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A Load Balancing Framework for
Adaptive and Asynchronous Applications

Kevin Barker, Andrey Chernikov, Nikos Chrisochoides, and Keshav Pingali

Abstract—This paper describes the design of a flexible load balancing framework and runtime software system for supporting the

development of adaptive applications on distributed-memory parallel computers. The runtime system supports a global nhamespace,
transparent object migration, automatic message forwarding and routing, and automatic load balancing. These features can be used at
the discretion of the application developer in order to simplify program development and to eliminate complex bookkeeping associated
with mobile data objects. An evaluation of this system in the context of a three-dimensional tetrahedral advancing front parallel mesh
generator shows that overall runtime improvements of 15 percent compared to common stop-and-repartition load balancing methods,
30 percent compared to explicit intrusive load balancing methods, and 42 percent compared to no load balancing are possible on large
processor configurations. At the same time, the overheads attributable to the runtime system are a fraction of 1 percent of the total
runtime. The parallel advancing front method is a coarse-grained and highly adaptive application and therefore exercises all of the

features of the runtime system.

Index Terms—Dynamic load balancing, adaptive and irregular applications, runtime support software, multithreading, message
passing, parallel, distributed, and grid computing, scientific computing, parallel mesh generation.

1 INTRODUCTION

APPLICATION codes in computational science and engi-
neering are concerned largely with simulating physical
phenomena that are governed by partial differential
equations (PDEs). A large proportion of these codes are
adaptive in the sense that the field solution of the PDE drives
changes to the geometry of the domain on which the PDE is
defined. For example, crack growth in macroscopic struc-
tures under stress may be governed by the equations of
elasticity and plasticity, which can be solved using the
finite-element method. As the crack grows, the geometry of
the problem obviously changes, so the domain needs to be
remeshed locally after every crack growth step. For
efficiency, the mesh generation and refinement must be
done in parallel, but it is a very irregular process which, due
to adaptivity, is difficult or impossible to efficiently load-
balance statically.

By design, message-passing libraries such as MPI [33]
and PVM [6] provide only point-to-point communication
and global reduction operations. Consequently, the devel-
opment of adaptive applications, such as three-dimensional
(3D) finite-element mesh generation, on a bare-bones
messaging layer can be a daunting task. In response to this
need, the scientific computing community has developed
application-specific runtime libraries and software systems
[5], [16], [23], [27], [28], [38]. These systems are designed to
support the development of parallel multiphase computa-
tions in which computationally intensive phases are
separated by computations such as global error estimation
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that require global synchronization. Load-balancing is
accomplished by dynamically repartitioning the data after
the global synchronization phases [36]. Throughout this
paper, we call this traditional way of load balancing the
stop-and-repartition method.

In our experience, the stop-and-repartition approach is
not well-suited for applications such as adaptive mesh
generation and refinement because the synchronization
overhead can overwhelm the benefits of improved load
balance. This problem is exacerbated as the number of
processors in the parallel system grows. In this paper, we
describe the Implicit Load Balancing (ILB) component of the
Parallel Runtime Environment for Multicomputer Applica-
tions (PREMA), which is an alternative approach to
traditional load balancing libraries and it is based on

1. single-sided communication similar to that provided
by Active Messages [35],

2. a global name space,

3. transparent object migration and automatic message

forwarding for mobile objects, and

4. a framework which allows for the easy and efficient

implementation of customized dynamic load balan-
cing algorithms,
along with a suite of commonly used dynamic load
balancing strategies such as Diffusion [14], Gradient [25],
and Multilist Scheduling [37].

Mobile Schedulable Objects (Section 3.1) permit the
application to be load-balanced dynamically without
sacrificing locality of reference—when a computational
task is migrated from one processor to another, the data it
references can be moved along with it. There is no global
synchronization phase; data is not repartitioned in bulk, but
instead is migrated across processors in response to
computational load balancing. We have several man-years
of experience in using this system and our experience
suggests that the programming abstractions provided by
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this system improve programmer productivity. For exam-
ple, a first-year graduate student with little parallel
programming experience was able to parallelize a sequen-
tial 3D mesh generator with about four months of part-time
effort [10].

