
A Multigrain Delaunay Mesh Generation

Method for Multicore SMT-based

Architectures

Christos D. Antonopoulos a Filip Blagojevic d

Andrey N. Chernikov c,∗ Nikos P. Chrisochoides c

Dimitrios S. Nikolopoulos b

aDepartment of Computer and Communications Engineering, University of

Thessaly, Volos, Greece

bDepartment of Computer Science, Virginia Tech,

Blacksburg, VA 24061

cDepartment of Computer Science, The College of William and Mary

Williamsburg, VA 23187

dLawrence Berkeley National Lab

Berkeley, CA 94720

Preprint submitted to Elsevier 25 March 2009



Abstract

Given the proliferation of layered, multicore- and SMT-based architectures, it is

imperative to deploy and evaluate important, multi-level, scientific computing codes,

such as meshing algorithms, on these systems. We focus on Parallel Constrained

Delaunay Mesh (PCDM) generation. We exploit coarse-grain parallelism at the

subdomain level, medium-grain at the cavity level and fine-grain at the element level.

This multi-grain data parallel approach targets clusters built from commercially

available SMTs and multicore processors. The exploitation of the coarser degree of

granularity facilitates scalability both in terms of execution time and problem size

on loosely-coupled clusters. The exploitation of medium-grain parallelism allows

performance improvement at the single node level. Our experimental evaluation

shows that the first generation of SMT cores is not capable of taking advantage

of fine-grain parallelism in PCDM. Many of our experimental findings with PCDM

extend to other adaptive and irregular multigrain parallel algorithms as well.

Key words: Parallel, Mesh Generation, Delaunay, Multigrain, Multicore, SMT

∗ Corresponding author.

Email addresses: cda@inf.uth.gr (Christos D. Antonopoulos),

fblagojevic@lbl.gov (Filip Blagojevic), ancher@cs.wm.edu (Andrey N.

Chernikov), nikos@cs.wm.edu (Nikos P. Chrisochoides), dsn@cs.vt.edu

(Dimitrios S. Nikolopoulos).

URLs: http://inf-server.inf.uth.gr/∼cda (Christos D. Antonopoulos),

http://www.cs.vt.edu/∼filip (Filip Blagojevic),

http://www.cs.wm.edu/∼ancher (Andrey N. Chernikov),

http://www.cs.wm.edu/∼nikos (Nikos P. Chrisochoides),

http://www.cs.vt.edu/∼dsn (Dimitrios S. Nikolopoulos).

2



1 Introduction

As modern supercomputers integrate more and more processors into a single

system, system architects tend to favor layered multiprocessors, since such

designs seem to be at the sweet-spot of the cost/performance tradeoff. Most

machines in the Top500 list [54] are clusters, often consisting of small-scale

SMP nodes. The recent commercial success of simultaneous multithreaded

(SMT) processors [41, 56] and multicore processors (CMP) [36] with scalar,

superscalar, or SMT cores [33], introduces additional levels in parallel archi-

tectures, since more than one threads can co-execute on the same physical

processor, sharing some or all of its resources. The efficient exploitation of the

functionality offered by these layered architectures introduces new challenges

for application developers. Applications that expose multiple levels of paral-

lelism, at different granularities, appear as ideal candidates for the exploitation

of the opportunities offered by layered multiprocessors. However, developers

have to target both micro-scalability, across the multiple execution contexts

of each physical processor, and macro-scalability, across processors or different

nodes of the system.

This paper focuses on the design and implementation of parallel mesh gener-

ation algorithms and software on such multilevel architectures. Parallel mesh

generation is essential in many scientific computing applications in health

care, engineering, and science. Such applications often require the creation

of meshes with size in the order of billions of elements [34]. Our study pro-

vides a macroscopic understanding of the behavior of mesh generation codes

on modern parallel architectures. It is a step towards meeting the time and

quality constraints set by real-world applications [18]. Moreover, the results of

3



our study are valid in the context of not only finite element mesh generation

methods, but also in the context of other asynchronous multigrain, parallel

algorithms.

Parallel mesh generation procedures decompose the original mesh generation

problem into smaller subproblems that can be solved (meshed) in parallel.

The subproblems can be formulated to be either tightly or partially coupled

or even decoupled. The coupling of the subproblems (i.e., the degree of de-

pendency) determines the intensity of the communication and synchronization

between processing elements working on different subproblems. The three most

widely used techniques for parallel mesh generation are Delaunay, Advancing

Front, and Edge Subdivision [25]. In this paper, we use the Delaunay tech-

nique because it can mathematically guarantee the quality of the mesh. More

specifically, we focus on Constrained Delaunay meshing [15]. The sequential

execution time of our parallel implementation (PCDM) is comparable to that

of the best to our knowledge sequential implementation [51]. At the same time,

PCDM explores concurrency at three levels of granularity: (i) coarse-grain at

the subdomain level, (ii) medium-grain at the cavity level, and (iii) fine-grain

at the element level. Figure 1 depicts all three levels of granularity, one for

each level of parallelization.

In the coarse-grain parallel implementation, the domain is decomposed [39]

into N ≫ P subdomains, where P is the number of processors (Fig. 1a). N
P

subdomains are mapped, using METIS [35], to processors in way that the ratio

of interfaces to area is minimized i.e., improve affinity by assigning neighbor

subdomains to a single thread, core or processor. In the medium-grain par-

allel implementation multiple cavities are expanded concurrently by multiple

threads. Each thread expands the cavity of a bad-quality triangle. As soon

4



p

p

p

p

p

p

k

l

m

n

s

t

p
i

(a) (b) (c)

Fig. 1. (a) A coarse-grain decomposition into 128 subdomains of a cross-section of

a regenerative cooled pipe model. (b) Medium-grain parallel expansion of multiple

cavities within a single subdomain. (c) Fine-grain parallel expansion of a single

cavity (C (pi)) by concurrent testing of multiple triangles (△ (pkplpm), △ (pmpnps),

△ (psptpk)).

as each cavity has been calculated, its triangles are deleted and the cavity is

retriangulated. In order to preserve the conformity of the mesh, the algorithm

has to ensure that there are no conflicts between concurrently expanded cav-

ities. In other words, concurrently expanded cavities are not allowed to share

triangles. Finally, in the fine-grain parallel implementation multiple threads

work together for a single cavity expansion and thus the degree of parallelism

is limited to three, for 2-dimensions and four, for 3-dimensions.

We investigate parallelization approaches for mapping algorithmic multi-grain

concurrency to different parallel execution layers in hardware, for clusters

built from: (1) conventional, single-thread, single-core processors, and (2) clus-

ters built from SMP nodes with commercially available layered CMP/SMT

processors. Our experimental evaluation shows that the coarse-grain, MPI-

based approach proves scalable across large numbers of loosely coupled clus-

ter nodes, across different processors within each node, and —under certain

5



configurations— even across cores within each processor. The coarse granu-

larity of PCDM is an effective means of either reducing execution time, for

time-sensitive applications, or of increasing the maximum problem size that

can be tackled, by facilitating the exploitation of the total memory and pro-

cessing power available on multiple nodes. The medium-grain of concurrency

in PCDM offers a high degree of parallelism, at an exploitable granularity by

today’s SMT processors. It allows the effective use of SMT contexts and re-

sults in a reduction of execution time on a single core. Finally, we find that the

fine-grain parallelism in PCDM is not exploitable on top of the SMTs we use

in this study, due to synchronization overhead and lack of hardware support

for light-weight thread management.

This paper identifies conditions under which a multilevel, multigrain, parallel

mesh generation code can effectively exploit the performance potential of cur-

rent and emerging multithreaded architectures. Our study also raises the level

of understanding for the limitations present when developing efficient parallel

algorithms and software for asynchronous, adaptive and irregular applications

on current and emerging multilevel parallel architectures.

The rest of the paper is organized as follows. Section 2 discusses previous work.

In Section 3 we describe the sequential Delaunay meshing algorithm. Section 4

discusses the parallel multi-level and multi-granular PCDM algorithm. In Sec-

tion 5 we present the implementation and evaluation of the coarse-, medium-,

and fine-grain approaches on real systems. Finally, Section 6 summarizes the

paper.

6



2 Related Work

In this section, we provide a brief coverage of related work on parallel mesh

generation and on innovative parallel architectures that enable single-chip mul-

tithreaded execution, either across multiple cores, or within a single core.

2.1 Parallel Mesh Generation

In [20] we presented an exhaustive review of parallel mesh generation methods.

In this section we focus only on parallel methods which are directly related to

PCDM.

