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parallel algorithm is asynchronous with small messages which can be aggregated and exhibits low
communication costs. On a heterogeneous cluster of more than 100 processors our implementation
can generate over one billion triangles in less than 3 minutes, while the single-node performance
is comparable to that of the fastest to our knowledge sequential guaranteed quality Delaunay
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1. INTRODUCTION

A number of applications which model complex physical and biological phenomena
require fast construction of very large two-dimensional meshes. Sometimes even
three-dimensional simulations make use of two-dimensional meshes, as is the case
with the direct numerical simulations of turbulence in cylinder flows with very large
Reynolds numbers [Dong et al. 2004] and the coastal ocean modeling for predicting
storm surge and beach erosion in real-time [Walters 2005]. In both instances, planar
meshes are generated in the xy-plane and replicated in the third dimension, which
is the z-direction in the case of cylinder flows and bathemetric contours in the
case of coastal ocean modeling. With the increase of the Reynolds number, the
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2 · Andrey Chernikov and Nikos Chrisochoides

size of the mesh grows in the order of Re9/4 [Karniadakis and Orszag 1993], which
motivates the use of parallel distributed memory mesh generation algorithms. The
accuracy and the convergence of the numerical solution strongly depends on the
size and the shape of mesh elements, see e.g. [Shewchuk 2002b] and the references
therein. In this paper, we present a parallel guaranteed quality Delaunay mesh
generation algorithm, which allows to satisfy user-defined constraints on triangle
size and shape.

The parallel mesh generation procedure we present in this paper decomposes the
original mesh generation problem into N smaller subproblems which are solved in
parallel, see [Chrisochoides 2005] for a survey on parallel mesh generation. The
coupling of the subproblems determines the intensity of the communication and
the degree of dependency (or synchronization) between them. Our algorithm is
weakly coupled, i.e., asynchronous with small messages, and exhibits low commu-
nication costs. This paper completes a series of four different parallel mesh gen-
eration classes of methods that were developed in our group: (1) tightly coupled
published in [Chrisochoides and Nave 2003; Nave et al. 2004], (2) partially coupled
in [Chernikov and Chrisochoides 2004b; 2005; 2006a; 2006b], (3) weakly coupled
to be presented in this paper, and (4) decoupled in [Linardakis and Chrisochoides
2006; 2005].

The tightly coupled method [Chrisochoides and Nave 2003; Nave et al. 2004] is the
first to our knowledge practical provably-good parallel mesh refinement algorithm
for polyhedral domains. This approach is based on the speculative execution model,
i.e., rollbacks can occur whenever the concurrent insertion of two or more points can
lead to an invalid mesh. Although more than 80% of the overhead due to remote
data gather operations is masked, the experimental data suggest only O (log P )
speedup, P being the number of processors. In contrast, the speedup of the Parallel
Constrained Delaunay Meshing (PCDM) algorithm presented in this paper is close
to O (P ).

In order to eliminate communication and synchronization, Linardakis and Chriso-
choides [Linardakis and Chrisochoides 2006] developed a Parallel Domain Decou-
pling Delaunay (PD3) method for 2-dimensional domains. The PD3 is based on
the idea of decoupling the individual submeshes so that they can be meshed in-
dependently with zero communication and synchronization. In the past similar
attempts to parallelize Delaunay triangulations and implement Delaunay based
mesh generation were presented in [Blelloch et al. 1996; Galtier and George 1997].
However, in [Linardakis and Chrisochoides 2006; 2005] the authors solve some of
the drawbacks and improve upon the previously published methods, e.g., with re-
spect to the existence of the domain decomposition. The PD3 algorithm consists
of two major components: the medial axis domain decomposition (MADD) and
the boundary discretization. The domain decomposition step employs a discrete
medial axis transform to divide the original domain Ω into a set of subdomains
{Ωi | i = 1, . . . , N}, such that the artificially created boundaries of subdomains
are suitable for the subsequent guaranteed quality parallel meshing. In partic-
ular, the boundaries do not create very small angles and allow to achieve fairly
small surface-to-volume ratio. During the boundary discretization step, additional
(Steiner) points are inserted on the boundaries with the goal of satisfying the ter-
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mination condition of Ruppert’s Delaunay refinement algorithm [Ruppert 1995].
The spacing between the points is chosen to meet the worst-case theoretical bound
which assures the termination of the Ruppert’s algorithm without introducing any
additional points on the boundaries. In the present paper, we describe an algorithm
which refines the boundaries simultaneously with the interiors of the subdomains
at the cost of introducing tolerable asynchronous communication. This allows to
insert only those points along the boundaries that are dictated by the generation of
the triangular elements inside the subdomains and to achieve optimal size meshes
for the given quality criteria.