The rest of this paper is organized as follows: Section 2
discusses the software foundation upon which the ILB is
constructed and the programming model. Section 3 dis-
cusses the load balancing (i.e., ILB) framework and its
components. Section 4 discusses the parallel 3D advancing
front mesh refinement program that we use to evaluate ILB
performance. Section 5 then analyzes the results of our
experiments. Section 6 puts our research in the context of
work done in the community, while Section 7 concludes
with some future plans.

2 SOFTWARE FRAMEWORK AND
PROGRAMMING MODEL

The PREMA system is organized into layers according to the
principle of separation of concerns. The Data Movement and
Control Substrate (DMCS) [4] serves as the foundation and
isolates the higher levels of the runtime system from the
idiosyncrasies of the underlying hardware, operating sys-
tems, and low-level communication subsystems. As such,
DMCS is the only software layer which needs to be ported
when migrating the PREMA system from one platform to
another. We have therefore designed DMCS with portability
as a primary goal, and have successfully ported our software
to Linux, Solaris, and Windows platforms, using LAM/MPI,
MPICH, and MPIPro for low-level communication (for
detailed performance data, see [11]). Also, it should be noted
that, while we have used MPI as our low-level communica-
tion substrate, this is not required.

At the same time, DMCS ensures that a consistent
programming model, built on single-sided communication
and remote procedure invocation, is presented to the higher
system and application software layers. DMCS’s remote
service requests, communication operations which invoke
user-defined handler functions on target processors, form
the basis for both data migration and computation invocation
in the PREMA system. In addition, DMCS messages may be
associated with tags (as with MPI [17]), allowing the
application or runtime system to break incoming remote
service requests into categories and receive messages accord-
ing to the category to which it belongs. This ability is
particularly useful when the runtime system must separate
load balancing messages from application messages, as will
be discussed later.

The Mobile Object Layer (MOL) [12] extends DMCS by
providing a global namespace and the mobile object construct.
Mobile objects are application-defined data objects and are
not restricted to exist in contiguous memory. A mobile object
may be referenced by any processor in the parallel system by
using its associated mobile pointer, which is a system-wide
unique identifier. The MOL’s message operation extends the
DMCS remote service request by allowing applications to
send a message to invoke computation to the location of a
mobile object, regardless of where it is in the parallel system.
In this way, applications can deal directly with data objects
without the tedious bookkeeping associated with maintain-
ing up-to-date knowledge of each data object’s current
location.
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The MOL combines message forwarding, an efficient
distributed directory structure, and message sequence
numbers to ensure that messages arrive in order at their
target mobile objects, even if the target is in the process of
migration (note that messages are only ordered with respect
to their senders; two messages sent from two separate sources
may arrive in arbitrary order). When a processor sends a
message to a mobile object, it sends the message to the
(possibly out-of-date) location given by its local directory. If
this location turns out to be incorrect, the MOL forwards the
message toward the real location." Message forwarding will
trigger an update of the directory on the processor on which
the message originated; in this way, only those processors
which show an explicit interest in the location of a mobile
object are made aware of the object’s current location,
reducing directory update overheads.

The PREMA system encourages a data-centric program-
ming model in which application data is broken into
N chunks or work units, where N > P and P is the number
of available processors. This is known as over-decomposition
[6]. The value chosen for N can have an impact on overall
application performance; enough work units must be
present for there to be available work for migration during
load balancing.> A more detailed discussion of the trade offs
between work unit size, number of work units, and
processor count is presented in Section 5.

Parallel computation then consists of a series of opera-
tions on particular data objects, where data is accessed
through PREMA’s message operation regardless of whether
the data is located on the local or a remote processor. In this
model, a typical section of code which iterates over an array
of method invocations on local objects will be replaced by a
loop sending messages to possibly remote objects. The
application therefore has a consistent mechanism to access
data, be it local or remote, while the runtime system is able
to bind pending computation to corresponding data so the
two may be migrated together during load balancing.