The coarse-grain parallel mesh generation method we study in this paper is

weakly coupled at its outer level of parallelism, i.e., asynchronous with small

messages, and exhibits low communication costs. This method is among the

four different parallel mesh generation classes of methods that were developed

in our group: (1) tightly coupled [19, 45], (2) partially coupled [11–13], (3)

weakly coupled [14, 17], and (4) decoupled [38, 39].

In [11, 13] we presented a theoretical framework and the experimental eval-

uation of a partially coupled parallel Delaunay refinement (PDR) algorithm

for the construction of the uniform guaranteed quality Delaunay meshes. We

then extended the PDR approach [10, 12] for the non-uniform case, when the

element size is controlled by a user-defined function. The non-uniform PDR

algorithm has been implemented on shared memory and offers the possibility

to vary the granularity of the refinement units, however its experimental eval-

uation is still in progress. In the current study, we focus on the weakly coupled

7



PCDM method [14] with the goal of exploiting multiple levels of parallelism

and mapping them efficiently on emerging multilevel parallel architectures.

In [38, 39] we presented the Parallel Delaunay Domain Decoupling (PD3)

method. PD3 completely decouples the individual subdomains (subproblems),

so that they can be meshed independently with no communication and syn-

chronization. However, the construction of decompositions that can properly

decouple the mesh is a very challenging problem. Its solution is based on Me-

dial Axis [21, 28, 50] which is expensive and difficult to construct or even to

approximate, especially for complex 3-dimensional geometries.

In [6] Blelloch, et al. describe a divide-and-conquer projection-based algorithm

for constructing Delaunay triangulations of pre-defined point sets in parallel.

Walkington and Kadow [32] extended the parallel triangulation method [6]

for parallel mesh generation. In contrast to earlier proposed algorithms, the

one by Walkington and Kadow further eliminates the sequential step for the

generation of an initial mesh.

Besides the Delaunay-based algorithms, a number of other parallel mesh gener-

ation algorithms have been published. De Cougny, Shephard, and Ozturan [22]

base the parallel mesh construction on an underlying octree. Globisch [26, 27],

Löhner and Cebral [40], Chernikov et al. [9], and Ito et al. [30] developed

parallel advancing front schemes.

Most of the existing parallel mesh generation methods [7, 17, 22, 24, 31, 32, 38,

44, 47, 49, 58] use only a coarse-grain approach. In [46], however, the authors

evaluate three non-Delaunay single-grain approaches based on either a coarse-

grain algorithm using the MPI programming paradigm or fine-grain shared-

memory algorithms for ccNUMA and multithreading. The fine-grain approach

8



uses: (i) coloring of triangles, (ii) low-level locks instead of element coloring, or

(iii) a combination (hybrid approach) of edge-coloring and low-level locks. Col-

oring approaches for Delaunay mesh generation methods are computationally

expensive, because they require the computation of the cavity graph 1 each

time a set of independent points (or cavities) are inserted (or triangulated).

Our multigrain approach is based on a coarse-grain, weakly coupled algorithm,

in order to achieve scalability at the node level and finer-grain, tightly-coupled

approaches in order to explore concurrency at the chip level. The concurrency

at the chip level is used to improve the single processor performance of PCDM

and outperform —on a single physical processor— state-of-the-art sequential

Delaunay mesh generation software [51].

2.2 Deep Parallel Architectures

Conventional wisdom holds that traditional superscalar architectures are fac-

ing diminishing returns in terms of performance, power and temperature dissi-

pation. Architectures with inherent thread-level parallelism, such as fine-grain

multithreaded processors, simultaneous multithreaded processors [41, 55], mul-

ticore designs [5] and layered (e.g. multi-SMT-core designs) [33, 36] are almost

unanimously considered as the answer to the limitations of superscalar proces-

sors. Thread-level parallel architectures are natural building blocks for layered

parallel systems, in which the programmer can exploit multiple levels of par-

allelism simultaneously, given appropriate algorithmic and system software

support. An investigation of parallelization and optimization strategies of ir-

1 In the cavity graph each cavity is represented by a vertex and two adjacent cavities

represent an edge.

9



regular adaptive computations on layered parallel architectures is a primary

contribution of this work.

To our knowledge, besides the prequel to this paper [3], there is no work in

the literature investigating the interaction between irregular adaptive parallel

applications and emerging multicore and multithreaded architectures. Ear-

lier work [46] has indicated that the Tera MTA, a fine-grain multithreading

architecture which uses 128 concurrent instruction streams to mask mem-

ory latency was very well suited for fine-grain parallelization and scaling of

unstructured applications. Architectures such as the MTA compete in the su-

percomputing arena against more conventional designs with fewer execution

contexts, such as the currently available CMPs and SMTs. As CMPs and

SMTs progressively become commodity components, they may gain an edge

as the processor of choice over more aggressive designs such as the Tera, or

the more recent Cyclops chip [1]. The work in this paper indicates that con-

ventional parallelization strategies using a single-grain approach, such as the

directive and lock-based approach used in the Tera MTA [46], can not har-

ness the power of current multithreaded architectures, while at the same time

securing scalability. On the contrary, our findings suggest that more effort

should be invested in carefully restructuring algorithms and applications to

expose multiple levels and granularities of parallelism, in order to cope better

with architectural features such as shared cache hierarchies and contention for

execution resources.

10



3 Sequential Mesh Generation

Let V be a set of points in Ω, and T be a set of triangles whose vertices are in

V . Then the triangulation T of V is said to be Delaunay if every triangle’s cir-

cumdisk does not contain points from V . Delaunay mesh generation has been

studied extensively [16, 25, 48, 52, 53]. Among the reasons of the popularity of

Delaunay methods are useful optimality properties (e.g., the maximization of

the minimal angle) and the amenability to the rigorous mathematical analysis.

Typically, a mesh generation procedure starts with the construction of an ini-

tial mesh which conforms to the input vertices and segments, and then refines

this mesh until the stopping criteria (bounds) on triangle quality and size are

met. Parallel finite element codes require “good” quality of elements. The def-

inition of quality depends on the field solver and varies from code to code. In

this paper we use geometric criteria specified by the bounds on triangle area

(∆̄) and on triangle circumradius-to-shortest edge ratio (ρ̄), which are required

by most of the field solvers. The latter is equivalent to a lower bound on a

minimal angle [43, 52], for 2D meshes. Guaranteed quality Delaunay methods

insert points (pi) in the circumcenters of triangles that violate the required

qualitative criteria, until there are no such triangles left. We use the Bowyer-

Watson algorithm [8, 57] to update the triangulation. Figure 2 outlines the

pseudocode of a sequential mesher, based on the Bowyer-Watson kernel. The

algorithm deletes triangles that are no longer Delaunay and inserts new trian-

gles that satisfy the Delaunay property. It identifies the set of triangles in the

mesh whose circumdisks include the newly inserted point pi. This set is called

a cavity (C (pi)). We will denote ∂C (pi) to be the set of external edges, i.e.,

the set of edges which belong to only one triangle in C (pi). The triangles in

11



DelaunayRefinement(X , M, ∆̄, ρ̄)
Input: X is a PSLG which defines domain Ω

M is some Delaunay mesh over Ω, which conforms
to X . ∆̄ and ρ̄ are desired upper bounds

Output: A modified Delaunay meshM which respects
the bounds ∆̄ and ρ̄

1 Q← {△ ∈M | (ρ(t) ≥ ρ̄) ∨ (∆(t) ≥ ∆̄)}
2 while Q 6= ∅
3 Let △s ∈ Q
4 BadTriangleElimination(X , M, △s)
5 Update Q
6 endwhile

BadTriangleElimination(X , M, △s)
Input: PSLG X , current meshM,

bad triangle to eliminate △s

Output: A modified Delaunay meshM
1 pi ←Circumcenter(△s)
2 Find S, a set of segments encroached upon by pi

3 if S 6= ∅
4 SplitSegments(S)
5 else
6 C (pi) = {△t | Incircle(△t, pi)}
7 M←M\ C (pi)∪

{△ (pipmpn)|(pmpn) ∈ ∂C (pi)}
8 endif

Incircle(△t, pi)
Input: Triangle △t, point pi

Output: true iff pi ∈ © (△t)
1 return (pi ∈ © (△t))

Fig. 2. A sequential Delaunay refinement algorithm. A more detailed description

along with segment splitting strategies, which always guarantee termination, can

be found in [53].

the cavity of the “bad” quality triangle are deleted and the cavity is retrian-

gulated by connecting the endpoints of external edges of C (pi) with the newly

inserted point pi. The Bowyer-Watson algorithm can be written as follows:

V ′ ← V ∪ {pi},

T ′ ← T \ C (pi) ∪ {△ (pipjpk) | e (pjpk) ∈ ∂C (pi)},

(1)

whereM = (V, T ) andM′ = (V ′, T ′) represent the mesh before and after the

12



insertion of pi, respectively.