In [Chernikov and Chrisochoides 2004b; 2006b] we presented a theoretical frame-
work and the experimental evaluation of a partially coupled parallel Delaunay re-
finement (PDR) algorithm for the construction of the uniform guaranteed quality
Delaunay meshes. We then extended the PDR approach [Chernikov and Chriso-
choides 2004a; 2005; 2006a] for the non-uniform case, when the element size is
controlled by a user-defined function. The PDR algorithm allows to avoid solving
the difficult domain decomposition problem and to use a simple block data dis-
tribution scheme instead. However, this induces noticeable communication costs,
which can be significantly lowered if an efficient domain decomposition procedure
is available. For the two dimensions, the domain decomposition problem has been
solved [Linardakis and Chrisochoides 2006]. The PCDM method we present in this
paper uses the MADD software [Linardakis and Chrisochoides 2005] to develop a
parallel mesh refinement code with lower communication costs than the PDR ap-
proach and smaller practical mesh size than the complete PD3 algorithm. Table III
in Section 5 shows the quantitative differences in the performance of the PCDM
and the PDR algorithms.

Blelloch, Hardwick, Miller, and Talmor [Blelloch et al. 1999] described a divide-
and-conquer projection-based algorithm for constructing Delaunay triangulations
of pre-defined point sets in parallel. The work by Kadow and Walkington [Kadow
and Walkington 2003; Kadow 2004a; 2004b] extended [Blelloch et al. 1996; Blel-
loch et al. 1999] for parallel mesh generation and further eliminated the sequential
step for constructing an initial mesh, however, all potential conflicts among con-
currently inserted points are resolved sequentially by a dedicated processor [Kadow
2004b]. The approach we present here eliminates this bottleneck by introducing
only messages between the nodes that refine adjacent subdomains.

Spielman, Teng, and Üngör [Spielman et al. 2001; Üngör 2002] presented the first
theoretical analysis of the complexity of parallel Delaunay refinement algorithms.
In [Spielman et al. 2004] the authors developed a more practical algorithm. How-
ever, the assumption is that the whole point set is completely retriangulated after
each parallel iteration [Teng 2004].

Chew [Chew 1987] presented an optimal O (n log n) time divide-and-conquer al-
gorithm for the construction of constrained Delaunay triangulations for a given set
of points and segments. Later, Chew, Chrisochoides, and Sukup [Chew et al. 1997]
used the idea of a constrained Delaunay triangulation to develop a parallel con-
strained Delaunay mesh generation algorithm. In this paper we present algorithm
improvements like the elimination of global synchronization, message aggregation,
termination detection algorithm described by Dijkstra [Dijkstra 1987], and effi-
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cient representation of split points as well as a new implementation that utilizes
a number of newly available software, such as the Medial Axis Domain Decom-
position library [Linardakis and Chrisochoides 2005], the Metis graph partitioning
library [Karypis and Kumar 1998], the Triangle Delaunay [Shewchuk 1996] trian-
gulator, and the Robust Predicates [Shewchuk 1997a]. Moreover, we evaluate the
algorithm and its most recent implementation on a large cluster of workstations
with more than 100 nodes. As a result, more than one billion triangles can be
constructed in less than three minutes.

