement of a single subdomain, by

simultaneously expanding different cavities. The threads of each MPI process

are bound one-by-one to the execution contexts of a physical processor.

Unoptimized Optimized

1 processor 155.0 25.9

2 processors 80.4 13.36

4 processors 42.3 6.94

Table 3

Execution time (in sec) of the original (unoptimized), and the optimized

medium+coarse multi-grain PCDM implementation.

Table 3 summarizes the execution time of a multi-grain PCDM implementa-

tion that exploits coarse-grain parallelism across processors and medium-grain

inside each SMT processor (2 execution contexts per processor for our experi-

mental platform, executing one medium-grain thread each). The unoptimized

multi-grain implementation performs almost 3 times worse than the unop-

timized coarse-grain one. However, our optimizations result in code that is

17

approximately 6 times faster than the original, unoptimized implementation.

The exploitation of the second execution context of each SMT processor al-

lows optimized multi-grain PCDM to outperform the optimized coarse-grain

configuration which exploits only one SMT execution context on each physi-

cal processor. It is, however, up to 4 processors, slightly less efficient than the

coarse-grain configuration that executes 2 MPI processes on each CPU 3 .

Multi-Grain (Coarse+Medium) PCDM
Optimizations - Exec. Time

0
20
40
60
80

100
120
140
160
180

1 2 4
Processors

Ex
ec

uti
on

 Ti
me

 (s
ec

)

Original
Atomic
Conflicts+Queues
Mem Mgmt
STL
Algorithmic
Load Balancing

Multi-Grain (Coarse+Medium) PCDM
Optimizations - Perf. Improvement (%)

0
5
10
15
20
25
30
35
40
45
50

1 2 4
Processors

Pe
rf.

 Im
pr

ov
em

en
t (%

)

Atomic
Conflicts+Queues
Mem Mgmt
STL
Algorithmic
Load Balancing

Fig. 2. Effect of optimizations on the performance of multi-grain (coarse+medium)

PCDM. Cumulative effect on execution time (left diagram). Performance improve-

ment (%) of each new optimization over the multi-grain PCDM implementation

with all previous optimizations applied.

The charts of Figure 2 itemize the effect of each optimization on execution

time of the multi-grain (coarse+medium) implementation of PCDM. The left

3 In [4] we evaluate PCDM on larger-scale systems. We find that the use of ad-

ditional MPI processes comes at the cost of additional preprocessing overhead

and we identify cases in which the combination of coarse-grain and medium-grain

(coarse+medium) PCDM proves more efficient than a single-level coarse-grain

approach. Furthermore, in [4], we evaluate the medium-grain implementation of

PCDM on IBM Power5 processors, in which the cores have a seemingly more scal-

able implementation of the SMT architecture, compared to the older Intel HT pro-

cessors used in this study.

18

chart depicts the execution time of:

• The original, unoptimized implementation (original),

• The version after the efficient implementation of synchronization operations

(atomic), discussed in Section 4.2.1,

• The version after the minimization of conflicts and the implementation of

a multi-level work queue scheme (Conflicts+Queues), described in Sections

4.2.2 and 4.2.3,

• The code resulting after the optimization of memory management (Mem

Mgmt), covered in Section 4.2.4,

• The version incorporating the substitution of STL with generic data-structures

(STL), discussed in Section 4.2.5,

• The code resulting after the algorithmic optimizations (Algorithmic), de-

scribed in Section 4.2.6, and

• The version resulting after the activation of dynamic load balancing (Load

Balancing), discussed in Section 4.2.7.

Similarly, the right chart depicts the % performance improvement after the

application of each additional optimization over the version that incorporates

all previous optimizations.

4.2.1 Synchronization

A major algorithmic concern for medium-grain PCDM is the potential occur-

rence of conflicts while threads are simultaneously expanding cavities. Multi-

ple threads may work on different cavities at the same time, within the same

domain. A conflict occurs if any two cavities —processed simultaneously by

different threads— overlap, i.e., have a common triangle or share an edge. In

19

this case, only a single cavity expansion may continue; the rest need to be

canceled. This necessitates a conflict detection and recovery mechanism.

Cavity

P

P

P

P

P

P

P

P P

P

PP

P

1 2

Triangles that protect edges of the cavity
3

4
5

6

78

9

1011

12

taken=1

taken=1

taken=1

taken=1

taken=1

taken=1

Fig. 3. Layer of triangles that surround a cavity (closure of the cavity).

Each triangle is tagged with a flag (taken). Whenever a triangle is touched

during a cavity expansion (either because it is actually part of the cavity

itself or of its closure), the flag is set. The closure of the cavity, namely this

extra layer of triangles that surround the cavity —without being part of it—

prevents two cavities from sharing an edge (Figure 3) [16, 34]. If, during a

cavity expansion, a thread touches a triangle whose flag has already been set,

the thread detects a conflict. The cavity expansion must then be canceled.