3 LoAD BALANCING LIBRARY

PREMA'’s ILB component library is built using the frame-
work provided by DMCS and the MOL and provides
automatic and transparent dynamic data (and, implicitly,
computation) migration in response to perceived runtime
workload imbalances. The ILB is designed not just as a
single load balancing algorithm or family of algorithms, but
as a framework which supports the rapid development and
deployment of algorithms, allowing researchers to experi-
ment without modification of existing application code.
This supports our observation that there is not a single load

1. While it is proven that the message will make progress toward its
destination, it is possible to devise a pathological case in which the mobile
object will migrate ahead of the forwarded message. However, this points to
an error in the application or load balancing algorithm and not to a flaw
within the MOL.

2. Our results in this paper demonstrate that, when N is chosen to be as
small as a factor of five greater than P, load balancing quality is excellent.
However, the value of N should be determined with respect to other
parameters like size and computation of work units, inter and intranode
bandwidth, cache performance, message polling versus message interrupts,
and scheduling policies. This is a difficult optimization problem with
multiple constraints which we will be able to study using the software
infrastructure we present in this paper.
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balancing method which is optimal on all platforms for all
problems. However, we have also implemented several of
the more common load balancing methods, such as
Diffusion [14], Work-Stealing [7], and a variation on
Multilist [37] scheduling.

The ILB’s architecture is designed to fulfill two objec-
tives. First, we want to provide an evolutionary migration
path for parallel applications written using the MOL.
Specifically, for applications written using mobile objects
and the MOL'’s messaging mechanism, making use of the
ILB’s functionality should involve minimal changes to
existing application code. This means that the programming
model and programming interface provided by the MOL
and ILB should closely mirror one another.

Our second objective is to allow as much flexibility as
possible in the range of load balancing policies implemen-
table by the ILB library. To achieve this, we have isolated
the application from the load balancer’s decision making
Scheduler module with a simple and flexible interface.
Scheduler modules may be easily implemented and ex-
changed without propagating changes to application code,
allowing for quick experimentation during development.

3.1 Schedulable Objects

For load balancing, it is necessary to extend the MOL’s
mobile object concept in order to associate application-
defined data with its associated pending computation;
migrating data from processor to processor will thereby
implicitly migrate computation in order to balance work-
load. This coupling is implemented via Schedulable Objects.

In order to gather the information necessary to make
accurate load balancing and scheduling decisions, the ILB
interacts with Schedulable Objects through several call-back
routines defined by the application and registered with the
runtime system. Routines are used to gather load informa-
tion, as well as calculate the difficulty in migrating an
object. This information is used, along with a third call-back
routine, to calculate an affinity map, which specifies the
processor which would benefit most from the migration of a
particular Schedulable Object. Through these call-back
routines, the application is able to prioritize the factors that
influence load balancing decisions, such as minimizing data
migration, maximizing the smoothness of the workload
distribution, or maintaining colocality of objects that may
share data dependencies.

Because Schedulable Objects are application-defined and
are not restricted to be of a certain size or exist in
contiguous memory, it is impossible for the runtime system
to know how they should be migrated from processor to
processor. Therefore, three additional call-back routines are
necessary: one to pack the Schedulable Object into a
contiguous buffer prior to transport, one to unpack the
Schedulable Object from a buffer, and one to return the size
of the Schedulable Object in bytes.

3.2 Scheduling

The ILB library is designed so that applications can have the
ability to quickly and easily create and adopt new load
balancing strategies with minimal changes to existing
application code. It is the Scheduler module that provides
this flexibility. The Scheduler module encapsulates the load
balancing decision making and data migration functionality
into a single entity that is isolated from the rest of the PREMA

system and user application by a well-defined simple
interface. While its primary purpose is to schedule the
execution and migration of Schedulable Objects during
runtime, the exact policies used to make scheduling decisions
are left to the individual Scheduler implementation.

