
Advancing Intra-operative Precision: Dynamic
Data-Driven Non-Rigid Registration for
Enhanced Brain Tumor Resection in
Image-Guided Neurosurgery

Nikos Chrisochoides, Andriy Fedorov, Fotis Drakopoulos, Andriy Kot, Yixun Liu,
Panos Foteinos, Angelos Angelopoulos, Olivier Clatz, Nicholas Ayache, Peter M.
Black, Alex J. Golby, Ron Kikinis

Abstract During neurosurgery, medical images of the brain are used to locate tu-
mors and critical structures, but brain tissue shifts make pre-operative images unre-
liable for accurate removal of tumors. Intra-operative imaging can track these de-
formations but is not a substitute for pre-operative data. To address this, we use Dy-
namic Data-Driven Non-Rigid Registration (NRR), a complex and time-consuming
image processing operation that adjusts the pre-operative image data to account for
intra-operative brain shift. Our review explores a specific NRR method for register-
ing brain MRI during image-guided neurosurgery and examines various strategies
for improving the accuracy and speed of the NRR method. We demonstrate that our
implementation enables NRR results to be delivered within clinical time constraints
while leveraging Distributed Computing and Machine Learning to enhance registra-
tion accuracy by identifying optimal parameters for the NRR method. Additionally,
we highlight challenges associated with its use in the operating room.

Key words: Dynamic Data Driven Application Systems, Image-Guided Neuro-
surgery, Deformable Registration, Intra-operative Parametric Search, Deep Learn-
ing

Nikos Chrisochoides, Andriy Fedorov, Fotis Drakopoulos, Panos Foteinos, Angelos Angelopoulos,
Andriy Kot, Yixun Liu
Center for Real-Time Computing, Old Dominion University, Norfolk, VA USA e-mail: nikos@
cs.odu.edu

Andriy Fedorov, Ron Kikinis, Alexandra J. Golby
Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston,
MA USA

Olivier Clatz, Nicholas Ayache
INRIA Sophia Antipolis, France

Alexandra J. Golby, Peter M. Black
Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA USA

1

2 Chrisochoides et al.

1 Introduction

Cancer is one of the leading causes of death in the USA and worldwide. Among
the different types of cancer, brain cancer was estimated to claim over 50 thou-
sand new victims in 2008 [2], when we first consider summarizing the preliminary
results of our approach. However, brain cancer continues to be a significant health-
care problem. The number of Americans living with brain tumors exceeds 700,000,
surpassing the number of COVID-19 deaths in mid-summer 2021.

Neurosurgical resection is one of brain tumor patients’ most common and ef-
fective treatment options. The resection must remove as much as possible of the
tumor tissue while maximally preserving the vital structures of the healthy brain.
Maximal tumor excision increases time to progression, and reduces symptoms and
seizures. In this Chapter, we explore how the concept of Dynamic Data Driven Ap-
plications Systems (DDDAS) [88, 37], together with the advances in medical image
acquisition, distributed computing, and Machine Learning can assist in enabling im-
age guidance during neurosurgery and potentially can improve the accuracy of the
procedure, allowing more complete tumor resections without additional morbidity.
We focus more on the implementation aspects, while in [90], we focus more on the
approach’s mathematical modeling and computational aspects.

Fig. 1 Intra-operative brain deformation. Left: pre-operative, higher quality image, showing the
location of brain tumor. Right: intra-operative image showing brain shift [5].

There are many challenges in accomplishing the objectives of neurosurgery. In
this Chapter, we focus on one of them: the exact locations of the brain areas re-
sponsible for critical brain function, e.g., the motor cortex, are patient-specific and
cannot be identified with the naked eye. This is where medical imaging, distributed
computing, and machine learning become essential.

Magnetic Resonance Imaging (MRI) is indispensable in demonstrating brain
pathologies. Although not distinguishable from the naked eye, neoplastic tissues can
be differentiated from brain tissue based on changes in MR signal and corresponding
image intensities. MRI has also been shown to be useful in constructing functional
mapping of the brain using functional MRI (fMRI) [62]. Both the structural and

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 3

functional imaging data are used for the purposes of improving the precision of the
resection.