Updates of the flag variable need to be atomic since two or more threads may

access the same triangle simultaneously. Every access to the triangle’s flag is

performed through atomic fetch and store() operations. These instructions

incur —on the vast majority of modern shared-memory architectures— less

overhead than conventional locks or semaphores under high contention, while

providing additional advantages such as immunity to preemption. The use of

atomic instructions resulted in 33% to 39% faster code than an alternative,

naive implementation using POSIX lock/unlock operations for the protection

20

of the flag.

4.2.2 Reduction of Conflicts

The cancellations of cavity expansions —as a consequence of conflicts— di-

rectly result in the discarding of already performed computation. The canceled

cavity expansion will have to be restarted. It is, thus, critical for performance

to minimize the occurrence of conflicts.

MinX MidX MaxX

Separator

Thread1 working area

Thread2 working area

Fig. 4. Separator that splits a sub-domain into different areas.

The optimized multi-grain PCDM implementation isolates each thread to a

single area of the sub-domain (Figure 4). We apply a straightforward, com-

putationally inexpensive decomposition, using simple, straight segments, by

subdividing an enclosing rectangular parallelepiped of the sub-domain. If, for

example, two threads are used, the separator is a vertical line at the middle

between the leftmost and rightmost coordinate of the sub-domain. After the

isolation of different threads to different working areas, conflicts are likely to

occur only close to the borders between areas. Moreover, the probability of

conflicts decreases as the quality of the mesh improves [10].

Table 4 summarizes the number of conflicts before and after splitting the

21

Number of Expanded Cavities Conflicts Before Splitting Conflicts After Splitting

Thread 1 2,453,034 1,199,184 3,005

Thread 2 2,462,935 1,142,578 2,603

Total 4,915,969 2,341,762 5,608

Table 4

Number of conflicts before and after splitting (in two) the working area inside each

sub-domain.

working area of each sub-domain. Additional performance data are provided

in section 4.2.3 4 . Statically splitting sub-domains is prone to introducing load

imbalance among threads. The technique applied to resolve load imbalance is

described in Section 4.2.7.

4.2.3 Work-Queues Hierarchy

PCDM maintains a global queue of “bad” triangles, i.e., triangles that vio-

late quality criteria. Whenever a cavity is re-triangulated, the quality of the

new triangles is checked, and any offending triangle is placed into the queue.

Throughout the refinement process threads poll the queue. As long as it is not

empty, they retrieve a triangle from the top, and start a new cavity expan-

sion. In medium-grain PCDM, the queue is concurrently accessed by multiple

threads and thus needs to be protected.

A straightforward solution for reducing the overhead due to contention is to

4 The implementation of the conflict reduction technique is interdependent with

the work-queues hierarchy design and implementation, presented later in section

4.2.3. As a result the effect of each of these two optimizations on execution can not

be isolated and evaluated separately.

22

use local, per thread queues of bad triangles. Bad triangles that belong to a

specific working area of the sub-domain are inserted into the local list of the

thread working in that area. Since, however, a cavity can cross the working

area boundaries, a thread can produce bad triangles situated at areas assigned

to other threads. As a result, local queues of bad triangles still need to be

protected, although they are significantly less contended than a single global

queue.

Thread1 working area

Thread2 working area

P
R
I
V
A
T
E

S
H
A
R
E
D

S
H
A
R
E
D

P
R
I
V
A
T
E

Thread1 lists

Thread2 lists

Triangle created
by Thread2

Separator

Fig. 5. Local shared and private queues for each thread.

A hierarchical queue scheme with two local queues of bad triangles per thread

is applied to further reduce locking and contention overhead. One queue is

strictly private to the owning thread, while the other can be shared with other

threads, and therefore needs to be protected. If a thread, during a cavity re-

triangulation, creates a new bad triangle whose circumcenter is included it its

assigned working area, the new triangle is inserted in the private local queue.

If, however, the circumcenter of the triangle is located in the area assigned

to another thread, the triangle is inserted in the shared local queue of that

thread (Figure 5). Each thread dequeues triangles from its private queue as

23

long as the private queue is not empty. Only whenever the private queue is

found empty shall a thread poll its shared local queue.

As expected, the private local queue of bad triangles is accessed much more

frequently than the shared local one. During the creation of the mesh of 10M

triangles for the pipe domain, using two threads to exploit medium-grain par-

allelism, the shared queues of bad triangles are accessed 800,000 times, while

the private ones are accessed more than 12,000,000 times. Therefore, the syn-

chronization overhead for the protection of the shared queues is practically

negligible. Contention and synchronization overhead could be reduced further

if a thread moves the entire contents of the shared local queue to the private

local queue, upon an access to the shared local queue. However, such a scheme

would compromise load balancing, as discussed in Section 4.2.7.

The average performance improvement after reducing cavity expansion con-

flicts and using the 2-level queue scheme is 40.52%.

4.2.4 Memory Management

The memory recycling mechanism of PCDM, described in Section 4.1.2, is not

efficient-enough in the case of medium-grain PCDM for two reasons:

• The recycling list is shared between threads and thus accesses to it need to

be protected.