In order to give some idea as to the breadth of scheduling
policies that are implementable from within our framework,
we have implemented several examples of well-known
methods. These fall within three categories: Diffusion [14],
Master-Worker [7], and Multilist [37]. Diffusion scheduling
divides the processor pool into small, overlapping neigh-
borhoods and begins when the local work load falls below a
predefined watermark. The underloaded processor requests
work levels from its neighbors and is then able to determine
how many work units to request from each. Because
neighborhoods overlap, work will eventually diffuse
throughout the system. In addition, it is possible for
neighborhoods to change once no neighbors are able to
contribute work. An optimization is known as work-
stealing and assigns a single neighbor to each processor.
In this case, processors skip the data gathering phase.

Master-Worker scheduling policies begin with all work
units located on a single “master” processor. This processor
does not perform computation for the application, but acts as
a server to send work units to worker processors. All other
processors are workers, and request work from the master
once the local workload falls below a predefined watermark.

Finally, we have implemented a Prioritized Multilist
(PML) scheduler. Each of the P processors maintains
P physical lists which contain the local work units sorted
according to the values contained in the affinity maps
dynamically calculated for that work unit (Section 3.1). In
addition to the P physical lists, each processor maintains a
priority list of P elements. The ith entry in processor p’s
priority list denotes the value of the pth entry in the affinity
map of the Schedulable Object at the head of the pth
physical list on processor ¢. In our implementation, we
execute local work units until the available number falls
below a predefined watermark. At this point, the priority
list is consulted in order to determine which processor
should act as the source for load transfer.

Several issues must be dealt with in order to efficiently
implement these schedulers. For instance, the choice of
the “low watermark” plays an important role in the
performance of the algorithm, as does determining how
many work units to migrate from one processor to
another during each load balancing iteration. In addition,
it is often difficult for developers to accurately predict
appropriate values for watermarks as the optimal choice
depends not only on application characteristics, but also
on the system on which the application is executing.
System characteristics such as network latency and
bandwidth, as well as the number of available processors,
can influence algorithm/watermark pairing.

3.3 Multithreading

Although the scheduling algorithms discussed so far are
well known in the literature, we found several problems
when attempting to adapt them to our specific target
application types. The 3D advancing front mesh generation
program we employ makes use of a relatively small number
of coarse grained work units. In other words, & (where N is
the number of work units and P is the number of
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processors) is often less than 10 and each work unit can take
from several minutes to an hour to execute. Second, it is
often the case, as it is in this instance, that an application
being parallelized cannot be modified to include polling
operations at strategic locations, either due to code
complexity, licensing, or the fact that only precompiled
libraries are made available. This is problematic because, as
we have previously described, polling is necessary in order
to receive and process both application messages and
system-generated load balancing requests and information
update messages. These factors together mean that it is
often the case that load balancing requests and information
are out-of-date by the time they are processed, leading the
runtime system to make poor load balancing decisions.

We have found that a multithreaded approach nicely
solves this problem. Our strategy is to spawn a “polling
thread” whenever a long-running work unit is executing.
This thread polls the network for load balancing messages
at some predefined interval and allows each processor to
maintain up-to-date information regarding system status, as
well as satisfy any pending load balancing requests in a
timely manner. Once the work unit has finished execution,
the polling thread is killed and only a single application
thread remains.

However, there are several requirements that must be
met. First, the application code itself must remain single
threaded and, therefore, the multiple threads must be
confined to the runtime system only. As a result, any
polling operations from within the polling thread must
service only load balancer system messages and never
application messages. Tagging the load balancer’s messages
with a system-reserved tag allows us to accomplish this.
Second, care must be taken to ensure that the overhead
associated with the polling thread does not dominate the
overall runtime. This can lead to the case in which the load
balancing is of good quality, but the overall runtime
actually increases. We do this by adjusting the interval at
which the polling thread “wakes up” and checks for
messages. We have found that polling roughly once a
second provides good quality for the load balancing
without a negative impact on application performance.

4 LoAD BALANCING PARALLEL MESH GENERATION

Parallel mesh generation is an important adaptive applica-
tion and a good candidate to demonstrate the effectiveness
of PREMA'’s load balancing component. To this end, we
have implemented a 3D parallel advancing front technique
(PAFT) method presented in [29].