Image registration in general, is concerned with spatial alignment of correspond-
ing features in two or more images. During image registration, a spatial transfor-
mation is applied to one image, which is called floating, so that it is brought into
alignment with the target, or reference position of the object (brain). During rigid
image registration, the floating image corresponds to the pre-operative image, which
is aligned with the patient’s position using translations and rotations (rigid transfor-
mations).

During the course of surgery, opening of the skull and dura causes changes in
pressure inside the Intra-Cranial Cavity (ICC).

Because of this and other factors, such as drainage of cerebrospinal fluid, induced
changes in brain tumors, and the effect of gravity, the brain changes its shape, intro-
ducing discrepancies in relation to the pre-operative configuration. Non-rigid image
registration uses a spatially varying transformation to account for this deformation.
In general, image registration algorithms are based on optimizing certain similarity
criteria between the fixed and floating image under varying parameters of spatial
transformation. The complexity of this optimization depends on the number of pa-
rameters that describe the transformation. Both rigid and non-rigid registration are
open research areas in medical image processing. However, non-rigid registration is
a conceptually more difficult problem, which usually requires significant computing
resources and time.

Non-rigid registration recovers the deformation of the brain based on intra-
operatively acquired imaging data. Advances in medical image acquisition have
made it possible to acquire high-resolution images, in particular MRI during the
surgery. Intra-operative MRI (iMRI) cannot substitute pre-operative images because
of its limited resolution and the high processing time required to obtain functional
data. However, iMRI can be used to guide the registration of the pre-operative data.

There are three main requirements to non-rigid registration (NRR) [24]. First,
NRR should deliver accurate results. Second, the result should be consistently ac-
curate, independent of the specific registered images, and not be sensitive to small
variations in the parameter selection. One important requirement for Image-Guided
Neurosurgery (IGNS) is that registration must be completed within the neurosurgi-
cal workflow’s time constraints, typically between 4 to 5 minutes.

The prospective application of NRR is a dynamic process. iMRI is obtained pe-
riodically as requested by the surgeon. Immediately following iMRI, NRR should
be used to estimate the deformation of the brain and update the pre-operative im-
ages. Usually, hospitals do not have locally available large-scale computational fa-
cilities. In this Chapter, we describe an infrastructure that enables the computation
of non-rigid registration using remotely located high-performance computing re-
sources guided by intra-operative image updates.

In the context of the application, we define the response time as the time between
the acquisition of the intra-operative scan of the deformed tissue and the final visu-
alization of the registered preoperative data on the console in the operating room.
These steps are performed intra-operatively form the DDDAS steered by the peri-

4 Chrisochoides et al.

odic acquisitions of the iMRI data. Our broad objective is to minimize the perceived
(end-to-end) response time of the DDDAS component.

To our knowledge, none of the systems developed (2005 timeframe) were used
prospectively during image-guided neurosurgeries. Our approach to developing
such a dynamic data-driven NRR system for IGNS was to adopt an existing NRR
method of established accuracy and parallelize the most time-consuming compo-
nents of this method and develop an end-to-end system to facilitate image guidance
during neurosurgery.

2 Related Work

The research in NRR for IGNS can be separated into the development of the core
registration methods and the design of end-to-end systems capable of supporting
NRR computation and delivering the results intra-operatively. The choice of the
NRR method depends mostly on the intra-operative image modality that captures
brain deformation [26]. However, the core computation components of NRR are
very similar for different intraoperative imaging modalities.

Registration algorithms are based on optimizing certain similarity measures be-
tween the intensities of the reference and floating images. In non-rigid registration,
the number of parameters (degrees of freedom) that are being optimized is exceed-
ingly large compared to rigid registration. This contributes significantly to the costs
of computing the similarity metric and to the evaluation of gradients required during
optimization. However, optimizing the similarity measure alone can lead to unreal-
istic solutions since non-rigid registration is an ill-posed problem. Therefore, NRR
usually includes some form of solution regularization. Biomechanical modeling of
tissue deformation is one such regularization approach. Deformation of tissue is usu-
ally modeled using the Finite Element Method (FEM) [107], which requires solving
a system of equations. The size of this system is proportional to the resolution of the
brain biomechanical model.