• Memory allocation/deallocation requests from different threads cause con-

tention inside the system’s memory allocator. Such contention may result

in severe performance degradation for applications with frequent memory

management operations.

24

In the optimized medium-grain PCDM we associate a local memory recycling

list with each thread. Local lists alleviate the problem of contention at the level

of the recycling list and eliminate the respective synchronization overhead. A

typical concern whenever private per thread lists are used, is the potential

imbalance in the population of the lists. This is, however, not an issue in the

case of PCDM since, as explained in Section 4.1.2, the population of triangles

either remains the same or increases during every single cavity refinement.

To reduce pressure on the system’s memory allocator, medium-grain PCDM

also uses memory pools. The difference with coarse-grain PCDM is that mem-

ory pools are thread-local and thus do not need to be protected.

The execution time of coarse+medium grain PCDM, after memory management-

related optimizations were applied, further improved on average by 13.49%.

4.2.5 Substitution of STL Data-Structures

In section 4.1.1 we described the substitution of STL constructs with generic

data structures (arrays) in the code related to cavity expansion. This opti-

mization is applicable to the medium-grain implementation of PCDM code as

well.

The average performance improvement by substituting STL constructs with

generic data structures is in the order of 44.21%, 7.21% higher than the per-

formance improvement attained by substituting STL data structures in the

coarse-grain PCDM implementation. STL data structures introduce additional

overhead when used in multi-threaded code, due to the mechanisms used by

STL to guarantee thread-safety.

25

4.2.6 Algorithmic Optimizations

The algorithmic optimizations described in section 4.1.3 are applicable in the

case of medium-grain PCDM as well. In fact, on SMT processors such opera-

tions, besides their cost, can become a serialization point if the floating-point

hardware is shared between threads [45]. These modifications improved the

execution time of medium-grain PCDM by approximately 4.35%.

4.2.7 Load Balancing

As explained in Section 4.2.2, each sub-domain is divided up into distinct

areas, and the refinement of each area is assigned to a single thread. The

decomposition is performed by equipartitioning — using straight lines as sep-

arators — of a rectangular parallelepiped enclosing the subdomain. Despite

being straightforward and computationally inexpensive, this type of decompo-

sition can introduce load imbalance between threads for irregular subdomains

(Figure 6).

MinX MidX MaxX

Separator

Thread1 working area

Thread2 working area

New Separator

MidX−dX

Fig. 6. Uneven work distribution between threads. A “moving separator” technique

is used for fixing the load imbalance.

The load imbalance can be alleviated by dynamically adjusting the position of

the separators at runtime. The size of the queues (private and shared) of bad

26

quality triangles is proportional to the work performed by each thread. Large

differences in the populations of queues of different threads at any time during

the refinement of a single sub-domain are a safe indication of load imbalance.

Such events are, thus, used to trigger the load balancing mechanism. Whenever

the population of the queues of a thread becomes larger than (100 / Number of

Threads)% compared with the population of the queues of a thread processing

a neighboring area, the separator between the areas is moved towards the area

of the heavily loaded thread (Figure 6). The population of the queues of each

thread needs to be compared only with the population of the queues of threads

processing neighboring areas. The effects of local changes in the geometry of

areas tend to quickly propagate — similarly to a domino effect — to the whole

sub-domain, resulting in a globally (intra sub-domain) balanced execution.

Without Load Balancing:
Commited Cavities Per Thread

0

20000

40000

60000

80000

100000

120000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Already Processed Subdomains

Co
m

m
ite

d
Ca

vi
tie

s

Thread 0
Thread 1

With Load Balancing:
Commited Cavities Per Thread

0

20000

40000

60000

80000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Already Processed Subdomains

Co
m

m
ite

d
Ca

vi
tie

s

Thread 0
Thread 1

Fig. 7. Difference in the number of processed cavities without (left diagram) and

with (right diagram) load balancing.

Figure 7 depicts the difference in the number of processed cavities between

two medium-grain PCDM threads that cooperate in the processing of the same

sub-domains. In both figures, the x-axis represents the id of the sub-domain

being refined, while the y-axis represents the number of expanded cavities by

each thread for the specific sub-domain. Before the activation of the load bal-

ancing mechanism, there are sub-domains for which a thread processes twice

27

as many cavities as the other thread. On the other hand, when the load bal-

ancing technique is activated, both threads perform approximately the same

amount of work (cavity expansions) for each sub-domain. The moving separa-

tor scheme manages to eliminate work imbalance among threads, at the cost

of monitoring the length of triangle lists, re-calculating separators and moving

unprocessed triangles between lists upon re-balancing operations. Overall, the

execution time improvement attained through better load balancing averages

6.11%.

4.3 Fine-grain PCDM

Fine-grain PCDM also spawns threads (a master and one or more workers)

inside each MPI process. The difference with the medium-grain PCDM imple-

mentation is that in the fine-grain case the threads cooperate for the expansion

of a single cavity. Cavity expansions account for 59% of the total PCDM ex-

ecution time.