The key steps of the PAFT are: 1) Generate the dual graph
of the submeshes and partition the graph into P subgraphs,’
2) load each subgraph in parallel into the available processors
and create Schedulable Objects from each of its vertices (i.e.,
submeshes), and 3) apply an advancing front mesh genera-
tion algorithm [26] on every submesh. At the end of these
steps, the mesh is ready for parallel finite analysis. Said et al.
[29] present a similar approach; however, they use a
centralized master /worker load balancing model.

3. This is a process known as over-decomposition, which was described
in Section 2. For all of our experiments, we partition the mesh into N = 640
submeshes. We build the dual-graph of the submeshes and, after the
partitioning of the dual-graph, we generated P subgraphs with N/P
vertices per subgraph. Each submesh is a three-dimensional region of the
original domain; the submeshes do not overlap and their union is equal to
the original domain.
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During the advancing front mesh generation phase, a
dynamicload balancing algorithm is utilized to migrate work
units in response to load imbalance caused by different levels
of refinement in the geometry. In order to evaluate the
effectiveness of the PREMA system, we have designed the
PAFT mesh generation program to control data migration
either explicitly or leave the decision making and data
migration up to PREMA for implicit load balancing.

Explicit work stealing [7] begins with the PAFT mesher
maintaining a queue of local submeshes pending refine-
ment. During refinement, each processor performs three
steps: local region refinement, load balancing, and polling
the network. After refining local regions, a processor checks
to see if its pending work load has fallen below some
predetermined threshold. If so, the processor enters a work-
seeking state in which it requests work from other processors
in a round-robin fashion. The processor then polls the
network for responses to these work requests. Iteration
through these steps continues until there is no work left
awaiting execution.

A second method which falls into the explicit load
balancing category is to use a stop-and-repartition scheme
using parallel Metis [30]. As with the other load balancing
methods under consideration, load balancing begins when
a processor’s workload falls below a predetermined thresh-
old.* At this point, all processors in the parallel system
synchronize and exchange workload information. Metis’
LDiffusion algorithm is then used to perform the decision
making for migration work units in order to restore load
balance.

Implicit load balancing places the load balancing decision
making and data migration burden on the runtime system.
The algorithms employed by the ILB load balancing module
have been described in Section 3.2. After the initial distribu-
tion of submeshes and creation of Schedulable Objects, a
single message is sent to each region invoking the mesh
refinement stage of the algorithm.

5 PERFORMANCE EVALUATION

We begin with an examination of the effects of over-
decomposition on application performance and on the
overheads incurred by the runtime system. Three para-
meters play a role in this study: The number of work units
created by the decomposition (IV), the number of processors
available (P), and the weights of the individual work units.
We have developed a synthetic benchmark program which
begins by dispersing work units to the available processors.
Computation is then invoked via PREMA’s messaging
mechanism. Once computation involving a data object is
complete, a notification is sent to the root processor; once all
notifications have been received, the application terminates.
Implicit load balancing is utilized during runtime when
necessary.

Fig. 1a depicts the time spent inside the runtime system
as both N and P vary, excluding the initialization and
termination stages of the program.’ In all processor
configurations (ranging from 8 to 128 processors), PREMA
overhead decreases as the number of work units (N)
increases until a minimum is reached. After this point,

4. The thresholds used for all load balancing methods are identical.
5. We have chosen to exclude these stages because they are highly
application dependent.
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Fig. 1. Effects of varying processor count (P), work unit count (IV), and work unit weight on PREMA overheads: (a) The runtime overhead in terms of
seconds as the total number of work units increases on varying numbers of processors. (b) The total time spent in the PREMA system as the
average weight of each work unit varies for 2,048 work units. (c) The total time spent in the PREMA system as a percentage of computation time as

the average weight of each work unit varies for 2,048 work units.

PREMA overhead grows with N. This indicates there is a
point at which further over-decomposition is actually
detrimental to overall performance; in our study, optimal
performance was achieved with roughly 32 work units
initially allocated for each processor.