Timely completion of the core NRR computations is the key component for ef-
ficient end-to-end registration systems. Several strategies have been proposed to
parallelize the time-consuming steps in medical image processing. Christensen and
collaborators were some of the first to discuss using parallel computing resources for
solving time-consuming problems related to brain MRI processing on a massively
parallel SIMD architecture [23].

Warfield et al. [102] presented some of the first results in intra-operative process-
ing (segmentation) of iMRI. The authors demonstrate linear speedup of segmenta-
tion on a 20-processor workstation, which allows the processing of a typical dataset
in about 20 seconds. The developed method was applied and evaluated prospec-
tively during neurosurgeries and liver cryo-ablation procedures [103]. The same
group later developed a high-performance method for intra-operative non-rigid reg-
istration, which uses linear biomechanical model [101] solved in parallel. Although

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 5

the authors report clinically acceptable timing results delivered by their implemen-
tation, the evaluation was restricted to off-line experimental studies.

Computation of the NRR result within the time constraints of neurosurgery is
an essential requirement. To facilitate this task, support of the computation on the
remote resources may be required. The community has recognized these issues, and
several solutions have been proposed. Stefanescu et al. [99] describe an NRR imple-
mentation that is exposed as a web service. Ino et al. developed an end-to-end system
for rigid registration computation on a remote cluster [63]. Lippman and Kruggel
use a customized grid infrastructure to design an NRR system for IGNS [71].

Medical image computing is one area where machine learning (ML) is applied to
solve problems [67]. Specifically, for medical image registration, many new meth-
ods currently utilize convolutional neural networks, which operate directly on the
preoperative and intraoperative MRI images to produce a registered image. A no-
table example is MIT’s VoxelMorph model [9]. VoxelMorph utilizes a CNN, which
computes a registration field and warps the preoperative image with the registration
field using a spatial transformation function. In VoxelMorph, ML is used directly
for image registration, while in our case ML is used for optimal values of the pa-
rameters in NRR. This Chapter will look at two major applications, VoxelMorph[9]
and the method proposed by J. Krebs et al. [69].

VoxelMorph [9] addresses the problem of fast deformable medical image regis-
tration with a focus on brain MRI, but it can also be used for other tissues. Voxel-
Morph uses a solution formulated by an unsupervised learning convolutional neural
network for computing a registration field and a spatial transformation function for
warping the preoperative image. The application can also use instance-specific opti-
mization by fine-tuning the network parameters for each MR image. As noted in [9]

Fig. 2 Compares three machine learning approaches in medical image registration for major appli-
cations: two state-of-the-art and APBNRR deep learning; the columns from left to right correspond
to the application, problem, solutions, and usage.

6 Chrisochoides et al.

it runs in 0.45 seconds on a top-tier GPU and 57 seconds on a CPU, with an average
DICE [36] score of 75.3%. Another approach is proposed by J. Krebs et al. [69]
aims to address the issue of probabilistic deformation modeling for diffeomorphic
registration in cardiac MRI. Their solution employs an unsupervised learning con-
ditional variational autoencoder (CVAE) network, which utilizes an exponentiation
layer to create diffeomorphic transformations. The average execution time is 0.32
seconds on a top-tier GPU with an average DICE score of 79.9% and a mean Haus-
dorff distance of 7.9 mm. A comparison of the problems, the proposed solutions,
and the usage of machine learning in NRR and the two applications listed above are
presented in the Table of Figure 2 from [3].

3 Physics-Based Non-Rigid Registration

The core registration method of our dynamic infrastructure was originally devel-
oped by Clatz et al. in [24]. This Physics-Based Non-Rigid Registration (PBNRR)
approach is specifically designed for registering high-resolution pre-operative data
with iMRI. The NRR computation consists of preoperative and intra-operative com-
ponents. Intraoperative processing starts with the acquisition of the first iMRI. How-
ever, the time-critical part of the intra-operative computation is initiated when a scan
showing the shift of the brain is available. The basic idea of the registration method
is to estimate the sparse deformation field that matches similar locations in the im-
age and then uses a biomechanical model of the brain, deformation to discard unre-
alistic displacements and derive dense deformation field that defines transformation
for each point in the image space.