We use a Planar Straight Line Graph (PSLG) [51] to delimit Ω from the

rest of the plane. Each segment in the PSLG is considered constrained and

must appear (possibly as a union of smaller segments) in the final mesh.

Sequential Delaunay algorithms treat constrained segments differently from

triangle edges [48, 52].

During the implementation of PCDM we tried to employ general optimiza-

tion rules related to memory allocation and floating point operations. The

use of standard STL data structures and standard routines for their handling

is advantageous in terms of code readability and code reuse. However, it can

also introduce significant overhead compared to optimized, application-specific

data structures and algorithms. In PCDM, we implemented from scratch the

most commonly used data structures (queues, graphs, triangle descriptors),

as well as the necessary interface for their management. We also integrated a

custom memory manager, which allocates and manages memory pools for the

most commonly used data objects of the application. The memory manager

performs reap-style allocation in the memory pools, however, at the same time,

it minimizes the overhead for reusing freed objects. Moreover, small-scale al-

gorithmic modifications resulted to the reduction of floating point operations

on the critical path of mesh generation. Such modifications were often sub-

ject to tradeoffs between performance and code complexity. Their effect on

performance is studied in detail in [2].

Table 1 summarizes the execution time for a sequential execution of PCDM

and Triangle [53] for the same problem size (a final mesh with 60 million

triangles) on an IBM OpenPower720 system with 64-bit Power5 processors

13



Exec. Time (sec) Triangles generation rate Maximum Problem

for 60M triangles (Sequential execution) Size (triangles)

PCDM 124.07 484K triangles/sec 96M

Triangle 114.74 523K triangles/sec 65M

Table 1

Execution time for the generation of a mesh of 60 million triangles, triangles gen-

eration rate, and maximum size of a mesh that can be generated by a sequential

execution of PCDM and Triangle on a 64-bits system with 8 GB of main memory.

clocked at 1.6 GHz and 8 GB of main memory. Moreover, we report the max-

imum mesh size that can be generated on the specific system by PCDM and

Triangle. Despite the fact that PCDM suffers the overhead for the support

of parallelism even in its single-threaded execution, its performance is a mere

8.1% worse compared with that of the heavily optimized, strictly sequen-

tial Triangle when generating 60 million triangles. At the same time, PCDM

proves more memory-efficient. As a result, it can create a 47.7% larger mesh

than Triangle using the same amount of physical memory.

Table 1 also provides motivation for the exploitation of parallelism in the

context of mesh generation. Triangle manages to generate triangles at a rate

of 523K per second. Even this seemingly high rate often proves inadequate

for time-critical applications working on highly-detailed meshes. At the same

time, mesh generation clearly proves to be a memory-constrained computation.

Less than two minutes of computation are enough to fill the memory of a

generously equipped (8 GB) system. The exploitation of parallelism tackles

both limitations simultaneously. It allows more processors to cooperate for

generating triangles with a higher rate and, at the same time, it facilitates the

exploitation of physical memory available in multiple compute nodes for the

14



creation of larger meshes.

4 Parallel Delaunay Mesh Generation

4.1 Coarse-Grain Parallelism

The domain decomposition procedure [39] creates N subdomains, each of

which is bounded by edges that define the boundary of the subdomains. The

edges and their endpoints that are shared between two subdomains are dupli-

cated. The interfaces (subdomain boundary edges) are treated as constrained

segments, i.e., as edges that need to be in the final mesh and can not be

deleted. By the definition of constrained Delaunay triangulation, points in-

serted at one side of interfaces have no effect on triangles at the other side;

thus, no synchronization is required during the element creation process. The

case when the new point happens to be very close to a constrained edge is

treated separately. Following Shewchuk [52], we use diametral lenses to detect

if a segment is encroached upon. A segment is said to be encroached upon by

point pi if pi lies inside its diametral lenses. The diametral lenses of a seg-

ment is the intersection of two disks, whose centers lie on the opposite sides

of the segment on each other’s boundaries, and whose boundaries intersect

in the endpoints of the segment. When a point selected for insertion is found

to encroach upon a segment, another point is inserted in the middle of the

segment instead. As a result, inter-process communication is tremendously

simplified: the only message between processes working on neighboring sub-

domains is of the form, “split this interface” and is sent when a newly inserted

point encroaches upon the interface edge [17]. As an additional optimization,

15



messages can be aggregated, in order to reduce both network traffic and the

overhead due to the activation of message handlers. The number of “split”

messages for aggregation into a single communication message has been set

to 128 [14] throughout our experimental evaluation. The dynamic load bal-

ancing of the coarse-grain approach has been studied and is out of the scope

of this paper. It can be handled by libraries, runtime systems and by domain

over-decomposition [4].

4.2 Fine-Grain Parallelism

The innermost level of parallelism is exploited by allowing multiple threads

to cooperate during the expansion (identification) of a single cavity. Cavity

expansions actually account, on average, for 59% of the total execution time

of PCDM on a modern, 1.6 GHz Power5 processor. Algorithmically, each ex-

pansion is similar to a breadth-first search of a graph [19]. The neighbors of

the offending triangle are initially enqueued at the tail of a queue. Each thread

dequeues one element from the head of the queue and independently subjects

it to the Incircle() test. If the test is successful, i.e., the circumcenter of the

offender resides inside the circumcircle of the examined triangle, the neighbors

of the examined triangle are also enqueued at the tail of the queue and the tri-

angle is deleted. The expansion code terminates as soon as the queue is found

empty. Synchronization is required among threads expanding the same cavity,

in order to ensure —for the sake of both performance and for implementation

correctness— that each triangle is subjected to the Incircle() test only once.

Table 2 summarizes statistics from the execution of fine-grain PCDM for a

benchmark geometry and two input sets from real-world problems: a key, a

16



key pipe cylinder

1M 10M 1M 10M 1M 10M

Queue Length 2.05 2.06 2.05 2.06 2.05 2.06

Cavity Population 4.83 5.07 4.83 5.07 4.82 5.07

Table 2

Average queue length and average cavity population (in triangles) for three different

inputs, when meshes of 1M or 10M triangles are created.

rocket engine pipe (depicted in Fig 1a), and a cylinder structure used for the

study of flows at very high Reynolds numbers [23]. For each input set we create

two meshes, one consisting of 1 million and one consisting of 10 million trian-

gles. We evaluate the average queue length and cavity population – in terms

of triangles – throughout the execution of the algorithm. Both metrics prove

to be independent of the input set used 2 . Cavity population increases slightly

as we move to finer meshes, with more triangles. The average queue length,

on the other hand, is steadily slightly above 2. Since concurrently executing

threads work on different elements of the queue, the fine-grain parallelism of

PCDM can be fully exploited by SMT processors with 2 execution contexts

per physical processor package 3 . We implemented the fine-grain parallel im-

plementation of cavity expansion by using 2 threads per MPI process used for

the coarse-grain, domain-level parallelization scheme described in Section 4.1.

The 2 threads that share the address space of any given MPI process to per-

2 The execution time of PCDM also proves fairly independent of the input set. It

depends mainly on the number of triangles in the final, refined mesh. Due to space

limitations, we will only provide results from the pipe input set throughout the rest

of the paper.
3 For 3-dimensional meshes the average queue length is 3 and thus 3 execution

contexts can be used to fully exploit the finer degree of parallelism.

17



form cavity expansion, are bound, using the sched setaffinity() Linux sys-

tem call, to the 2 execution contexts of the same SMT processor on our target

architecture. This enables faster communication and synchronization between

the threads, through the shared L1 and L2 caches of the SMT processor.

The extremely fine granularity of parallelism, with hard to amortize over-

heads on current architectures, and the limited concurrency exposed at this

level motivates the exploration of the medium-grain, optimistic paralleliza-

tion strategy. The latter increases both the granularity and the concurrency

of PCDM within each subdomain.

4.3 Medium-Grain Parallelism

The medium-grain parallelism available in PCDM is exploited by using mul-

tiple threads in order to expand multiple cavities at the same time. Each

triangle in the mesh is tagged with a flag (taken). This flag is set, using an

atomic compare & exchange operation, whenever the triangle becomes a part

of some cavity. If a thread, during a cavity expansion, touches a triangle whose

taken flag has already been set, the thread detects a conflict and cancels the

expansion of the specific cavity.