Fig. 1b and Fig. 1c show the results of varying the
computational workload in each work unit (note that this in
turn affects the overall computation performed by the
program). Varying the work units from roughly 50 million
operations to 800 million operations results in an increase in
the amount of time spent within the runtime system by
slightly less than half a second. However, the ratio between
this time and the computation time actually decreases. This
indicates that the ILB load balancing system is robust given
changes in work unit sizes.®

We now evaluate PREMA’s performance with the PAFT
application in terms of three metrics: 1) overall application
runtime, 2) the quality of the workload distribution (mini-
mizing the standard deviation of mesh refinement times), and
3) overhead attributable to the runtime system itself.

Fig. 2a compares the overall runtimes of all load
balancing methods (as well as no load balancing) on several
processor configurations.” On 32 processors, the ILB’s
Diffusion Scheduler module provides an improvement of
43 percent over no load balancing, 12 percent over load
balancing with stop-and-repartition methods, and roughly
13 percent over explicit load balancing. On 64 processors,
these numbers are 39 percent, 9 percent, and 20 percent,
while, on 128 processors, they are 42 percent, 15 percent,
and 30 percent. In Fig. 2b, we compare the results of implicit
load balancing with and without multithreading. Particu-
larly in the cases of work stealing and diffusion, having
multiple system threads can provide performance increases
of over 40 percent. These numbers represent a significant
overall performance increase over methods that are
commonly in use today.

Our second metric is the quality of the workload
distribution. In Fig. 2c, we see a processor-by-processor
breakdown of the PAFT program’s performance on a
128 processor system with no load balancing. Most of the
computation is clustered within processors toward the
“front” of the system (processors with IDs 0 through 31),

6. We have used the Work Stealing Scheduler implementation for these
tests; many details are dependent upon the scheduler implementation.

7. The test platform on which we conduct our experiments consists of
333MHz Ultra SPARC 2i machines, connected by Fast Ethernet and utilizing
the LAM [24] implementation of MPL

leaving ample opportunity for effective load balancing.
Fig. 2d provides the results for load balancing using a stop-
and-repartition algorithm. Workload is distributed fairly
evenly across the processors (mesh refinement time has a
standard deviation of roughly 51, compared with 305 for no
load balancing), however, from the figure, we can see that
synchronization and partition computation causes a large
amount of overhead (up to roughly 11 percent of the overall
runtime) which can be avoided.

The last row of Fig. 2 shows the results of two explicit
load balancing methods. Fig. 2e, the Master/Worker
method, is the more successful of the two in terms of data
distribution quality, balancing work load with a standard
deviation of roughly 83. However, initialization costs
impose a large penalty which hurts overall runtime. This
can be avoided by using a “pipelining” method to read in
the data objects, effectively overlapping I/O with computa-
tion on the worker nodes. However, judging from the
workload distribution, there is still room for performance
improvements. In addition, Master/Worker type algo-
rithms suffer from another shortcoming: With iterative
applications which may have several phases of mesh
refinement, the algorithm will need to be “reset” at the
beginning of each phase, meaning all data objects will have
to be gathered on the Master processor.

Fig. 2f shows the results of load balancing with the
explicit application-managed work stealing method. This
method suffers from the same problems as the single-
threaded implicit methods in that polling cannot occur
during the execution of a work unit and, therefore, load
balancing information arrives late and out-of-date. An
underloaded processor may request work from a remote
node that is currently executing a work unit and will not
receive a reply until that work unit is finished. Conse-
quently, most nodes spend a great deal of time idle. The
ultimate result is that not many work units migrate to the
underloaded nodes, as evidenced by a mesh refinement
standard deviation of 246.

Fig. 3 contains processor-by-processor breakdowns for
both single and multithreaded implicit load balancing
methods implemented using PREMA’s ILB framework.
Having multiple threads in the runtime system clearly
provides a performance benefit; with the diffusion method
(row 2), overall runtime decreased by 41 percent compared
to the single-threaded counterpart. Similar results can be
seen in the case of work stealing (row 1). In addition,
workload distribution quality is increased, compared with
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Fig. 2. Overall performance (in (a) and (b)) of 11 different load balancing methods implemented within PREMA using ILB and traditional libraries like
Metis. (c) Breakdown data for no load balancing. (d) Stop-and-repartition load balancing. Two explicit methods: (e) Master/worker and (f) work-

stealing on 128 processors.

both repartitioning and explicit load balancing methods.
The standard deviation of mesh refinement time with the
multithreaded implicit work stealing method is roughly 27,
while, with diffusion, it drops to 25.