Sparse displacement vectors are obtained at the selected points in the image,
where the variability in the intensities in the surrounding region exceeds some
threshold. Such registration points can be identified prior to the time-critical part
of the computation in the floating (pre-operative) image. Once the reference (intra-
operative) scan is available, the deformation vector is estimated at each of the se-
lected points by means of block matching. Fixed-size rectangular regions (blocks)
centered at the registration points are identified in the floating image. Given such a
block, we next select a search region (window) in the reference image. The block’s
displacement that maximizes the intensity-based similarity metric between the im-
age intensities in the block and the overlapping portion of the window corresponds
to the vector value of the sparse deformation field at the registration point. The nor-
malized cross-correlation (NCC) similarity metric is evaluated as follows:

NCC =
∑i∈B(BT (i)− B̄T)(BF(i)− B̄F)√

(BT (i)− B̄T)2(BF − B̄F)2
.

B̄T and B̄F correspond to the average intensity values within the block in the refer-
ence and floating image, respectively. We note the high computational complexity
of the block-matching procedure. Considering the sizes of three-dimensional blocks

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 7

and windows are defined in pixels as B = {Bx,By,Bz} and W = {Wx,Wy,Wz}, the
bound on the number of operations is O(BxByBz ×WxWyWz) for one registration
point.

Estimation of brain deformation is based on the finite element analysis (FEA)
using a linear elastic model of brain deformation. The finite element mesh of the
intra-cranial volume is constructed from the segmented ICC volume following the
methods we evaluated in a separate studies [39] and [35]. We then iteratively seek
such a position of the mesh vertices U that balances the mechanical forces of the
modeled tissue that resist deformation, with the external forces that correspond to
the displacements D estimated by block matching:

Fi⇐KUi, Ui+1⇐ [K+HT SH]−1[HT SD+Fi].

Here, K is the mechanical stiffness matrix [25], H is the interpolation matrix from
the mesh vertices to the block matching displacements, S is the matrix that captures
the confidence in the block matching results. F is the force that is increasing between
iterations to slowly cancel the influence of the mechanical forces.

Both block matching and iterative estimation of displacements are time criti-
cal and should be performed while the surgeons are waiting. Block matching con-
tributes most to the computation costs because of the exhaustive search for the op-
timum block position. Iterative estimation of mesh vertex displacements based on
a biomechanical model requires a solution of a system of linear equations during
each iteration. However, the size of that system is constrained by the number of
mesh vertices, which cannot be arbitrarily large due to inherent properties of the
NRR algorithm [39].

3.1 Adaptive Non-Rigid Registration (APBNRR)

However, complete resection of large brain tumors leads to large brain shifts. This
creates a large cavity of elements in the tessellated brain image model which com-
promises the accuracy of the biomechanical model defined on pre-operative MRI.
This section summarizes the extensions of the PBNRR by: (i) removing additional
outliers due to tissue resection using an Adaptive Non-Rigid Registration (APB-
NRR) method and gradually adjusting the mesh for the FEM model to an incremen-
tally warped segmented intraoperative MRI (iMRI), see Figure 3 and for a more
detailed description see [27], [28] and [35].

APBNRR takes as input a preoperative segmented MRI (moving) and a range
of twenty-seven registration and mesh generation parameters (indicated in Table
of Figure 4. APBNRR augments PBNRR to accommodate soft-tissue deformation
caused by tumor resection. This iterative method adaptively modifies a heteroge-
neous finite element model to optimize non-rigid registration in the presence of tis-
sue resection. Using the segmented tumor and the registration error at each iteration,
APBNRR gradually excludes the resection volume from the model. During each it-

8 Chrisochoides et al.

Fig. 3 The APBNRR framework. The green, red, and gray boxes represent the input, the additional
parallel modules to manage real-time adaptivity (in red), and the existing ITK modules [80]. The
red arrows show the execution order of the modules. Orange represents the output warped pre-
operative MRI.

eration, registration is performed, the registration error is estimated, the mesh is
deformed to a predicted resection volume, and the brain model (minus the predicted
resection volume) is re-tessellated. Re-tessellation is required to ensure high-quality
mesh elements, which is important for the convergence of the linear solver.