The master thread behaves similarly to a coarse-grain MPI process. Worker

threads assist the master during cavity expansions and are idle otherwise. Tri-

angles that have already been tested for inclusion into the cavity have to be

tagged so that they are not checked again during the expansion of the same

cavity. Similarly to the medium-grain PCDM implementation, we use atomic

test and set() operations to atomically test the value of and set a flag. Each

thread queues/dequeues unprocessed triangles to/from a thread-local queue.

As soon as the local queue is empty, threads try to steal work from the local

queues of other threads. Since the shape of a cavity is, unlike the shape of

a sub-domain, not a priori known, techniques such as the multi-level queue

28

scheme and the dynamically moving boundary (Sections 4.2.2 and 4.2.3) can

not be used in the case of fine-grain PCDM to isolate the working areas of

different threads. Accesses to local queues are thus protected with synchroniza-

tion mechanisms similar to those proposed in [35]. In order to hinder worker

threads from monopolizing processor resources while spin-waiting for work,

we have added pause instructions in busy-wait loops. The pause instruction,

available in newer versions of the Intel ISA, is a hint to the processor to slightly

delay threads executing tight loops.

Many of the optimizations described in 4.1 and 4.2 (more specifically atomic,

Mem Mgmt, STL, and Algorithmic) are applicable in the case of fine-grain

PCDM. However, we do not present experimental results on the effect of

each particular optimization on performance. We, instead, opt —due to space

limitations— to use a fully optimized version and investigate both qualita-

tively and quantitatively the interaction of that code with SMT processors.

The observations from this study can also be generalized in the context of

other irregular, multi-grain codes, such as multi-level parallel implementations

of N-body calculations [28].

4.3.1 Experimental Study

We executed a version of PCDM which exploits both the fine and the coarse

granularities of parallelism (Coarse+Fine). The fine granularity is exploited

within each MPI process, by the two execution contexts available on each

HT processor. Multiple MPI processes —on multiple processors— are used to

exploit the coarse granularity. We compare the performance of the multi-grain

(coarse+fine) version with that of the single-level coarse-grain implementation

29

of PCDM. We have executed two different configurations of the coarse-grain

experiments: either one (Coarse (1 MPI/proc)) or two (Coarse (2 MPI/proc))

MPI processes are executed on each physical processor. In the latter case,

the coarse-grain implementation alone exploits all execution contexts of the

system. We also compare the performance of PCDM with that of Triangle [40].

Speedup (Over Seq. PCDM)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 4
Processors

Sp
ee

du
p

Coarse (1 MPI/proc)
Coarse (2 MPI/proc)
Multigrain (Coarse+Fine)
Triangle

Procs. 1 2 4

Triangle 24.9

Coarse+Fine 41.0 20.7 10.6

Fig. 8. Speedup with respect to the single-threaded PCDM execution. The table

reports the corresponding execution times (in sec) for Triangle and Coarse+Fine.

The respective execution times for Coarse (1 MPI/proc) and Coarse (2 MPI/proc)

can be found in table 2.

Figure 8 depicts the speedup with respect to a sequential PCDM execution.

On the specific system, Triangle is 12.3% faster than the optimized, sequential

PCDM. The multilevel PCDM code (Coarse+Fine) does not perform well.

In fact, a slowdown of 44.5% occurs as soon as a second thread is used to

take advantage of the second execution context of the HT processor. The

absolute performance is improved as more physical processors are used (2 and

4 processors, 4 and 8 execution contexts respectively). However, the single-

level version, even with 1 MPI process per processor, consistently outperforms

the multi-grain one (by 43.6% on 2 processors and by 45.5% on 4 processors).

The performance difference is even higher compared with the coarse-grain

configuration using 2 MPI processes per processor. In any case, single- or

30

multi-level (coarse+fine), 2 processors are sufficient for PCDM to outperform

the extensively optimized, sequential Triangle, whereas Coarse (2 MPI/proc)

manages to outperform Triangle even on a single SMT processor.

We used the hardware performance counters available on Intel HT proces-

sors, in an effort to identify the reasons that lead to significant performance

penalty whenever two execution contexts per physical processor are used to

exploit the fine granularity of PCDM. We focused on the number of stalls, the

corresponding number of stall cycles, as well as the number of retired instruc-

tions in each case. We measure the cumulative numbers of stall cycles, stalls

and instructions from all threads participating in each experiment. The results

are depicted in Figures 9a and 9b respectively. Ratios have been calculated

with respect to the sequential PCDM execution.

Resource Stalls (Over Seq. PCDM)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4
Processors

St
all

 C
yc

les
 R

atr
io

0

2

4

6

8

10

12

14

16

Av
g.