Note that less dramatic results are obtained with the
multilist (PML) and the Master/Worker scheduling meth-
ods. In the case of the PML, this is most likely due to the
large number of information and update messages needed.
Because processors are not divided into small “neighbor-
hoods,” each processor receives load updates and may
receive work requests from every processor in the system,
potentially leading to a glut of system messages and
performance degradation. In the case of the Master/Worker
policy, workload is well balanced in the single-threaded

case; the addition of multiple system threads does nothing
to improve this. However, it does allow the Master
processor to also act as a Worker.

Finally, we show that the overhead imposed by the
runtime system is small and does not negatively impact
overall application performance. Table 1 summarizes the
overheads caused by PREMA according to several different
categories. In all cases, overhead contributes significantly
less than 1 percent to the overall runtime.

6 RELATED WORK

Because of the irregular and adaptive nature of the
applications we wish to optimize, we will restrict our
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Fig. 3. Breakdown data for multithreaded (left) and single-threaded (right) implicit work stealing ((a) and (b)), diffusion ((c) and (d)), multilist ((e) and

(f)), and master/worker methods ((g) and (h)) on 128 processors.

discussion in this section to those load balancing software
projects which dynamically balance application workload.
Since the goal of this research is not to discuss yet another
load balancing strategy and its implementation, but instead
to present a runtime software framework which can be used
to quickly develop and easily evaluate customized load
balancing algorithms, we will focus on this area in
contemporary research.

In particular, we wish to distinguish our research using
six criteria, shown in Table 2.

1. Support for data migration. Migrating processes or
threads adds to the complexity of the runtime
system and is often not portable. Migrating data

and thereby implicitly migrating computation is a
more portable and simple solution.

2. Support for explicit message passing. Message
passing is a programming paradigm that developers
are familiar with and the Active Messages [35]
communication paradigm we use is a logical exten-
sion to that. Explicit message passing is also
attractive because it does not hide parallelism from
the developer.

3. Support for a global namespace. A global namespace
is a prerequisite for automatic data migration;
applications need the ability to reference data
regardless of where it is in the parallel system.
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TABLE 1
Overheads Imposed by Multithreaded Runtime System on 128 Processors

Load Min/Max Std PREMA Overhead
Balancing Refinement | Dev | Poll Thr. | Packing [ Msg. Send | Call-back | Sched. | Prent.
None 487/1332 sec | 305 - - - - -
Stop & Repart. 499/786 sec 51 - - - - -
ILB W.S. 635/775 sec 27 0.1681 sec | 0.0074 sec 0.0018 sec 0.0063 sec 0.0019 sec 0.00023%
ILB Diffusion 632/765 sec 25 0.2080 sec | 0.0057 sec 0.0026 sec 0.0053 sec 0.0670 sec 0.00037%
ILB PML 411/1043 sec 147 0.9669 sec | 0.0351 sec 0.0021 sec 0.0108 sec 1.0893 sec 0.00200%
ILB M.W. 622/775 sec 30 0.5377 sec | 0.2227 sec 0.0111 sec 0.2115 sec | 0.000004 sec | 0.00092%

4. Single-threaded application model. Presenting the
developer with a single-threaded programming
model greatly reduces application code complexity
and development effort.

5. Automatic load balancing. The runtime system
should migrate data or computation transparently
and without intervention from the application.

6. Customizable load balancing. It cannot be said that
there is a “one size fits all” load balancing algorithm;
different algorithms perform well in different circum-
stances. Therefore, users need the ability to easily
develop and experiment with different application-
specific load balancing strategies without the need to
extensively modify their application code. This is in
contrast to the strategy taken by libraries such as
DRAMA [5], which provide several predefined load
balancing or repartitioning algorithms but no facility
to design and implement new strategies.