In addition to the parallel Delaunay mesh generation methods that are directly
related to this work, there are many more classes of parallel mesh generation meth-
ods: (1) octree/quadtree based methods [de Cougny et al. 1994; Löhner and Ce-
bral 1999; Rypl and Bittnar 2001], (2) edge-subdivision based methods [Jones and
Plassmann 1994; Rivara et al. 2006], and (3) a class of parallel out-of-core meth-
ods [Isenburg et al. 2006; Kot et al. 2006]. In [Isenburg et al. 2006] the authors
compute a billion triangle mesh on a laptop in 48 minutes. Unfortunately, we can-
not utilize their approach because they construct triangulations of predefined point
sets, while we face a different problem, that of refining a mesh by computing and
inserting new points which help improve the quality of the elements. There are also
other parallel triangulation methods which include [Cignoni et al. 1995; Kohout
et al. 2005]. A more extensive review of parallel mesh generation methods can be
found in [Chrisochoides 2005].

In Section 2 we describe the guaranteed quality constrained Delaunay meshing
problem. Then we present our parallel algorithm in Section 3. Section 4 contains
selected software implementation details, and Section 5 presents our experimental
results. We summarize in Section 6.

2. CONSTRAINED DELAUNAY MESHING

In this section, we present a very brief description of a constrained Delaunay mesh
refinement kernel based on the Bowyer-Watson point insertion procedure, along
with the notation we use throughout the paper.

We will denote point number i as pi, the edge with endpoints pi and pj as e (pipj),
and the triangle with vertices pi, pj , and pk as △ (pipjpk). When the vertices of a
triangle are irrelevant, we will denote it by a single letter t. Let us call the open
disk corresponding to a triangle’s circumscribed circle its circumdisk.

Let V be a set of points in the domain Ω ⊂ R
2, and T be a set of triangles whose

vertices are in V . Then the triangulation (mesh) M of V is said to be Delaunay

if every triangle’s circumdisk does not contain points from V . Delaunay triangu-
lations have been studied extensively; see, for instance, [Shewchuk 1997b; 2002a;
Ruppert 1995; George and Borouchaki 1998; Chew 1989] and the references therein.
Among the reasons of the popularity of Delaunay triangulations are useful optimal-
ity properties (e.g., the maximization of the minimal angle) and the amenability to
the rigorous mathematical analysis.

Typically, a Delaunay mesh generation procedure starts by constructing an initial
Delaunay mesh, which conforms to the input vertices and segments, and then refines
this mesh until the element quality constraints are met. The applications that use
Delaunay meshes often impose two constraints on the quality of mesh elements: an
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upper bound ρ̄ on the circumradius-to-shortest edge ratio (which is equivalent to
a lower bound on the minimal angle [Miller et al. 1995; Shewchuk 1997b]) and an
upper bound ∆̄ on the element area.

The input to a planar triangular mesh generation algorithm includes a descrip-
tion of domain Ω ⊂ R

2, which is permitted to contain holes or have more than
one connected component. We will use a Planar Straight Line Graph (PSLG),
see [Shewchuk 1996], to delimit Ω from the rest of the plane. Each segment in the
PSLG is considered constrained and must appear (possibly as a union of smaller
segments) in the final mesh.

In this paper, we focus on parallelizing the Delaunay refinement stage, which is
usually the most memory- and computation-expensive. The general idea of Delau-
nay refinement is to insert points in the circumcenters of triangles that violate the
required bounds, until there are no such triangles left. We will extensively use the
notion of cavity [George and Borouchaki 1998] which is the set of triangles in the
mesh whose circumdisks include a given point pi. We will use the symbol C (pi) to
represent the cavity of pi and ∂C (pi) to represent the set of edges which belong to
only one triangle in C (pi), i.e., external edges.

For our analysis, we will use the Bowyer-Watson (B-W) point insertion algo-
rithm [Bowyer 1981; Watson 1981], which can be written as:

V ′ ← V ∪ {pi},

T ′ ← T \ C (pi) ∪ {△ (pipjpk) | e (pjpk) ∈ ∂C (pi)},
(1)

where M = (V, T ) and M′ = (V ′, T ′) represent the mesh before and after the
insertion of pi, respectively. The set of newly created triangles forms a ball [George
and Borouchaki 1998] of point pi, which is the set of triangles in the mesh that
have pi as a vertex.