St
all

 La
ten

cy

Coarse (1
MPI/proc)

Coarse (2
MPI/proc)

Multigrain
(Coarse+Fine)
Ratio
Coarse (1
MPI/proc)

Coarse (2
MPI/proc)

Multigrain
(Coarse+Fine)
Latency

Retired Instr. Ratio (Over Seq. PCDM)

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4
Processors

Re
tir

ed
 In

st
ru

ct
io

ns
 R

at
io

Coarse (1 MPI/proc)
Coarse (2 MPI/proc)
Multigrain (Coarse+Fine)

(a) (b)

Fig. 9. (a) Normalized number of stall cycles (with respect to the sequential PCDM

execution) and average stall latency, in cycles. (b) Normalized number of retired

instructions (with respect to the sequential PCDM execution).

The number of stall cycles (Fig. 9a) is a single metric that provides insight into

the extent of contention between the two threads running on the execution

contexts of the same processor. It indicates the number of cycles each thread

31

spent waiting because an internal processor resource was occupied by either

the other thread or by previous instructions of the same thread. The average

per stall latency, on the other hand, indicates how much performance penalty

each stall introduces. Whenever two threads share the same processor, the

stall cycles are from 3.6 to 3.7 times more for Coarse+Fine and 3.9 times more

for Coarse (2 MPI/proc). Exploiting the two execution contexts of each HT

processor with two MPI processes seems to introduce more stalls. It should,

however, be noted that the worker thread in the Coarse+Fine implementation

performs useful computation only during cavity expansions, which account for

59% of the execution time of sequential PCDM. It should also be noted that

the introduction of pause instructions to the busy-wait loop of worker threads

reduces the pressure of those threads to processor resources. On the contrary,

Coarse (2 MPI/proc) MPI processes perform useful computation throughout

the execution life of the application.

Resource sharing inside the processor has a negative effect on the average

latency associated with each stall as well. The average latency is 10 cycles

when one thread is executed on each physical processor. When two MPI pro-

cesses share the same processor it raises to approximately 15 cycles. When two

threads that exploit the fine-grain parallelism of PCDM are co-located on the

same processor the average latency ranges between 11.3 and 11.9 cycles. Once

again, the lower stall latency compared with the Coarse (2 MPI/proc) version

can be attributed to the fact that pause instructions have proven successful

to reducing the effect of busy-wait loops of worker threads while the latter do

not execute useful work.

Interesting information is also revealed by the number of retired instructions

(Fig. 9b). Whenever two processors are used, the total number of instructions

32

always increases by a factor of approximately 1.4 —with respect to the cor-

responding single-processor experiments— for the two coarse configurations

and the coarse+fine version. We have traced the source of this problematic

behavior to the internal implementation of the MPI library, which attempts to

minimize response time by performing active spinning whenever a thread has

to wait for the completion of an MPI operation. Active spinning produces very

tight loops of “fast” instructions with memory references that hit into the L1

cache. If more than two processors are used, the cycles spent spinning inside

the MPI library are reduced, with an imminent effect on the total number of

instructions.

4.3.2 Evaluation of additional hardware support

The discussion in section 4.3.1 revealed weaknesses in the design of current,

commercially available SMTs — namely lack of support for light-weight thread

spawning and efficient intra-SMT synchronization — which hinder the ex-

ploitation of parallelism at fine granularities. We evaluated the effect of real-

istic, low cost and complexity hardware support for thread spawning and syn-

chronization using a multi-SMT simulator based on SimICS [20]. SimICS was

configured as closely as possible to the real, Intel-based multiprocessor used

throughout the experimental evaluation. We simulated lock-box [42] function-

ality for intra-SMT synchronization and estimated the overhead of the entire

sequence for synchronized entry-exit to a critical section to 10 cycles [42].

Concerning thread spawning, several studies estimate the latency between 2

and 10 cycles [3, 36, 43]. We opted to simulate an overhead of 10 cycles.

An multi-granular implementation using software multithreading within each

33

SMT and MPI across different SMTs, proves – without the additional hard-

ware support – up to 2.1 times slower than a pure, coarse-grain implementa-

tion, which executes 2 MPI processes on top of the 2 execution contexts of

the SMT. However, the addition of hardware support for thread spawning and

synchronization results in an average 54.6% speedup for the multi-granular,

multithreaded implementation. This makes the multi-granular version of the

algorithm a prime choice for the efficient exploitation of SMT contexts, since

it is, on average, 17.9% faster than the coarse-grain one.

We expect more aggressive hardware mechanisms for thread management and

synchronization to be present in the upcoming generations of multithreaded

processors. More aggressive support will be a natural aftereffect of advances

in technology and the need to meet the requirements of applications with

fine-grain parallelism.

4.4 Alternative Methods for the Exploitation of Execution Contexts

As is the case with most pointer-chasing codes, PCDM suffers from poor cache

locality. Previous literature has suggested the use of speculative precomputa-

tion (SPR) [17] for speeding up such codes on SMTs and CMPs [17, 44]. SPR

exploits one of the execution contexts of the processor in order to precompute

addresses of memory accesses that lead to cache misses and pre-execute these

accesses, before the computation thread. In many cases, the precomputation

thread manages to execute faster than and ahead of the computation thread.

As a result, data are prefetched timely into the caches.