In order to reduce the number of conflicts, each thread is allowed to process

only the triangles that belong to a certain area. The boundaries delimiting

different areas are non-constrained straight lines. A suboptimal initial specifi-

cation of boundaries, especially on irregularly shaped subdomains, may result

in load imbalance, should one thread be assigned a larger area to mesh than

others. Whenever load imbalance is detected at run-time, our code dynam-

18



ically compensates by moving the boundaries between neighboring areas to

the direction of the most heavily loaded thread [2]. Medium-grain PCDM

also benefits from the custom memory manager described in Section 3. In

fact, in the case of the medium-grain implementation different threads allo-

cate objects from different memory manager heaps. Apart from the potential

spatial locality benefits, this technique also eliminates the pressure onto and

the contention inside the memory manager. Such contention can prove a ma-

jor performance bottleneck for multithreaded applications which, similarly to

medium-grain PCDM, are characterized by very frequent object allocations

and deallocations.

Available Parallelism (Medium-Grain)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 500000 1000000 1500000 2000000 2500000

Cavities Expanded

Ba
d Q

ua
lity

 Tr
ian

gle
s (

De
tec

ted
)

Fig. 3. Generation of a mesh with 10M triangles by medium-grain PCDM. Number

of detected, unprocessed ”bad quality” triangles throughout the execution life of

the application.

Figure 3 depicts the population of triangles that have been detected to violate

the quality criteria set by the user, however they have not yet been refined,

throughout the execution life of the application (as a function of the number of

already expanded cavities). The unrefined triangles count is a good indication

of the parallelism of the application. On average, it is close to 634K triangles,

thus medium-grain PCDM offers ample parallelism, at a much coarser gran-

19



ularity —if batches of unrefined triangles are assigned to each thread— than

the innermost level of parallelism (fine-grain).

5 Experimental Evaluation on Current and Emerging Parallel Ar-

chitectures

In the following paragraphs we discuss the exploitability and the mapping of

parallelism in PCDM to parallel architectures with heterogeneous character-

istics. More specifically, we experiment on:

• A heterogeneous, commodity, off-the-shelf (COTS) Sun cluster. The clus-

ter integrates 64 single-processor nodes based on UltraSPARC IIi+ CPUs,

clocked at 650 MHz, with 1 GB main memory each and 32 dual-processor

nodes based on UltraSPARC III Cu CPUs, clocked at 900 MHz, with 2 GB

of main memory per node. UltraSparcIIi+ processors are equipped with 16

KB direct-mapped L1 data cache, 16 KB 2-way associative L1 instruction

cache and 512 KB, 4-way associative L2 Cache. The cache hierarchy of each

UltraSparc III Cu processor is slightly more complicated: it consists of 32

KB 4-way associative L1 instruction cache, 64 KB 4-way associative L1 data

cache, 2 KB 4-way set associative prefetch cache for software prefetching,

2 KB, 4-way set associative write cache which reduces store latency to L2

cache and finally, 8 MB 2-way associative unified L2 cache. All nodes are

interconnected with a 100 Mbps Ethernet network. The experiments on the

cluster evaluate the scalability of PCDM when its coarse-grain parallelism

is exploited using a message passing programming model (MPI).

• A cluster, consisting of 4 IBM OpenPower 720 nodes. The nodes are inter-

connected via a Gigabit Ethernet network. Each node consists of 2 Power5

20



processors clocked at 1.6 GHz, which share 8 GB of main memory. Each

physical processor is a chip multiprocessor (CMP) integrating 2 cores. Each

core, in turn, supports simultaneous multithreading (SMT) and offers 2 ex-

ecution contexts. As a result, 8 threads can be executed concurrently on

each node. The two threads inside each core share a 32 KB, 4-way asso-

ciative L1 data cache and a 64 KB, 2-way associative L1 instruction cache.

All four threads on a chip share a 1.92 MB, 10-way associative unified L2

cache and a 36 MB 12-way associative off-chip unified L3 cache. We use this

system to evaluate both single-level and multilevel/multigrain (coarse+fine

or coarse+medium) executions of PCDM.

In all experiments we use the pipe model (Fig. 1). In each configuration we

generate as many triangles as possible, given the available physical memory

and the number of MPI processes and threads running on each node. The

times (Tpar(W )) reported for parallel PCDM executions include pre-processing

time for the generation of an initial coarse mesh, MPI bootstrap time, data

loading and distribution, and the actual computation (mesh generation) time.

We compare the execution time of parallel PCDM with that of the sequential

execution of PCDM and with the execution time of Triangle [51], the best to

our knowledge sequential implementation for Delaunay mesh generation which

has been heavily optimized and manually fine-tuned. For sequential executions

of both PCDM and Triangle the reported time includes data loading and mesh

generation time. In all cases, we do not report the time required to output the

final mesh to disk, since in most real world applications the produced mesh is

used directly by a parallel finite element solver, which is executed right at the

next step.

21



5.1 Coarse-Grain: Execution on a COTS Cluster

We executed coarse-grain PCDM on the COTS Sun cluster, using 1 to 128

MPI processes on 1 to 128 processors respectively. The domain to be meshed

is divided up into subdomains, i.e., the meshing problem is divided up into

weakly coupled subproblems, so that 32 subdomains correspond to each pro-

cessor 4 . We performed two sets of experiments. In the first set we execute

PCDM on a varying number of processors and produce a fixed size, refined

mesh, consisting of 12 million triangles. We calculate the fixed speedup as the

ratio Tseq(W )/Tpar(W ), where Tseq(W ) and Tpar(W ) are the sequential and the

parallel execution times, respectively, for the specific problem size (W = 12

million triangles). We compare the parallel execution time with both the exe-

cution time of PCDM on a single processor and the execution time of Triangle.

This experiment set focuses on the execution time improvement that can be

attained for a specific problem size, by exploiting the coarse-grain parallelism

of PCDM.

In the second experiment set, we scale the problem size linearly with respect

to the number of processors (P ). The problem size equals approximately 12M

triangles per processor. In other words, the problem size gradually increases

from 12 million to 1.536 billion triangles. We now calculate the scaled speedup

as the ratio P×Tseq(W )/Tpar(P×W ). Once again, we use as a reference the se-

quential execution times of both PCDM and Triangle. The second set outlines

the ability of the parallel algorithm to efficiently exploit more than one pro-

4 Over-decomposition of the domain is necessary for load-balancing reasons. We

have experimentally determined 32 subdomains per MPI process to be a good trade-

off between decomposition overhead and load balancing.

22



cessors in order to tackle problem sizes that are out of the reach of sequential

algorithms due to both computational power and memory limitations.

Coarse Grain PCDM Scalability

0
20
40
60
80

100
120
140
160
180

0 16 32 48 64 80 96 112 128
Nodes (1 CPU/node)

Sp
ee

du
p

Ideal
Fixed (PCDM)
Scaled (PCDM)
Fixed (Triangle)
Scaled (Triangle)

Preprocessing Overhead

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1000 2000 3000 4000
Initial Subdomains

Ov
erh

ea
d (

se
c)

(a) (b)

Procs. 1 2 4 8 16 32 48 64 80 96 112 128

Subdomains 1 64 128 256 512 1024 1536 2048 2560 3072 3584 4096

Triangle 57.6

PCDM Fixed 59.3 28.4 14.1 8.0 5.3 5.2 9.9 7.5 8.9 10.3 12.7 14.3

PCDM Scaled 59.3 59.6 60.2 64.0 62.6 64.3 67.3 74.8 77.7 71.4 77.5 75.3

Fig. 4. (a) Fixed and scaled speedups of the coarse-grain PCDM on a 128 proces-

sor cluster. 12M triangles are created in the fixed problem experiments, and 12M

triangles are created by each processor in the scaled problem size experiments. The

speedups have been calculated using as a reference either the single-processor execu-

tion time of PCDM or the execution time of Triangle. The diagram also depicts the

ideal speedup. (b) Preprocessing overhead for the generation of the initial, coarse

mesh, as a function of the number of initial subdomains. The table summarizes the

corresponding execution times (in sec.). It also reports the number of subdomains

used.

Fig. 4a depicts the experimental results from both sets as well as the ideal

speedup. The slope of the ideal speedup line changes after 64 processors to

account for the fact that processors 64-127 are more powerful (UltraSparc III)

than processors 0-63 (UltraSparc IIi+), resulting to 53% faster execution for

23



both sequential PCDM and Triangle. The ideal speedup has been calculated

with respect to the sequential execution on an UltraSparc IIi+ processor. For

example, on 64 processors the ideal speedup equals 64, however on 96 and 128

processors, when UltraSparc III processors are also used, its value is 112.8 and

161.5 respectively. Fig. 4b depicts the overhead for the creation of the initial

decomposition, as a function of the number of initial subdomains. The table

under the diagrams summarizes the total execution times of all experiments.

The table also reports the number of subdomains used (32 per processor if

more than one processors are available).