Sequential Delaunay algorithms treat constrained segments differently from tri-
angle edges [Shewchuk 1997b; Ruppert 1995]. A vertex p is said to encroach upon

a segment s, if it lies within the open diametral lens of s [Shewchuk 1997b]. The di-
ametral lens of a segment s is the intersection of two disks whose centers lie on each
other’s boundaries and whose boundaries pass through the endpoints of s. When
a new point is about to be inserted and it happens to encroach upon a constrained
segment s, another point is inserted in the middle of s instead [Ruppert 1995], and
a cavity of the segment’s midpoint is constructed and triangulated as before.

A triangulation is said to be constrained Delaunay if the open circumdisks of its
elements do not contain any points visible from the interior of these elements [Shewchuk
1997b; Chew 1987; George and Borouchaki 1998]. The visibility between two points
is considered to be obstructed if the straight line segment connecting these points
intersects a pre-specified fixed (i.e., constrained) segment. For example, in Figure 1a
the segment e (p1p3) is constrained and the triangle △ (p1p2p3) is constrained De-
launay, even though it does not satisfy the original Delaunay criterion since the
point p4 is inside its circumdisk.

Our parallel constrained Delaunay meshing algorithm uses constrained segments
to separate the subdomains (Fig. 1b). Obviously, if the mesh inside each subdomain
is Delaunay, then the global mesh is constrained Delaunay. Hence, provided that
the domain decomposition is constructed, our task is to create a guaranteed quality
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Fig. 1. (a) △ (p1p2p3) is constrained Delaunay, but not Delaunay. (b) A part of the mesh for the
cylinder flow problem (see Fig. 8). The boundaries of the subdomains are composed of constrained

segments (bold lines). If the mesh inside each subdomain is Delaunay then the global mesh is
constrained Delaunay.

mesh for each of the subdomains and to ensure the conformity of the mesh along
the interfaces. Our parallel algorithm executes the B-W mesh refinement proce-
dure concurrently in each of the subdomains and maintains the set of constrained
segments along the boundaries. The boundary segments may be subdivided by the
insertion of their midpoints, in which case the neighboring subdomains are updated
by means of split messages. This way, the global mesh preserves its conformity
and the constrained Delaunay property.

3. THE PARALLEL ALGORITHM

3.1 Domain Decomposition

Chew et al. [Chew et al. 1997] list the following three requirements on the generation
of the artificial boundaries between the subdomains:

(i) The amount of work assigned to different processes should be approximately
equal1.

(ii) There should be no small gaps between the artificial boundaries, which can
lead to unnecessarily small triangles.

(iii) The artificial boundaries should not create small angles, which will unavoidably
be forced into the final mesh and cause the creation of poorly shaped triangles.

We would like to add two more requirements:

(iv) The total length of the boundaries which are shared between different proces-
sors should be as small as possible, so that the amount of the communication
among the subdomains could be decreased.

1However, with the development of the load balancing libraries (e.g., LBL [Barker et al. 2004]), a
good initial equidistribution of the workload has become less crucial. Such libraries shift the task

of mapping subdomains to processors from the initialization step to runtime, which allows the
parallel system to adapt its behavior in response to changing levels of refinement and processor
performance.
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PCDM({(Xi,Mi) | i = 1, . . . , N}, ∆̄, ρ̄, P , p)
Input: Xi are PSLGs that define the subdomains Ωi

Mi are initial coarse meshes of Ωi

∆̄ is the upper bound on triangle area

ρ̄ is the upper bound on triangle circumradius-to-shortest edge ratio
P is the total number of processes
p is the index of the current process

Output: Modified Delaunay meshes {Mi} which respect

the bounds ∆̄ and ρ̄

1 Compute the mapping κ : {1, . . . , N} → {1, . . . , P}
of subdomains to processes

2 Distribute subdomains to processes
3 Let {Ωi1 , . . . , ΩiNp

} be the set of local subdomains

4 for j = 1, . . . , Np

5 DelaunayRefinement(Xij
, Mij

, ∆̄, ρ̄, κ)

6 endfor
7 Terminate()

DelaunayRefinement(X , M, ∆̄, ρ̄, κ)