We have evaluated the use of the second hyperthread for indiscriminate pre-

34

computation, by cloning the code executed by the computation thread and

stripping it from everything but data accesses and memory address calcula-

tions. The precomputation thread successfully prefetched all data touched by

the computation thread. However, the execution time was higher than that

of the 1 thread per CPU or 2 computation threads per CPU versions. As

explained in the previous section, Intel HT processors do not provide mecha-

nisms for low overhead thread suspension / resumption. As a result, when the

precomputation thread prefetches an element, it performs active spinning un-

til the next element to be prefetched is known. However, active spinning slows

down — as reported earlier — the computation thread by more than 25%.

We tried to suspend/resume the precomputation thread using the finest-grain

sleep/wakeup primitives available by the OS. In this case, the computation

thread does not suffer a slowdown, however — as explained earlier — the

latency of a sleep/wakeup cycle spans the expansion time of hundreds of cavi-

ties. An additional problem is that the maximum possible run-ahead distance

between the precomputation and computation thread is equal to the degree

of available concurrency, namely the number of unprocessed elements in the

“bad” triangles queues. This number equals approximately 2 in our fine-grain

2D experiments. This precludes the use of the precomputation thread in batch

precompute/sleep cycles.

5 Conclusions

As SMT processors become more widespread, parallel systems are being built

using one or more of these processors. The ubiquitousness of SMT processors

necessitates a shift towards parallel programming, especially in the context of

35

scientific computing. The development of parallel codes is not an easy under-

taking, especially if high performance is the end-goal. Code optimization is

a valuable step of the development process, however the programmer has to

both identify performance bottlenecks and evaluate complex tradeoffs. At the

same time, adaptive and irregular applications are a challenging target for any

parallel architecture. Investigating whether emerging parallel architectures are

well suited for such applications is, therefore, an important undertaking. Our

paper makes contributions towards these directions, focusing on PCDM, an

multi-level, multi-grain parallel mesh generation code. PCDM is representa-

tive of adaptive and irregular parallel applications that present several chal-

lenges to parallel execution hardware, including fine-grain task execution and

synchronization, load imbalance and poor data access locality. PCDM was

selected due to the fact that it is a scalable parallel implementation of mesh

generation, which at the same time guarantees the quality of the final mesh.

We first presented a step-by-step optimization of the two outer granularities

of PCDM. Despite the fact that PCDM is the direct target of these optimiza-

tions, most of them are generic enough to be applicable to other applications

of the same class. We evaluated and presented the effect of each individual

optimization on performance. The resulting optimized code was up to 6 times

more efficient than the original one.

As modern parallel systems integrate many execution contexts organized —

due to technical limitations— in more and more levels, system architects are

faced with a choice between performance and programmability. They can

present all the computational resources of the system to the programmer in

a uniform way, in order to facilitate programming. Alternatively, they can

export details of the architecture to the programmer, by differentiating the

36

handling of computational resources at different levels of the system, thus en-

abling the efficient execution of demanding codes. Most commercially available

multiprocessors (based on Intel HT, AMD Opteron or IBM Power processors)

follow the former approach. A recent, notable exception in this trend has been

the Sony/Toshiba/IBM Cell chip.

Next-generation system software has a significant role in this emerging envi-

ronment; it can bridge these two alternatives. New compilers, operating system

kernels and run-time libraries need to be developed specifically for layered par-

allel architectures, with the goal of hiding complex architectural details from

the programmer, but at the same time exploiting in an educated manner the

structural organization of the hardware in order to unleash the performance

potential of modern parallel architectures.

Acknowledgments

This work was supported in part by the following NSF grants: EIA-9972853,

ACI-0085963, EIA-0203974, ACI-0312980, CCF-0715051, CCF-0346867, CNS-

0521381, CCS-0750901, CCF-0833081 and DOE grants DE-FG02-06ER25751,

DE-FG02-05ER25689, as well as by the John Simon Guggenheim Foundation.

We thank the anonymous reviewers for helpful comments.

References

[1] Intel VTune Performance Analyzer for Linux.

http://www.intel.com/cd/software/products/asmona/eng/vtune/index.htm,

2006. Intel Corporation.

37

[2] NERSC Bassi System Administrators. Personal communication.

http://www.nersc.gov/nusers/resources/bassi/, 2006.

[3] H. Akkary and M. Driscoll. A Dynamic Multithreading Processor. In Proc.

of the 31st Annual ACM/IEEE International Symposium on Microarchitecture

(MICRO–31), pages 226–236, Dallas, TX, November 1998.

[4] Christos D. Antonopoulos, Filip Blagojevic, Andrey N. Chernikov, Nikos P.

Chrisochoides, and Dimitris S. Nikolopoulos. A multigrain Delaunay mesh

generation method for multicore SMT-based architectures. Journal on Parallel

and Distributed Computing. In print, March 2009.