In all cases the calculated speedups when using sequential PCDM and Trian-

gle as the basis for the calculation of the speedup are almost indistinguishable,

due to the minimal – approximately 3% for the specific problem sizes of 12M

triangles (fixed) and 12M triangles per processor (scaled) – performance dif-

ference between the sequential executions time of PCDM and Triangle.

The preprocessing overhead ranges between 70 msec for the creation of 64

subdomains (execution with 2 processors) to 4.39 sec for the creation of 4096

subdomains (execution with 128 processors). The overhead is practically linear

to the number of subdomains [39].

For the fixed problem size experiments, coarse-grain PCDM scales almost lin-

early on up to 16 processors and keeps slightly scaling up to 32 processors. The

wall-clock execution times for the generation of a mesh of 12M triangles on 16

and 32 processors are 5.3 sec. and 5.2 sec., respectively. In fact, on the 2- and

4-processor configurations coarse-grain PCDM attains super-linear speedups,

even compared with the heavily optimized Triangle, due to the additional

cache memory available to the application when more than 1 processors are

24



used. In the 32 processor configuration PCDM generates 2.3M triangles/sec.

Using more than 32 processors slows down PCDM. On 32 processors the com-

putation corresponding to each processor is already lightweight. The additional

computational power made available by using more processors can not, thus,

be effectively exploited and does not manage to outweigh overheads such as

the generation of additional MPI processes, the sequential generation of more

subdomains, and the communication (initial data distribution, messages be-

tween neighboring subdomains during the execution, collection of results after

the generation of the mesh). For example, in a 32 processors execution the pre-

processing overhead alone corresponds to 22.9% of the total execution time.

The scalability potential of coarse-grain PCDM is more evident when the prob-

lem size is scaled with the number of processors. The speedup on 128 processors

equals 135.13 and 131.26 when PCDM and Triangle are used as a reference

point, respectively. On the 128 processor configuration PCDM generates tri-

angles with an average rate of 20.4M triangles/sec. However, these speedups

are within 78.8% and 76.5%, respectively, of the ideal expected speedup on

the specific system, and the efficiency tends to drop as more processors are

used. Once again, as more MPI processes are used, the cost of preprocessing

and MPI overheads become an important portion of the total execution time.

This observation motivates the exploitation of the other two granularities of

parallelism available in PCDM on multi-layered parallel architectures.

25



5.2 Coarse- and Medium-Grain: Execution on a Cluster of CMP/SMT-based

Multiprocessors

Medium-grain PCDM extends the MPI implementation of PCDM to exploit

parallelism inside each MPI process. Medium-grain PCDM differs from coarse-

grain in that multiple threads are allowed to work on the same subdomain.

The threads can independently expand and refine different cavities, however

in order to guarantee mesh conformity two cavities processed independently

by different threads are not allowed to share a face (triangle in 3D or edge in

2D). Our implementation of medium-grain PCDM includes an extensive set of

optimizations, including algorithmic optimizations, modified data structures

and synchronization mechanisms to reduce contention, and techniques to re-

duce conflicts between threads sharing the resources of an SMT processor [2].

The main algorithmic challenge of medium-grain is the detection of and re-

covery from conflicts, which requires synchronization among threads working

on the same subdomain.

Figure 5 depicts the results of the experimental evaluation of the coarse and

coarse+medium granularities of PCDM on a cluster of 4 IBM OpenPower 720

nodes, each with two 2-way CMP Power5 processors. Each core is, in turn,

a 2-way SMT. We report results on a coarse-grain execution using one MPI

process per processor core (Coarse). We have also experimented with using

two MPI processes per core, i.e., one MPI process per SMT execution context

(Coarse (2/core)). Finally, we have evaluated the performance of the multi-

grain (coarse+medium) approach, in which one coarse-grain MPI process is

assigned to each processor core, however two medium-grain threads inside

each MPI process cooperate for the refinement of a single subdomain. Each

26



Single-/Multi-grain (Coarse+Medium) PCDM 
Fixed Problem Size Speedup

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cores

Sp
ee

du
p

Coarse(PCDM)
Coarse 2MPI/Core (PCDM)
Coarse+Medium(PCDM)
Coarse(Triangle)
Coarse 2MPI/Core (Triangle)
Coarse+Medium(Triangle)

Single-/Multi-grain (Coarse+Medium) PCDM 
Scaled Problem Size Speedup

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cores

Sp
ee

du
p

Coarse(PCDM)
Coarse 2MPI/Core (PCDM)
Coarse+Medium(PCDM)
Coarse(Triangle)
Coarse 2MPI/Core (Triangle)
Coarse+Medium(Triangle)

Cores 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Triangle Fixed 114.7

Coarse Fixed 124.1 63.8 45.6 32.5 27.1 23.3 20.1 18.0 16.0 14.6 14.1 12.8 11.0 10.8 10.9 10.7

Coarse Fixed (2/Core) 97.4 49.0 28.9 21.2 18.6 16.3 13.6 12.2 11.5 10.1 9.6 9.1 8.2 7.9 8.2 8.3

Coarse+Medium Fixed 87.5 44.7 32.2 22.8 19.9 16.7 14.7 12.9 11.9 10.6 10.3 9.4 8.7 9.1 8.8 8.0

Triangle Scaled 28.4

Coarse Scaled 31.0 32.2 34.6 32.5 34.5 35.6 36.3 37.1 36.3 36.6 38.3 38.3 35.3 37.6 40.2 41.8

Coarse Scaled (2/Core) 24.5 25.0 22.1 21.3 23.5 24.5 23.8 24.2 25.4 24.3 24.7 25.5 24.4 28.3 26.6 28.1

Coarse+Medium Scaled 21.4 22.5 24.4 22.8 24.7 25.5 26.6 26.7 27.2 27.1 28.1 27.8 28.8 29.9 31.0 30.4

Fig. 5. Fixed and scaled speedups of the coarse grain and the coarse+medium grain

PCDM on a cluster of 4 IBM OpenPower 720 nodes. The speedups have been

calculated using as a reference either the single-thread execution time of PCDM

or the execution time of the best known sequential mesher (Triangle). We present

coarse-grain PCDM results using either one MPI process per core (Coarse) or one

MPI process per SMT execution context (Coarse (2/core)). 60M triangles are

created in the fixed problem size experiments. 15M triangles correspond to each

processor core in the scaled problem size experiments. The table summarizes the

corresponding execution times (in sec).

thread is executed by one of the SMT execution contexts of each core. For

fixed problem size experiments we generate meshes of 60M triangles. In the

scaled problem size experiments we create 15M triangles per used processor

27



core.

On a single processor, medium+coarse grain PCDM significantly improves the

performance attained by using a single core, compared with the coarse-grain

only implementation. In the fixed problem size, it proves 29.4% faster than

coarse-grain when one MPI process is executed by a single core and 10.2%

faster when two MPI processes correspond to each core (one per SMT con-

text). In the scaled problem size the corresponding performance improvements

attained by medium+coarse grain are in the order of 31% and 12.7% respec-

tively. Moreover, medium+coarse grain PCDM outperforms on a single core

the optimized, sequential Triangle by 15.1% and 13.7% for the fixed and scaled

problem sizes respectively.

Medium+coarse grain PCDM remains the optimal solution when two cores

are available. When more than two cores (i.e., more than one physical pro-

cessors) are used however, the coarse-grain only approach with two MPI pro-

cesses per processor (Coarse (2/core)) outperforms the multi-grain one. It

has been explained in Section 4.3 that medium-grain threads have to perform

a synchronization operation every time they touch a triangle. Although our

implementation employs low-overhead, non-blocking atomic operations, the

frequency of these operations is extremely high —approximately once every

500 nsec. Atomic operations impede memory accesses from other threads run-

ning on the same node. This results to performance penalties when more than

four PCDM threads execute on each node (two cores, two SMT contexts/core)

5 . It should be noted that the synchronizing threads always reside on the

same processor. As a result, should modern processors have adequate support

5 Up to eight threads can co-execute on each node of our platform.

28



for efficient inter-processor thread synchronization, the performance effects of

synchronization operations should be limited within each physical processor,

instead of affecting all threads running on the same node. Unfortunately, this

is not the case for commercially available SMT / CMP processors. In any case,

a coarse-grain only parallelization has the downside of either not exploiting the

second execution context of each processor (Coarse), or using twice as many

MPI processes on a specific system (Coarse (2/Core)). The use of additional

MPI processes is, in turn, associated with additional overheads for preprocess-

ing and MPI bootstrapping. As more cores are used, these overheads become

significant, in both the fixed and the scaled problem sizes. It is clear, from Fig-

ure 5, that both single-level approaches (Coarse and Coarse (2/Core)) face

scalability difficulties for 13 or more cores. The medium+coarse grain PCDM

implementation continues attaining performance improvements even for 13 or

more cores. In fact it manages to outperform again Coarse (2/Core) with 16

cores in the fixed problem size case. In the scaled problem size experiments it

closes the performance gap with Coarse (2/Core). In fact the scaled speedup

improvement from 14 to 16 cores is considerably higher in the medium+coarse

case (12%) than in the coarse-grain only experiments (2%). We expect that if

more than 16 cores were available on our experimental platform, the multilevel

medium+coarse grain PCDM would outperform the single-level coarse-grain

approach for the scaled problem size as well. It should be taken into account

that the medium+coarse execution, using 2 threads for the exploitation of the

medium grain, requires half the initial subdomains, i.e. half the initial pre-

processing overhead. The latter is non-negligible and grows linearly with the

number of cores used for the exploitation of the coarse grain (Figure 4(b)).