1 Q← {t ∈M | (ρ(t) ≥ ρ̄) ∨ (∆(t) ≥ ∆̄)}
2 while Q 6= ∅
3 Let t ∈ Q

4 BadTriangleElimination(X ,M, t, κ)

5 Update Q

6 endwhile

BadTriangleElimination(X ,M, t, κ)
1 pi ← Circumcenter(t)
2 if pi encroaches upon a segment s ∈ X
3 pi ← Midpoint(s)

4 RemoteSplitRequest(κ(Neighbor(s)), pi)
5 endif
6 C (pi)← {t ∈M | pi ∈ © (t)}
7 M←M\ C (pi) ∪ {△ (pipmpn) | e (pmpn) ∈ ∂C (pi)}

Fig. 2. A high level description of the algorithm.

(v) The number of subdomains (N) has to be much larger than the number of
processes (P ) to provide sufficient flexibility for a load balancing library (e.g.,
LBL [Barker et al. 2004]). When N ≫ P , we say that the domain is overde-

composed.

The purpose of requirement (iv) above is to minimize the communication of both
the parallel mesh generation and parallel finite element solver. However, in the case
of the parallel mesh generation only it can be re-phrased as: minimize split messages
which implies minimize the chances of encroachment which implies minimize (or
eliminate) the chances to introduce new points on the subdomain boundary. This
approach is followed in [Linardakis and Chrisochoides 2006], however requires a
priory and proper discretization of the subdomain boundary which leads to about
2% over-refinement.

All of the above mentioned requirements can be satisfied by the use of the MADD
algorithm [Linardakis and Chrisochoides 2005] followed by the mapping of the re-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



8 · Andrey Chernikov and Nikos Chrisochoides

Fig. 3. The PSLG representing the outline of the Chesapeake bay.

Fig. 4. The Chesapeake bay model decomposed into 1024 subdomains, which are mapped onto 8

processes. The assignment of subdomains to processes is shown with different colors.
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Fig. 5. If the inserted point p3 does not encroach upon any constrained edge, a cavity is constructed

and triangulated.

sulting subdomains to processes using a generic graph partitioning library.
First, we use the MADD to overdecompose the initial domain Ω into N subdo-

mains. In practice, it is sufficient to satisfy N ≥ 20P . Then, we solve the following
graph partitioning problem with the goal of distributing the subdomains among
the processes, so that the sum of the weights of the subdomains assigned to each
process is approximately equal, and the total length of the subdomain boundaries
which are shared between the processes is minimized. We construct a weighted
graph G = (V,E) such that

—every subdomain Ωi (i = 1, . . . , N) is represented by a vertex vi ∈ V , and the
weight of vi is set equal to the area of Ωi;

—every piecewise-linear boundary line which is shared by two subdomains Ωi and
Ωj is represented by an edge eij ∈ E, and the weight of eij is set equal to the
length of the line.

Graph G is then sequentially partitioned into P parts using the Metis graph par-
titioning library [Karypis and Kumar 1998] and the subdomains are distributed
among the corresponding processes. Since the number of vertices in the graph is
not very large, the use of a parallel graph partitioning procedure is not required.

3.2 Mesh Conformity and Message Passing

The conformity of the mesh along the boundaries of the neighboring subdomains
is assured by sending split messages each time a boundary edge is encroached and
subdivided (see Figures 5 and 6).

When a subdomain receives a split message from its neighbor, it is necessary
to identify the edge which has to be split and the triangle which is incident upon
this edge in the local data structure. This task is complicated by the fact that
split messages may arrive out of order due to subdomain migration performed
by a load balancing library (e.g., LBL [Barker et al. 2004]) and/or the underlying
communication substrate (e.g., CLAM [Fedorov and Chrisochoides 2004]).