Several systems, such as Split-C [13], provide the basic
support for a global namespace. However, Split-C is designed
for applications with no data migration or else the user has to
explicitly maintain the consistency of the namespace. An
alternative approach can be found in systems such as Amber
[9], Emerald [20], and COOL2 [1]. However, such systems
often rely on a scheme of partitioning the virtual address
space, with parallelism expressed through the features

provided in a new programming language. This approach
raises the cost associated with using the system, forcing
developers to commit to a new language which may or may
not be supported in the future. Also, while this functionality
provides the needed infrastructure for load balancing, none
of these systems assume responsibility for the decision
making associated with automatic data migration.

Systems such as VDS [15] and Millipede [18] provide
support for automatic dynamic load balancing through the
dispersion and migration of computation threads. This is in
contrast to the single-threaded programming model sup-
ported by PREMA. We believe that a single-threaded model
not only eases the development of new application codes,
but makes the porting of existing codes to the PREMA
environment easy as well. However, because PREMA
incorporates multiple threads in the runtime system, we
are able to achieve the quality of load balancing available
with multithreaded systems.

Systems such as the C Region Library (CRL) [19]
implement a shared memory model of parallel computing.
Parallelism is achieved through accesses to shared regions
of virtual memory. The message passing paradigm we
employ explicitly presents parallelism to the application. In
addition, PREMA does not make use of copies of data

TABLE 2
Software Systems that Support Functionality Similar to the PREMA System

Message
Passing

System Data

Name Migration Space

Global Name

Auto. Load
Balancing

Customizable Load
Balancing

Supports Single-
Threaded Model

Orca [3] .

Split-C [13]

Multipol [32]

CRL [19]

Cilk [7]

Amber [9]

Emerald [20]

Treadmarks [2]

COOL2 [1]

CHAOS++ [8]

VDS [15]

Millipede [18]

Chare Kernel [31]

CHARM++ [21]

DRAMA [5]

PLUM [27]

Zoltan [16]

JOVE [34]

PREMA/ILB
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objects, removing much of the complexity involved with
data consistency and read/write locks.

Zoltan [16] and CHARM++ [21] are two systems with
similar characteristics to PREMA. Zoltan provides graph-
based partitioning algorithms and several geometric load
balancing algorithms. Because of the synchronization re-
quired during load balancing, Zoltan behaves in much the
same way as other stop-and-repartition libraries whose
results are presented in this paper. CHARM++ is built on
an underlying language which is a dialect of C++ and
provides extensive dynamic load balancing strategies. How-
ever, the pick-and-process message loop guarantees that entry-
point methods execute “sequentially and without interrup-
tion” [22]. This may lead to a situation in which coarse-
grained work units may delay the reception of load balancing
messages, negating their usefulness, as was seen with the
single-threaded PREMA results presented in Figs. 3b and 3d.

7 CONCLUSIONS AND FUTURE WORK

We have presented the Implicit Load Balancing (ILB)
component of the PREMA runtime system and demon-
strated its effectiveness in balancing the coarse-grained
computation of a parallel 3D advancing front mesh
refinement program. We have demonstrated performance
improvements of 15 percent over traditional stop-and-
repartition methods, 30 percent over intrusive explicit load
balancing methods, and 42 percent over no load balancing
on configurations of 128 processors. In addition, we have
shown that the overhead caused by the PREMA runtime
system is negligible, adding only a small fraction of
1 percent to the overall runtime.

Aside from these performance benefits, we have given an
indication of the flexibility of the PREMA system by
implementing several load balancing policies. The four
policies shown here scratch the surface of the scheduling
methods possible.

While the scheduling policies described here are ade-
quate for use with the parallel advancing front mesh
refinement program, our next goal is to extend these
methods and the ILB framework in order to take into
consideration object affinities when making load balancing
decisions. It is often the case that dependencies will exist
between data objects; colocating these objects proves
beneficial to runtime performance. Knowledge of such
dependencies must be incorporated into the scheduling
policy in order to extend the class of applications which can
derive maximum benefit from PREMA. PREMA will be the
vehicle to investigate such scheduling policies.
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