The same observation holds for the MPI startup overhead as well.

29



In summary, a multi-grain (medium+coarse) approach manages to outperform

single-level PCDM, at least in certain areas of the configuration space. It

allows the exploitation of SMP contexts inside each processor core without

incurring additional preprocessing and MPI startup overhead. It is important

to note that medium+coarse grain PCDM offers performance improvements on

currently commercially available hardware, without requiring special support

from either the OS or the processor. Unfortunately, this is not the case for the

coarse+fine multi-grain implementation presented in Section 5.3.

5.3 Fine-Grain: Execution on a SMT-based Multiprocessor

As a next step, we evaluated the performance of a fine+coarse multi-grain

PCDM implementation on the same layered, CMP/SMT based multiproces-

sor. We used the two execution contexts available on each core in order to ex-

ploit the finest granularity of parallelism available in PCDM. In other words,

both execution contexts work in parallel to expand the cavity of the same,

bad-quality triangle. Each execution context accommodates one kernel thread.

Kernel threads are created once and persist throughout the life of the applica-

tion. Each thread is bound to a specific execution context and is not allowed to

migrate. The two kernel threads that are bound on the same processor have

distinct roles: The master thread has the same functionality as the typical

MPI process used to process a subdomain of the original domain. The worker

thread assists the master during cavity expansions, however it is idling when

the master executes code unrelated to cavity expansion.

Apart from the optimizations described earlier (substitution of STL data

structures, customized memory manager), we applied only limited, local code

30



modifications in order to minimize the interaction between the threads exe-

cuting on the two execution contexts of each processor, thus reducing the con-

tention on shared data structures. More specifically, we substituted the global

queue previously used for the breadth first search on the triangles graph with

two separate, per execution context queues. As soon as an execution context

finishes the processing of a triangle, it attempts to dequeue another, unpro-

cessed triangle from its local queue. If the queue is empty, it attempts to steal

a triangle from the queue of the other execution context. Every triangle whose

circumcircle includes the circumcenter of the bad-quality triangle (incircle()

test), has to be deleted. Such triangles are pushed in a local, per execution

context stack and are deleted in batch, after the cavity is expanded. Their

neighbors, which also have to be subjected to the incircle() test, are en-

queued in the local queue of the execution context. Despite the fact that the

introduction of per thread queues reduces the interaction between threads,

the requirement of work stealing necessitates the use of locks for the protec-

tion of queues. The functionality of these locks is similar to the low-level locks

proposed in [46]. However, the locks are only contended when both threads ac-

cess concurrently the same queue, one attempting to access its local queue and

the other to steal work. An alternative queue implementation would employ

lock-free techniques. However, complex lock-free data structures outperform

lock-based ones only in the presence of multiprogramming or when access to

shared resources is heavily contended [42]. None of these conditions holds in

the case of fine-grain PCDM.

In order to both guarantee implementation correctness and to avoid perform-

ing redundant incircle() tests, it must be ensured that the same triangle is

not subjected to the test more than once during a cavity expansion. This is

31



possible, since up to three paths —one corresponding to each neighbor— may

lead to the same triangle during the breadth-first search of the triangles graph.

In order to eliminate this possibility, the data structure representing each tri-

angle is extended —similarly to the medium-grain PCDM implementation—

with a taken flag. Threads check the taken flag of triangles before processing

them and try to set it using an atomic, non-blocking test and set operation.

If the atomic operation fails or the taken flag has already been set, the triangle

is discarded and is not subjected to the incircle() test.

Single-/Multi-grain (Coarse+Fine) PCDM 
Fixed Problem Size Speedup

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cores

Sp
ee

du
p

Coarse(PCDM)
Coarse+Fine(PCDM)
Coarse(Triangle)
Coarse+Fine(Triangle)

Single-/Multi-grain (Coarse+Fine) PCDM 
Scaled Problem Size Speedup

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cores

Sp
ee

du
p

Coarse(PCDM)
Coarse+Fine(PCDM)
Coarse(Triangle)
Coarse+Fine(Triangle)

Cores 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Coarse+Fine Fixed 241.3 124.0 89.0 63.9 53.1 45.6 39.6 35.3 30.3 27.5 26.2 24.0 20.4 20.5 20.5 19.8

Coarse+Fine Scaled 61.1 63.1 67.6 63.8 67.3 69.3 70.4 71.9 69.4 70.0 72.9 73.0 67.0 71.6 76.5 79.2

Fig. 6. Fixed and scaled speedups of the coarse+fine grain PCDM on a cluster of 4

IBM OpenPower 720 nodes. We report again the speedups of single-level, coarse–

grain PCDM, with 1 MPI process per core (Coarse) as a basis for comparison. The

speedups have been calculated using as a reference either the single-thread execution

time of PCDM or the execution time of Triangle. 60M triangles are created in the

fixed problem size experiments. 15M triangles correspond to each processor core

in the scaled problem size experiments. The table summarizes the corresponding

execution times (in sec).

32



Figure 6 depicts the results of the experimental evaluation of multi-grain

(fine+coarse) PCDM on a cluster of 4 IBM OpenPower 720 nodes. Each of the

two fine-grain threads inside an MPI process is executed by one of the SMT

execution contexts of each core. We report again, as a basis for comparison,

the speedups attained by the single-level, coarse-grain implementation using

one MPI process per core (Coarse). Similarly to the medium-grain evaluation,

for fixed problem size experiments we generate 60M triangles and for scaled

problem size experiments we create 15M triangles per processor core used.

Interestingly enough, the exploitation of fine-grain parallelism in PCDM does

not improve PCDM performance. On the contrary, it results in a significant

slowdown, even compared with the Coarse configuration on the same number

of cores. The latter does not use the second SMT execution context of each

core. The slowdown ranges between 1.9 and 1.98.

The granularity of fine-grain PCDM is too fine to be exploitable by current

commercially available hardware. Although cavity expansions account, as ex-

plained previously, for 59% of the total execution time, each sequential cavity

expansion lasts only between 3.16 and 4.74 µsec on the specific system.

Fine-grain PCDM is characterized by the same high synchronization intensity

as the medium-grain implementation. The taken flag of each triangle that is

touched has to be atomically checked for being false and set to true. This

results in a synchronization operation approximately every 500 nsec. Apart

from their own overhead, such operations tend to delay computation-related

memory accesses. The overhead due to synchronization operations has been

experimentally evaluated to be more than 25% of the execution time on the

specific platform. Once again, it should be pointed out that synchronizing

33



threads always reside on the same core. However, the lack of efficient inter-

processor, or, even better, inter-core synchronization support results in the

propagation of the effects of synchronization to all threads executing on each

node.

Another weakness of the fine-grain approach is that parallelism can be ex-

ploited for only 59% of the application’s execution time. Together with the

limited degree of parallelism available at the fine granularity level (slightly

more than 2 for 2D geometries), this reduces the maximum expected speedup

on a 2-way SMT core to a mere 1.42. A more significant side-effect, though, has

to do with the behavior of the worker thread during the remaining 41% of the

application’s execution life. First generation commercially available SMT pro-

cessors do not offer hardware support for efficiently suspending/resuming the

execution of threads on specific SMT execution contexts. All suspend/resume

operations have to be handled through the operating system, thus significantly

increasing their overhead and limiting the granularity with which such oper-

ations can be used. In any case, threads can not be suspended/resumed with

the frequency required by fine-grain PCDM. The only other alternative for the

implementation of the worker thread is to allow it to spin on its work queue,

waiting for work to be distributed by the master thread. Threads on an SMT

processor, however, share almost all processor resources. Spinning instructions

usually have no uncached memory dependencies. They thus achieve a very low

CPI and can be issued with a very high frequency, filling processor instruction

queues. This, in turn, delays useful, computation-related instructions by the

master thread. We have experimentally quantified the master thread slowdown

due to interference from a spinning worker thread to be approximately 12%.