For example, consider an initial constrained edge e (p0p1), which is shared by
subdomains A and B. In the beginning, all points on subdomain boundaries are
assigned unique identificators, such that there is no ambiguity whenever the refine-
ment of A or the refinement of B causes the split of e (p0p1) by a new point p2; it is
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Fig. 6. If the candidate point p4 encroaches upon a constrained edge e (p1p2) (a) another point p5

is inserted in the middle of e (p1p2) instead, and a message is sent to the neighboring process (b);
the local cavity of p5 is constructed and triangulated (c); the neighboring process also constructs
and triangulates its local cavity of p5 (d).

enough to send the identificators of p0, p1, and p2, we can denote such message as
split(p0, p1, p2). However, complications may arise if the refinement of A leads to
the insertion of point p2 in the middle of e (p0p1), and then to the insertion of point
p3 in the middle of e (p0p2). Naturally, first split(p0, p1, p2) and then split(p0,
p2, p3) are sent from A to B. If the second message is received by B before the
first one, B will not have the edge e (p0p2) in its local data structure and will not
be able to service the split request properly.

The related issue is the processing of the incoming split requests with respect to
the points which already have been independently inserted locally. It is necessary
to reliably identify duplicate points. For the purpose of point comparison, the use
of floating-point coordinates can lead to errors. Hence, it is desirable to develop a
point identification scheme which satisfies the following conditions:

(1) The position of a point with respect to a shared constrained edge can be unam-
biguously resolved without the knowledge of the other points which split this
edge.

(2) The use of the floating point arithmetic should be avoided.

(3) The size of the messages and the amount of the associated computation should
be minimized.
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We adopted the following scheme which is similar in spirit to rational arithmetic.
The position (x, y) of every split point is computed with respect to the correspond-
ing edge e (p0p1) as:

(x, y) = (x0, y0) +
n

2m
((x1, y1)− (x0, y0)),

where n and m are integers. This scheme allows to represent each split point by
only two integers (n,m) and have the split messages be of the form split(p0, p1,
n, m). which avoids using imprecise floating point arithmetic for maintaining point
ordering along the boundary edges. In addition, it enables us to determine the
sequence of edge splits performed in the neighboring subdomain, which has lead
to the insertion of a given point, in the case of out-of-order message arrival2 and
to duplicate this sequence. One possible implementation solution is to customize a
rational number type provided by one of the available libraries, e.g., CGAL [CGAL
Editorial Board 2006], and the other is to encode an application-specific solution.
We chose the latter approach.

The termination of the algorithm is detected by a circular token transmission
scheme described in [Dijkstra 1987]. Our parallel mesh refinement algorithm satis-
fies all the assumptions made in [Dijkstra 1987]:

(1) Each of the P machines (processes) can be either active (refining a subdomain)
or passive (all subdomains have been refined).

(2) Only active machines send (split) messages to other machines.

(3) Message transmission takes a finite period of time.

(4) When a machine receives a message, it becomes active.

(5) Only the receipt of a split message can transition a machine to activity (with
the exception of the start of the algorithm).

(6) The transition of a machine from active to passive state can occur without the
receipt of a message (when the refinement finishes).

4. IMPLEMENTATION

The PCDM software is written using the C++ programming language. It uses
the message passing interface (MPI) for the communication among the processes.
Additionally, the code needs to be linked with the Triangle [Shewchuk 1996], the
Robust Predicates [Shewchuk 1997a], and the Metis [Karypis and Kumar 1998]
libraries. Triangle is used only for the initial triangulation of each subdomain.
This task does not require inter-process communication, and we can use off-the-shelf
sequential codes like the Triangle. The initial triangulation is passed to the PCDM
code to perform the actual mesh generation which requires some communication.

4.1 Data Structures

The units of work are represented by the subdomain objects. These objects are
initially created by a selected process, which reads the input file, partitions the
subdomains into P groups and distributes them to the remaining processes.

2Although MPI guarantees the ordering of the messages, our implementation is designed with
LBL and CLAM in mind.
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Fig. 7. The influence of message aggregation on the execution time, the pipe model.

Each subdomain contains the collections of the constrained edges, the triangles,
and the points. The triangles are classified into those that satisfy the quality con-
strains and those that violate either the ratio or the area requirement. Similar
to the Triangle [Shewchuk 1996] implementation, the poor quality triangles are
distributed over a number of buckets, based on the measure of their minimal an-
gle. Each triangle contains three pointers to its vertices and three pointers to the
neighboring triangles. For the point insertion, we use the B-W algorithm (1). The
constrained (boundary) segments are protected by diametral lenses, and each time
a segment is encroached, it is split in the middle; as a result, a split message is
sent to the neighboring subdomain. To ensure the correct message addressing, with
each segment we store the identificators of the subdomains it separates, and each
process keeps a map from a subdomain identificator to process number.