4 High-Performance Infrastructure for Non-Rigid Registration

The baseline code used in the design of the NRR was the implementation developed
and evaluated by Clatz et al. [24]. Based on the benchmarking and analysis of this
implementation, we identified the following problems:

1. The execution time of the original non-rigid registration code is highly data-
dependent. When computed on a high-end 4 CPU workstation, the computation
time varies between 30 and 50 minutes. The scalability of the code is poor due
to workload imbalances.

2. The code is designed as a single monolithic component (since it was not evalu-
ated in the intraoperative mode), and a single failure at any point requires restart-
ing the registration from the beginning.

3. The original code is implemented in PVM [11] which is not widely supported as
compared to the use of MPI [97] for message passing.

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 9

Fig. 4 Shows the tunable parameters APBNRR utilizes. Parameters 1-12 are utilized in the deep
learning model, while the rest are fixed. I/O parameters are not included in this table. CBC3D
refers to the latest image-to-mesh conversion presented in [29].

Consequently, we identified the following implementation objectives in the de-
sign of the system.

High-performance Develop an efficient and portable software environment for
parallel and distributed implementation of real-time non-rigid registration method
for both small-scale parallel machines and large-scale geographically distributed
Clusters of Workstations (CoWs). The implementation should be able to work on
both dedicated and time-shared resources.

Quality-of-service (QoS) Provide functionality not only to sustain failure but
also to dynamically replace/reallocate faulty resources with new ones during the
real-time data acquisition and computation.

10 Chrisochoides et al.

Ease-of-use Develop a GUI that automatically will handle exceptions (e.g.,
faults, resource management, and network outages), and assist in the parameter ini-
tialization.

Different strategies can be explored in the high-performance implementation of
the described NRR method. We first explore how this can be done using ubiquitous
CoWs. During the studies of NRR at BWH, the implementation based on CoW
was utilized prospectively, as mentioned in the reference [4]. We also describe our
efforts to further increase the availability of the implementation by developing its
components ported on Graphical Processing Units (GPUs) and studying the use of
Grid resources.

We develop NRR DDDAS based on the concept of the computational workflow.
We re-design the core NRR implementation as a coordinated set of processing com-
ponents communicating by passing data. Such an approach allows to separate time-
critical steps, and concentrate on the optimum parallelization strategies for each step
that requires performance improvement.

4.1 Cluster of Workstations

CoWs have become power plants of ubiquitous computing. Availability of such clus-
ter at the College of William and Mary (CWM, Williamsburg, VA) motivated the
development of the implementation of the CoW-based NRR DDDAS. In addition to
the dedicated computing cluster, we use the shared resources of a computer lab to
boost the computing power and reliability of the implemented system. The targeted
users of our DDDAS are clinical researchers of Brigham and Women’s Hospital
(BWH, Boston, MA). Our approach is to map the components of the workflow on
the computing and communication resources of CWM and BWH and expose the
DDDAS to clinical researchers by means of a web service interface. The timeline
of the interaction with the complete NRR DDDAS is shown in Figure 5. The key
component of this system, which requires parallelization, is block matching.

Parallel feature selection. PBNR and APBNRR algorithmically identify image
features by analyzing voxel intensity variation across the intracranial cavity. For
each feature candidate, it computes the variance within a block of size Bs. It then
selects Fs features with the highest variance. Experimental evaluation has shown
that when Bs = 3 or 5 and 3% < Fs < 10%, a sufficient number of image blocks
(> 3105) can be selected. The method also uses a connectivity pattern to avoid
selecting blocks that are too close to each other, thereby influencing the distribu-
tion of selected blocks in the image. Three simplex patterns are available: “vertex”
(i.e., zero-order simplex implies 26 connectivity), “edge” (i.e., first-order simplex
implies 18 connectivity), and “face” (i.e., second-order simplex implies 6 connec-
tivity). The higher the order of the simplex pattern the higher the density of the se-
lected blocks. Since the “face” pattern results in a higher density of blocks near the
boundaries/interfaces of anatomical structures, features expected to be most persis-
tent between pre-operative and intraoperative image acquisitions, it is most suitable

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 11

Fig. 5 Timeline of the image processing steps during IGNS (the client is running at BWH, and
the server is using multiple clusters at CWM, for fault-tolerance purposes).

for IGNS-based Glioma resection. The parallel implementation partitions the pre-
operative image into k sub-regions, where k is the number of threads. Each thread
computes a variance value and an image index for each feature inside the sub-region.
Then, the computed pairs are sorted in parallel based on their variance and merged
into a global vector. The size of the global vector is equal to the total number of
computed blocks. Finally, 0.5 + NFeatures × Fs blocks are selected from the global
vector.