[5] Christos D. Antonopoulos, Xiaoning Ding, Andrey N. Chernikov, Filip

Blagojevic, Dimitris S. Nikolopoulos, and Nikos P. Chrisochoides. Multigrain

parallel Delaunay mesh generation: Challenges and opportunities for

multithreaded architectures. In Proceedings of the 19th Annual International

Conference on Supercomputing, pages 367–376, Cambridge, MA, 2005. ACM

Press.

[6] Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B.

Jones, and Bodo Parady. SPEComp: A New Benchmark Suite for Measuring

Parallel Computer Performance. In WOMPAT ’01: Proceedings of the

International Workshop on OpenMP Applications and Tools, pages 1–10,

London, UK, 2001. Springer-Verlag.

[7] E. Berger, K. Mckinley, R. Blumofe, and P. Wilson. Hoard: A scalable memory

allocator for multithreaded applications. In Proc. of the 9th International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 117–128, Cambridge, MA, November 2000.

[8] Adrian Bowyer. Computing Dirichlet tesselations. Computer Journal, 24:162–

166, 1981.

38

[9] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A Scalable

Cross-Platform Infrastructure for Application Performance Tuning Using

Hardware Counters. In Proceedings of the 2000 ACM/IEEE Conference on

Supercomputing (Supercomputing ’00) (CDROM), page 42, Washington, DC,

USA, 2000. IEEE Computer Society.

[10] Andrey N. Chernikov and Nikos P. Chrisochoides. Practical and efficient

point insertion scheduling method for parallel guaranteed quality Delaunay

refinement. In Proceedings of the 18th Annual International Conference on

Supercomputing, pages 48–57, Malo, France, 2004. ACM Press.

[11] Andrey N. Chernikov and Nikos P. Chrisochoides. Parallel 2D graded

guaranteed quality Delaunay mesh refinement. In Proceedings of the 14th

International Meshing Roundtable, pages 505–517, San Diego, CA, September

2005. Springer.

[12] Andrey N. Chernikov and Nikos P. Chrisochoides. Generalized Delaunay

mesh refinement: From scalar to parallel. In Proceedings of the 15th

International Meshing Roundtable, pages 563–580, Birmingham, AL, September

2006. Springer.

[13] Andrey N. Chernikov and Nikos P. Chrisochoides. Parallel guaranteed quality

Delaunay uniform mesh refinement. SIAM Journal on Scientific Computing,

28:1907–1926, 2006.

[14] Andrey N. Chernikov and Nikos P. Chrisochoides. Algorithm 872: Parallel 2D

constrained Delaunay mesh generation. ACM Transactions on Mathematical

Software, 34(1):1–20, January 2008.

[15] L. Paul Chew. Guaranteed quality mesh generation for curved surfaces. In

Proceedings of the 9th ACM Symposium on Computational Geometry, pages

274–280, San Diego, CA, 1993.

39

[16] Nikos Chrisochoides and Démian Nave. Parallel Delaunay mesh generation

kernel. International Journal for Numerical Methods in Engineering, 58:161–

176, 2003.

[17] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen.

Speculative Precomputation: Long-Range Prefetching of Delinquent Loads. In

Proc. of the 28th Annual International Symposium on Computer Architecture

(ISCA–2001), pages 14–25, Göteborg, Sweden, July 2001.

[18] C. Colohan, A. Ailamaki, J. Gregory Steffan, and T. Mowry. Optimistic

Intra-Transaction Parallelism on Chip Multiprocessors. In Proc. of the 31st

International Conference on Very Large Databases, pages 73–84, Trondheim,

Norway, August 2005.

[19] Matthew Curtis-Maury, Christos D. Antonopoulos, and Dimitrios

S.Nikolopoulos. PACMAN: A PerformAnce Counters MANager for Intel

Hyperthreaded Processors. In Proceedings of the Third International Conference

on the Quantitative Evaluation of Systems (QEST’06), Tools Session, Riverside,

CA, USA, September 2006. IEEE Computer Society Press.

[20] F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson, F. Lundholm, A. Moestedt, J.

Nilsson, P. Stenström and B. Werner. SimICS/sun4m: A Virtual Workstation.

In Proc. of the 1998 USENIX Annual Technical Conference, New Orleans, LA,

June 1998.

[21] D. Gay and A. Aiken. Memory Management with Explicit Regions. In Proc. of

the 1998 ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 313–323, Montreal, Canada, June 1998.

[22] Paul-Louis George and Houman Borouchaki. Delaunay Triangulation and

Meshing. Application to Finite Elements. HERMES, 1998.

[23] Google. Google performance tools. http://goog-perftools.sourceforge.net/.

40

[24] A. Gray, J. Hein, M. Plummer, A. Sunderland, L. Smith, A. Simpson, and

A. Trew. An Investigation of Simultaneous Multithreading on HPCx. Technical

Report 0604, EPCC – University of Edinburgh, April 2006.

[25] Stavros Harizopoulos and Anastassia Ailamaki. StagedDB: Designing Database

Serverse for Modern Hardware. IEEE Data Engineering Bulletin, 28(2):11–16,

2005.