When a split message arrives, we need to find out (i) whether or not the specified
split point has already been inserted locally and, if the answer is negative, (ii) which
local triangle contains the edge that the new point has to be inserted on. If the
point already exists locally, the message is simply discarded. Otherwise, we insert
the point and triangulate the cavity according to the B-W algorithm. In order to
speed up the search of the initial cavity triangle, we maintain a binary search map
from the set of pairs of points along the constrained segment to the corresponding
adjacent triangles.
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Fig. 8. (Left) Two-dimensional “z-slice” of the computational domain used for the simulation
of the turbulent flow past a stationary cylinder at Re = 10000 [Dong et al. 2004]. (Right) The
upper half of the domain used in our tests.

4.2 Message Aggregation

One of the most noticeable improvements in the performance of the code was
achieved by aggregating the split messages, which are sent between neighboring
subdomains as a result of inserting points on the common boundaries. The time to
send a message is [Kumar et al. 1994]:

Communication time = Startup time +
Message size

Network bandwidth
.

If we send n messages separately, we incur the startup time cost for every message.
However, if the messages are aggregated and sent together atomically, this cost can
be paid only once. Figure 7 shows the influence of the message aggregation on the
execution time. The aggregation parameter indicates the number of split messages
that are accumulated before sending them atomically to a given subdomain. We
evaluated the effects of message aggregation on a subcluster of up 64 processors,
which is the largest homogeneous configuration available at our site. In these and
all further tests, each MPI process was executed on a single physical CPU, so we
use the terms process and processor interchangeably, depending on the context. We
can observe two trends. First, the increase of the aggregation causes an improve-
ment in the running time. The running time flattens out after the 512 aggregation
value, which we adopted for the further scalability evaluation. Second, the time
corresponding to low aggregation decreases as we increase the number of processors;
this can be explained by the growth of the utilized network and, consequently, the
aggregate bandwidth.

5. EXPERIMENTAL EVALUATION

For the experimental evaluation of our code, we used the SciClone cluster at the
College of William and Mary3. In particular, we employed its “whirlwind” (64
single-cpu Sun Fire V120 servers at 650 MHz with 1 GB memory), “hurricane”

3http://compsci.wm.edu/SciClone/
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Fig. 9. A cross-section and a cartoon pipe of a regenerative cooled pipe geometry which came
from testing of a rocket engine at NASA Marshall.
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Fig. 10. The scaled speedup measurements. The number of triangles is approximately 10P, i.e.,

for 2 processors 20M, and for 144 processors about 1.4B.

(4 quad-cpu Sun Enterprise 420R servers at 450 MHz with 4 GB memory), and
“twister” (32 dual-cpu Sun Fire 280R servers at 900 MHz with 2 GB memory)
subclusters. In all tests, the first 64 processors were selected from the “whirlwind”
subcluster, the next 16 — from the “hurricane”, and the remaining — from the
“twister” subcluster. The experiments involving sequential software were performed
on one of the “whirlwind” nodes.

Among other geometries, we tested our software using the Chesapeake bay model
(Fig. 3), the cylinder flow model (Fig. 8), and the pipe cross-section model (Fig. 9).

Figure 10 presents the scaled speedup evaluation using these three models. We
computed the scaled speedup as

Scaled speedup =
P × Ts(W )

TMADD + TCDT + TP (W × P )
,
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Table I. The comparison of the sequential and the parallel execution times, sec.
Model Ts TMADD TCDT T64 T80 T144

Pipe cross-section 74.7 5.4 0.34 101.1 118.5 120.3

Cylinder flow 75.4 4.1 0.31 99.8 126.6 146.3

Chesapeake bay 77.4 13.9 0.59 104.5 121.7 127.1

Table II. For 64 processes, the time spent on computation (i.e., mesh refinement) and communi-
cation, sec.