Multi-level distributed block matching To find a match for a given block, we
need the block center coordinates and the areas of the fixed and floating images
bounded by the block matching window [24]. The fixed and floating images are
loaded on each processor during the initialization step, as shown in Fig. 5. The total
workload is maintained in a work-pool data structure. Each item of the work pool
contains the three coordinates of the block center (the total number of blocks for a
typical dataset is around 100,000), and the best match found for that block (in case
the block was processed; otherwise, that field is empty).

12 Chrisochoides et al.

However, because of the scarce resource availability, we have to handle com-
putational clusters that belong to different administrative domains. We address this
issue with hierarchical multi-level organization of the computation using the master-
worker model. A dedicated master node is selected within each cluster. The master
maintains a replica of the global work pool and is responsible for distributing the
work according to the requests of the nodes within the assigned cluster and commu-
nicating the execution progress to the other master(s).

Parallel Mesh Generation The image segmentation generates a patient-specific
finite element mesh for PBNRR and APBNRR. The tetrahedral mesh’s quality influ-
ences the solution’s numerical accuracy and the correctness of the estimated trans-
formation. The higher the quality of the elements (i.e., the larger the minimum di-
hedral angle), the better the convergence of the linear solver. A parallel Delaunay
meshing method is employed to tessellate the segmented brain with high-quality
tetrahedral elements and to model the brain surface with geometric and topological
guarantees [57]. Single-tissue (i.e., brain parenchyma) and multi-tissue (i.e., brain
parenchyma and tumor) meshes are generated. Parameter δ determines the size of
the mesh, where a smaller δ > 0 generates a larger mesh.

Multi-level Dynamic Load Balancing The imbalance of the processing time
across different nodes involved in the computation is caused by our inability or dif-
ficulty to predict the processing time required per block of data on a given architec-
ture. The main sources of load imbalance are platform-dependent. These are caused
by the heterogeneous nature of the PEs. More importantly, some of the resources
may be time-shared by multiple users and applications, which affects the process-
ing time unpredictably. The (weighted-) static work assignment is ineffective when
some resources operate in the time-shared mode.

We have implemented a multi-level hierarchical dynamic load balancing scheme
for parallel block matching. We use an initial rough estimation of the combined
computational power of each cluster involved in the computation (based on CPU
clock speed) for the weighted partitioning of the work pool and initial work assign-
ment. However, this is a rough “guess” estimation, which is adjusted at runtime
using a combination of master/worker and work-stealing [14, 105] methods. Each
master maintains an instance of the global work pool. Initially, all these pools are
identical. The portion of the work-pool assigned to a specific cluster is partitioned
into meta-blocks (a sequence of blocks), which are passed to the cluster nodes using
the master-worker model. As soon as all the matches for a meta-block are computed,
they are communicated back to the master, and a new meta-block is requested. If
the portion of the work pool assigned to a master is processed, the master continues
with the “remote” portions of work (i.e., those initially assigned to other clusters).
As soon as the processing of a “remote” meta-block is complete, it is communicated
to all the other master nodes to prevent duplicated computation.

Multi-Level Fault Tolerance Our implementation is completely decoupled,
which provides the first level of fault tolerance, i.e., if the failure takes place at any
of the stages, we can seamlessly restart just the failed phase of the algorithm and
recover the computation. The second level of fault tolerance pertains to the parallel
block-matching phase. It is well-known that the vulnerability of parallel computa-

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 13

tions to hardware failures increases as we scale the size of the system. We would
like to have a robust system that, in case of failure, could continue the parallel block
matching without recomputing results obtained before the failure. This function-
ality is greatly facilitated by maintaining the previously described work-pool data
structure which is managed by the master nodes.