[26] John L. Henning. SPEC CPU2000: Measuring CPU Performance in the New

Millennium. Computer, 33(7):28–35, 2000.

[27] Intel Corporation. IA-32 Intel Architecture Software Developers Manual.

Volume 3B: System Programming Guide, Part 2, March 2006.

[28] Jess A. Izaguirre, Scott S. Hampton, and Thierry Matthey. Parallel Multigrid

Summation for the N-body Problem. Journal of Parallel and Distributed

Computing, 65:949–962, 2005.

[29] R. Kalla, B. Sinharoy, and J. Tendler. IBM POWER5 Chip: A Dual-Core

Multithreaded Processor. IEEE Micro, 24(2):40–47, March 2004.

[30] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multithreaded

Sparc Processor. IEEE MICRO, 25(2):21–29, March/April 2005.

[31] D. Koufaty and D. Marr. Hyperthreading Technology in the Netburst

Microarchitecture. IEEE Micro, 23(2):56–65, March 2003.

[32] Gary L. Miller. A time efficient Delaunay refinement algorithm. In Proceedings

of the 15th annual ACM-SIAM symposium on Discrete algorithms, pages 400–

409, New Orleans, LA, 2004.

[33] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington.

A Delaunay based numerical method for three dimensions: Generation,

formulation, and partition. In Proceedings of the 27th Annual ACM Symposium

on Theory of Computing, pages 683–692, Las Vegas, NV, May 1995.

41

[34] Démian Nave, Nikos Chrisochoides, and L. Paul Chew. Guaranteed–quality

parallel Delaunay refinement for restricted polyhedral domains. In Proceedings

of the 18th ACM Symposium on Computational Geometry, pages 135–144,

Barcelona, Spain, 2002.

[35] Leonid Oliker and Rupak Biswas. Parallelization of a dynamic unstructured

application using three leading paradigms. In Supercomputing ’99: Proceedings

of the 1999 ACM/IEEE conference on Supercomputing (CD-ROM), page 39,

New York, NY, USA, 1999. ACM Press.

[36] I. Park, B. Falsafi, and T. Vijaykumar. Implicitly-Multithreaded Processors. In

Proc. of the 30th Annual International Symposium on Computer Architecture

(ISCA-2003), pages 98–109, San Diego, CA, June 2003.

[37] Mikael Pettersson. Perfctr: Linux Performance Monitoring Counters Kernel

Extension. http://user.it.uu.se/ mikpe/linux/perfctr/current, June 2006.

[38] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh

generation. Journal of Algorithms, 18(3):548–585, 1995.

[39] S. Schneider, C. Antonopoulos, and D. Nikolopoulos. Scalable Locality-

Conscious Multithreaded Memor Allocation. In Proc. of the 2006 ACM

SIGPLAN International Symposium on Memory Management, pages 84–94,

Ottawa, Canada, June 2006.

[40] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh

Generator and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha,

editors, Applied Computational Geometry: Towards Geometric Engineering,

volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-

Verlag, May 1996. From the First ACM Workshop on Applied Computational

Geometry.

[41] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular

42

mesh generation. Computational Geometry: Theory and Applications, 22(1–

3):21–74, May 2002.

[42] D. Tullsen, J. Lo, S. Eggers, and H. Levy. Supporting Fine-Grained

Synchronization on a Simultaneous Multithreading Processor. In Proc. of

the 5th International Symposium on High Performance Computer Architecture

(HPCA-5), Orlando, FL, January 1999.

[43] S. Wallace, B. Calder, and D. Tullsen. Threaded Multiple Path Execution. In

Proc. of the 25th Annual International Symposium on Computer Architecture

(ISCA–25), pages 238–249, Barcelona, Spain, June 1998.

[44] H. Wang, P. Wang, R. Weldon, S. Ettinger, H. Saito, M. Girkar, S. Liao, and

J. Shen. Speculative Precomputation: Exploring the Use of Multithreading for

Latency. Intel Technology Journal, 6(1), February 2002.

[45] Tanping Wang, Filip Blagojevic, and Dimitrios S. Nikolopoulos. Runtime

Support for Integrating Precomputation and Thread-Level Parallelism on

Simultaneous Multithreaded Processors. In Proceedings of the 7th Workshop

on Languages, Compilers, and Run-Time Support for Scalable Systems (LCR

’04), pages 1–12, New York, NY, USA, 2004. ACM Press.

[46] David F. Watson. Computing the n-dimensional Delaunay tesselation with

application to Voronoi polytopes. Computer Journal, 24:167–172, 1981.

[47] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 programs: characterization and methodological

considerations. In ISCA ’95: Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 24–36, New York, NY, USA, 1995.

ACM Press.

[48] Jingren Zhou, John Cieslewicz, Kenneth Ross, and Mihir Shah. Improving

Database Performance on Simultaneous Multithreading Processors. In Proc.

43

of the 31st International Conference on Very Large Databases, pages 49–60,

Trondheim, Norway, June 2005.

44