Model
Computation Communication

min average max min average max

Pipe cross-section 85.8 90.0 94.0 0.08 2.89 2.98

Cylinder flow 77.5 89.2 93.1 0.07 2.78 2.87

Chesapeake bay 81.9 91.2 95.2 0.19 3.92 4.09

Table III. For 64 processes, the time spent on computation (i.e., mesh refinement) and communi-
cation, per one million of triangles, sec. Pipe geometry.

Method
Computation Communication

min average max min average max

PCDM 0.134 0.141 0.147 0.000125 0.004515 0.004656
PDR 0.006 0.606 0.907 0.265479 0.566294 1.166690

where Ts is the time taken by the fastest to our knowledge sequential mesh generator
the Triangle [Shewchuk 1996], TMADD is the domain decomposition time, TCDT

is the time to construct the initial coarse triangulation using the Triangle, TP

is the time taken by our parallel implementation on P processors, and W is a
fixed amount of work. We used Triangle version 1.6 which is the latest release of
this software and implements the efficient off-center point insertion method [Üngör
2004]. TP includes the time to read the input data files and broadcast them to all
processes, the time to refine the subdomains (i.e., the computation time presented
in Table II), the communication time, the idle polling time, and miscellaneous
overheads, but excludes the time to write the resulting meshes on disc, since they
are intended to stay in the memory to be used by the solvers. Since the mesh
generation time in practice is linear with respect to the number of the resulting
triangles, for convenience we chose W to be the amount of work required to create
10 million triangles. Then W×P represents the amount of work required to produce
10×P million triangles. The number of elements is roughly inversely proportional
to the required triangle area bound, and can be controlled by selecting the area
bound correspondingly. This estimation is not an exact prediction of the size of the
final mesh, but it worked very well in all of our experiments. In all tests we used
the same triangle shape constraint which is equivalent to 20◦ minimal angle. From
Figure 10 we can see that the code scales up linearly with the parallel efficiency
close to 0.6. Table I summarizes the costs for the three models, and Table II lists the
computation and the communication time ranges for the 64 processor configuration.
Table III compares the computation and communication costs of the PCDM and
the PDR methods, per one million of triangles using 64 processors. We can see
that the PCDM methods is much less expensive. However, as we pointed out in
the Introduction, the PDR method does not rely on domain decomposition which
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Fig. 11. The breakdown of the total parallel execution time for the pipe (top), cylinder flow

(middle), and Chesapeake bay (bottom) models. Each process is represented by a single stacked

bar. ’Computation’ is the time spent refining the meshes. ’MPI Send/Recv’ and ’MPI Probe’
represent the aggregate time spent on the corresponding function calls. When a process is idle, it
calls MPI Probe repeatedly. MPI Probe is also called in between a certain number of refinement

calls.

makes it more amenable for the three-dimensional geometries.
Figure 11 shows the breakdown of the parallel execution time for each of the 144
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processes. We can observe the ratio of the total time spent by each of the processes
on the computation and the communication. The difference in the hardware per-
formance of the subclusters can also be clearly seen. This difference caused some
workload imbalance, which leaves room for improvement from load balancing.

6. CONCLUSIONS

We presented an algorithm and an implementation for the parallel two-dimensional
guaranteed quality Delaunay mesh generation. Our algorithm is based on the idea
we presented in [Chew et al. 1997]. However, we improved many aspects of the
algorithm and its implementation, utilized newly available software, and made a
number of enhancements. Our experimental results show very good scalability of
the code and its ability to generate over a billion triangles on a heterogeneous cluster
with more than one hundred nodes. The difference in processor performance causes
some imbalance in the workload and slight speedup degradation. The use of the
Load Balancing Library (LBL) [Barker et al. 2004] allows to alleviate this problem
as shown in [Fedorov and Chrisochoides 2004]. However, in this paper we present
and submit the MPI-only version of our software, which can be used without the
LBL, since the LBL is not a standard library available on all clusters as is the
case with the MPI. The PCDM software can be used in conjunction with parallel
problem-solving environments, e.g., PELLPACK [Houstis et al. 1998].

The development of an analogous algorithm for the three dimensions will require
the solution of the three-dimensional domain decomposition problem and the design
of appropriate boundary face splitting strategies. Both are non-trivial extensions
of the tools and methods we present in this paper.
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