Obviously, a fine+coarse multi-grain PCDM execution is not a viable approach

34



for the optimal exploitation of SMT contexts on a multi-level parallel system,

at least not without additional hardware support. In [2, 3] we evaluate the

effect of additional hardware support for synchronization and thread manage-

ment on the performance of fine-grain PCDM. We find that with with mini-

mal additional hardware support for thread creation and fast synchronization

through registers, a coarse+fine multi-grain implementation can outperform

coarse-grain PCDM, even if in the coarse-grain implementation 2 MPI pro-

cesses are allowed to execute on each core.

6 Conclusions

Multithreaded processors become more and more widespread and layered par-

allel systems are being built using these processors. Multilevel, multigrain

parallel codes seem like a good vehicle for the exploitation of the performance

potential of this class of parallel systems, however their development and map-

ping to the architecture is not a trivial undertaking. This is especially true for

adaptive and irregular applications. Our paper makes contributions towards

this direction, focusing on mesh generation algorithms. Fast, high quality mesh

generation is a critical module for a multitude of real-world medical and en-

gineering applications. We focused on PCDM, a parallel, guaranteed-quality

mesh generator. PCDM exposes parallelism in three granularities.

We exploited the coarsest grain with an MPI-only implementation which

proves to scale up to 32 processors for fixed problem sizes and up to the to-

tal processors available on our cluster (128) for problem sizes that scale with

the number of processors. Moreover, a coarse-grain approach is, under certain

configurations, the optimal choice for the exploitation of execution contexts on

35



SMT processors. Its ability to use more than one processors/cores/execution

contexts allows it to solve problems faster than Triangle, the best to our knowl-

edge, hand-optimized, sequential Delaunay mesh generation software. At the

same time PCDM can tackle problem sizes which can not be addressed by Tri-

angle, due to processing power and memory limitations. Coarse-grain PCDM

managed to generate a mesh of 1.536 billion triangles on 128 processors in 75.3

sec, at a rate of 20.4M triangles/sec. For comparison, Triangle created – in the

best case between the two experimental platforms – a maximum of 65 million

triangles in 114.74 sec, at a rate of 523K triangles/sec. The sequential version

of PCDM performs slightly (up to 9.2%, for the sequential, scaled problem

size execution on the IBM cluster) worse than Triangle, due to overheads to

accommodate parallel processing. We, thus, investigated exploiting the two

finer degrees of granularity of PCDM on SMT processors, in order to improve

the single-processor performance of the algorithm.

We investigated whether the multiple execution contexts available in modern

SMTs can be used to efficiently exploit the fine-grain parallelism of PCDM,

using multithreading out of the box. Experimental results on IBM Power5

processors indicated that the overheads related to fine-grain parallelism man-

agement and execution overrun potential benefits, resulting overall in a sig-

nificant performance degradation (approximately 2 times slower execution),

compared even with a coarse-grain configuration that exploits half the execu-

tion contexts of the system. Moreover, the analysis of PCDM revealed that its

fine-grain parallelism can utilize at most two (or four) execution contexts per

physical processor, for 2- (or 3)-D meshes.

A medium-grain, optimistic, parallel implementation of PCDM provided sig-

nificantly more work at a coarser granularity. We exploited medium-grain par-

36



allelism in PCDM at the SMT processor level. PCDM proved scalable at the

processor level, without any additional hardware support, despite the frequent

synchronization required between concurrently executing threads. It improved

performance on a single core by up to 15%, compared even with the optimized

Triangle. Moreover, a coarse+medium multi-grain approach proved to be the

optimal configuration choice, when there are few threads executing on each

node. Our experimental results also indicate that the coarse+medium ap-

proach is expected to be the configuration of choice when the number of MPI

processes required to exploit all execution contexts grows too much, affecting

preprocessing and MPI bootstrap overheads.

In the future work, we intend to verify the scalability advantages of our multi-

grain algorithms on systems with larger number of nodes than the systems

used in this study, and in particular on newer large-scale systems, some of

which have already migrated to configurations built from multicore and multi-

threaded processors. We also plan to investigate novel architectural paradigms

for the implementation of parallel mesh generation algorithms, and in particu-

lar transactional memory [29], which seems suitable for the medium-grain par-

allelization presented in this paper. Transactional memory enables fast imple-

mentation and fairly efficient execution of codes with frequent, non-contested

synchronization. Some preliminary results indicate that transactional mem-

ory is conceptually a suitable architectural model for Delaunay mesh gen-

eration [37], although current hardware and software implementations have

inadequate semantics. Exploring these semantics and the adaptation of mesh

generation algorithms to transactional systems is an interesting path to follow

in future research.

37



Acknowledgments

This work was supported in part by the following NSF grants: EIA-9972853,

ACI-0085963, EIA-0203974, ACI-0312980, CCS-0750901 Career award CCF-

0346867, CNS-0521381, CCF-0833081 and DOE grant DE-FG02-05ER2568, as

well as by the John Simon Guggenheim Foundation. We thank the anonymous

reviewers for helpful comments.

References

[1] G. Almási, C. Caşcaval, J. Casta nos, M. Denneau, D. Lieber, J. Moreira,

and H. Warren. Dissecting Cyclops: A Detailed Analysis of a Multithreaded

Architecture. ACM SIGARCH Computer Architecture News, 31(1):26–38,

January 2003.

[2] Christos D. Antonopoulos, Filip Blagojevic, Andrey N. Chernikov, Nikos P.

Chrisochoides, and Dimitris S. Nikolopoulos. Algorithm, software, and hardware

optimizations for Delaunay mesh generation on simultaneous multithreaded

architectures. Journal on Parallel and Distributed Computing. In print, March

2009.

[3] Christos D. Antonopoulos, Xiaoning Ding, Andrey N. Chernikov, Filip

Blagojevic, Dimitris S. Nikolopoulos, and Nikos P. Chrisochoides. Multigrain

parallel Delaunay mesh generation: Challenges and opportunities for

multithreaded architectures. In Proceedings of the 19th Annual International

Conference on Supercomputing, pages 367–376, Cambridge, MA, 2005. ACM

Press.

[4] Kevin Barker, Andrey Chernikov, Nikos Chrisochoides, and Keshav Pingali. A

38



load balancing framework for adaptive and asynchronous applications. IEEE

Transactions on Parallel and Distributed Systems, 15(2):183–192, February

2004.

[5] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,

S. Smith, R. Stets, and B. Verghese. Piranha: A Scalable Architecture Based

on Single-Chip Multiprocessing. In Proc. of the 27th Annual International

Symposium on Computer Architecture (ISCA’2000), pages 282–293, Vancouver,

Canada, June 2000.

[6] G. E. Blelloch, J.C. Hardwick, G. L. Miller, and D. Talmor. Design and

implementation of a practical parallel Delaunay algorithm. Algorithmica,

24:243–269, 1999.

[7] G. E. Blelloch, G. L. Miller, and D. Talmor. Developing a practical projection-

based parallel Delaunay algorithm. In Proceedings of the 12th Annual ACM

Symposium on Computational Geometry, pages 186–195, Philadelphia, PA, May

1996.

[8] Adrian Bowyer. Computing Dirichlet tesselations. Computer Journal, 24:162–

166, 1981.

[9] Andrey Chernikov, Kevin Barker, and Nikos Chrisochoides. Parallel

programming environment for mesh generation. In Proceedings of the 8th

International Conference on Numerical Grid Generation in Computational

Field Simulations, pages 805–814, Honolulu, HI, June 2002.

[10] Andrey N. Chernikov and Nikos P. Chrisochoides. Parallel guaranteed quality

planar Delaunay mesh generation by concurrent point insertion. In Proceedings

of the 14th Annual Fall Workshop on Computational Geometry, pages 55–

56, Cambridge, MA, November 2004. Electronic proceedings published at

http://cgw2004.csail.mit.edu/proceedings.pdf.

39



[11] Andrey N. Chernikov and Nikos P. Chrisochoides. Practical and efficient

point insertion scheduling method for parallel guaranteed quality Delaunay

refinement. In Proceedings of the 18th Annual International Conference on

Supercomputing, pages 48–57, Malo, France, 2004. ACM Press.

[12] Andrey N. Chernikov and Nikos P. Chrisochoides. Parallel 2D graded

guaranteed quality Delaunay mesh refinement. In Proceedings of the 14th

International Meshing Roundtable, pages 505–517, San Diego, CA, September

2005. Springer.

[13] Andrey N. Chernikov and Nikos P. Chrisochoides. Parallel guaranteed quality

Delaunay uniform mesh refinement. SIAM Journal on Scientific Computing,

28:1907–1926, 2006.

[14] Andrey N. Chernikov and Nikos P. Chrisochoides. Algorithm 872: Parallel 2D

constrained Delaunay mesh generation. ACM Transactions on Mathematical

Software, 34(1):1–20, January 2008.

[15] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–108,

1989.

[16] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report

TR89983, Cornell University, Computer Science Department, 1989.

[17] L. Paul Chew, Nikos Chrisochoides, and Florian Sukup. Parallel constrained

Delaunay meshing. In ASME/ASCE/SES Summer Meeting, Special Symposium

on Trends in Unstructured Mesh Generation, pages 89–96, Northwestern

University, Evanston, IL, 1997.

[18] N. Chrisochoides, A. Fedorov, A. Kot, N. Archip, P.M. Black, O. Clatz,

A. Golby, R. Kikinis, and S.K. Warfield. Toward real-time image guided

neurosurgery using distributed and Grid computing. In Proc. of IEEE/ACM

SC06, 2006.

40



[19] Nikos Chrisochoides and Démian Nave. Parallel Delaunay mesh generation

kernel. International Journal for Numerical Methods in Engineering, 58:161–

176, 2003.

[20] Nikos P. Chrisochoides. A survey of parallel mesh generation methods.

Technical Report BrownSC-2005-09, Brown University, 2005. Also appears as

a chapter in Numerical Solution of Partial Differential Equations on Parallel

Computers (eds. Are Magnus Bruaset and Aslak Tveito), Springer, 2006.

[21] Tim Culver. Computing the Medial Axis of a Polyhedron Reliably and

Efficiently. PhD thesis, The University of North Carolina at Chapel Hill, 2000.

[22] Hugues L. de Cougny, Mark S. Shephard, and Can Ozturan. Parallel three-

dimensional mesh generation. Computing Systems in Engineering, 5:311–323,

1994.

[23] Suchuan Dong, Didier Lucor, and George Em Karniadakis. Flow past a

stationary and moving cylinder: DNS at Re=10,000. In Proceedings of the

2004 Users Group Conference (DOD UGC’04), pages 88–95, Williamsburg, VA,

2004.

[24] J. Galtier and P. L. George. Prepartitioning as a way to mesh subdomains

in parallel. In Proceedings of the 5th International Meshing Roundtable, pages

107–121, Pittsburgh, PA, 1996.

[25] Paul-Louis George and Houman Borouchaki. Delaunay Triangulation and

Meshing. Application to Finite Elements. HERMES, 1998.

[26] Gerhard Globisch. On an automatically parallel generation technique for

tetrahedral meshes. Parallel Computing, 21(12):1979–1995, 1995.

[27] Gerhard Globisch. Parmesh – a parallel mesh generator. Parallel Computing,

21(3):509–524, 1995.

41



[28] Halit Nebi Gürsoy. Shape interrogation by medial axis transform for automated

analysis. PhD thesis, Massachusetts Institute of Technology, 1989.

[29] L. Hammond, B. Carlstrom, V. Wong, M. Chen, C. Kozyrakis, and K.Olukotun.

Programming with Transactional Coherence and Consistency. In Proc. of

the 11th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 1–13, Boston, MA, October 2004.

[30] Y. Ito, A. M. Shih, A. K. Erukala, B. K. Soni, A. N. Chernikov, N. P.

Chrisochoides, and K. Nakahashi. Generation of unstructured meshes in parallel

using an advancing front method. In Proceedings of the 9th International

Conference on Numerical Grid Generation in Computational Field Simulations,

San Jose, CA, June 2005.

[31] Mark T. Jones and Paul E. Plassmann. Parallel algorithms for the adaptive

refinement and partitioning of unstructured meshes. In Scalable High

Performance Computing Conference, pages 478–485. IEEE Computer Society

Press, 1994.

[32] Clemens Kadow. Adaptive dynamic projection-based partitioning for parallel

Delaunay mesh generation algorithms. In SIAM Workshop on Combinatorial

Scientific Computing, San-Francisco, CA, February 2004.

[33] R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 Chip: A Dual-Core

Multithreaded Processor. IEEE Micro, 24(2):40–47, March 2004.

[34] G.E. Karniadakis and S.A. Orszag. Nodes, modes, and flow codes. Physics

Today, 46:34–42, 1993.

[35] George Karypis and Vipin Kumar. MeTiS: A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing

Orderings of Sparse Matrices. Version 4.0. University of Minnesota, September

1998.

42



[36] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multithreaded

Sparc Processor. IEEE MICRO, 25(2):21–29, March/April 2005.

[37] Milind Kulkarni, L. Paul Chew, and Keshav Pingali. Using transactions in

Delaunay mesh generation. In Proceedings of the Workshop on Transactional

Memory Workloads, pages 23–31, Ottawa, Canada, June 2006.

[38] Leonidas Linardakis and Nikos Chrisochoides. Delaunay decoupling method for

parallel guaranteed quality planar mesh refinement. SIAM Journal on Scientific

Computing, 27(4):1394–1423, 2006.

[39] Leonidas Linardakis and Nikos Chrisochoides. Algorithm 870: A static

geometric medial axis domain decomposition in 2D Euclidean space. ACM

Transactions on Mathematical Software, 34(1):1–28, 2008.

[40] Rainald Löhner and Juan R. Cebral. Parallel advancing front grid generation.

In Proceedings of the 8th International Meshing Roundtable, pages 67–74, South

Lake Tahoe, CA, 1999.

[41] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and

M. Upton. Hyper-Threading Technology Architecture and Microarchitecture.

Intel Technology Journal, 6(1), February 2002.

[42] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking and

Blocking Concurrent Queue Algorithms. In Proceedings of the 15th Annual

ACM Symposium on Principles of Distributed Computing, pages 267–275,

Philadelphia, Pennsylvania, United States, 1996.

[43] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington.

A Delaunay based numerical method for three dimensions: Generation,

formulation, and partition. In Proceedings of the 27th Annual ACM Symposium

on Theory of Computing, pages 683–692, Las Vegas, NV, May 1995.

43



[44] Démian Nave, Nikos Chrisochoides, and L. Paul Chew. Guaranteed–quality

parallel Delaunay refinement for restricted polyhedral domains. In Proceedings

of the 18th ACM Symposium on Computational Geometry, pages 135–144,

Barcelona, Spain, 2002.

[45] Démian Nave, Nikos Chrisochoides, and L. Paul Chew. Guaranteed–quality

parallel Delaunay refinement for restricted polyhedral domains. Computational

Geometry: Theory and Applications, 28:191–215, 2004.

[46] Leonid Oliker and Rupak Biswas. Parallelization of a dynamic unstructured

application using three leading paradigms. In Supercomputing ’99: Proceedings

of the 1999 ACM/IEEE conference on Supercomputing (CD-ROM), page 39,

New York, NY, USA, 1999. ACM Press.

[47] Maria-Cecilia Rivara, Daniel Pizarro, and Nikos Chrisochoides. Parallel

refinement of tetrahedral meshes using terminal-edge bisection algorithm. In

13th International Meshing Roundtable, Williamsburg, VA, September 2004.

[48] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh

generation. Journal of Algorithms, 18(3):548–585, 1995.

[49] R. Said, N.P. Weatherill, K. Morgan, and N.A. Verhoeven. Distributed parallel

Delaunay mesh generation. Computer Methods in Applied Mechanics and

Engineering, (177):109–125, 1999.

[50] Evan Conway Sherbrooke. 3-D shape interrogation by medial axial transform.

PhD thesis, Massachusetts Institute of Technology, 1995.

[51] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh

Generator and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha,

editors, Applied Computational Geometry: Towards Geometric Engineering,

volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-

Verlag, May 1996. From the First ACM Workshop on Applied Computational

44



Geometry.

[52] Jonathan Richard Shewchuk. Delaunay Refinement Mesh Generation. PhD

thesis, Carnegie Mellon University, 1997.

[53] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular

mesh generation. Computational Geometry: Theory and Applications, 22(1–

3):21–74, May 2002.

[54] TOP-500 Supercomputer Sites. http://www.top500.org, November 2004.

[55] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing

On-Chip Parallelism. In Proceedings of the 22nd International Symposium on

Computer Architecture (ISCA’95), pages 392–403, St. Margherita Ligure, Italy,

June 1995.

[56] UltraSPARC c©IV Processor Architecture Overview. Technical report, Sun

Microsystems, February 2004.

[57] David F. Watson. Computing the n-dimensional Delaunay tesselation with

application to Voronoi polytopes. Computer Journal, 24:167–172, 1981.

[58] R. Williams. Adaptive Parallel Meshes with Complex Geometry. Numerical

Grid Generation in Computational Fluid Dynamics and Related Fields, 1991.

45