The work-pool data structure is replicated on the separate file systems of these
clusters and has a tuple for each block center. A tuple can be either empty if the
corresponding block has not been processed or it contains the three components
of the best match for a given block. The work pool is synchronized periodically
between the two clusters, and within each cluster, it is updated by the PEs involved.
As long as one of the clusters involved in the computation remains operational, we
can sustain the failure of the other computational side and deliver the registration
result.

Ease-of-use The implementation comprises the client and server components.
The client is running at the hospital site and is based on a Web service, which makes
it highly portable and easy to deploy. The input data and arguments are transferred to
the participating sites on the server side. Currently, we have a single server respon-
sible for this task. The computation uses the participating remote sites to provide
the necessary performance and fault tolerance.

Table 1 Response time (sec) of the intra-surgery part of the CoW-based NRR DDDAS at various
stages of development.

Setup ID
1 2 3 4 5 6 7

High-end workstation, using original 1558 1850 2090 2882 2317 2302 3130
PVM implementation
SciClone (240 procs), 745 639 595 617 570 550.4 1153
no load-balancing
SciClone (240 procs) and
CS lab(29 procs), dynamic 2-level 30 40 42 37 34 33 35
load-balancing and fault-tolerance

We applied the developed NRR DDDAS for registering seven image datasets
acquired at BWH. The computations for two of these seven registration computa-
tions were accomplished during the course of surgery (at the College of William
and Mary), while the rest of the computations were done retrospectively. All of the
intra-operative computations utilized SciClone (a heterogeneous cluster of worksta-
tions located at CWM, reserved in advance for the registration computation) and
the workstations of the student lab (time-shared mode). The details of the hardware
configuration can be found in [19]. Data transfer between the networks of CWM
and BWH (subnet of Harvard University) is facilitated by the Internet2 backbone
network, with the slowest link having a bandwidth of 2.5 Gbps.

The evaluation results are summarized in Table 1. We were able to reduce the
total response time to 2 minutes (4 minutes, including the time to transfer the data).

14 Chrisochoides et al.

We showed that dynamic load balancing is highly effective in the time-shared en-
vironment. The modular structure of the implemented code greatly assisted in the
overall usability and reliability of the code. The fault-tolerance mechanisms imple-
mented are essential and introduce a mere 5-10% increase in the execution time.

Table 2 Performance results for the 6 clinical cases with 1 and 12 threads. The experiments were
conducted in a workstation with 2 sockets of 6 Intel Xeon X5690@3.47 GHz CPU cores each,
totaling 12 cores and 96GB of RAM. The I/O time is included.

Time (sec) Speed-up

Case RIGID BSPLINE PBNRR APBNRR PAPBNRR RIGID BSPLINE PBNRR APBNRR PAPBNRR1T 12T 1T 12T 1T 12T 1T 12T 1T 12T
1 60.18 16.20 156.28 20.08 138.71 81.18 579.62 213.97 483.63 93.14 3.71 7.78 1.71 2.71 5.19
2 280.55 45.31 128.68 17.80 123.76 73.99 509.89 192.70 275.26 54.12 6.19 7.23 1.67 2.65 5.09
3 555.65 77.33 135.91 18.71 112.79 68.72 486.95 185.86 265.61 52.46 7.19 7.26 1.64 2.62 5.06
4 45.51 9.76 33.75 6.31 23.80 20.90 107.43 63.17 53.97 18.51 4.66 5.35 1.14 1.70 2.92
5 52.25 10.76 31.26 5.97 23.91 20.62 109.17 64.08 53.94 18.85 4.86 5.24 1.16 1.70 2.86
6 44.53 8.40 29.36 4.61 19.46 16.80 81.90 48.85 61.32 21.10 5.30 6.37 1.16 1.68 2.91

Average 173.11 27.96 85.87 12.25 73.74 47.04 312.49 128.11 198.96 43.03 5.32 6.54 1.41 2.18 4.00

Almost 10 years later, we performed a more comprehensive experimental evalu-
ation at Old Dominion University using a Dell Linux workstation with two sockets
of six Intel Xeon X5690@3.47 GHz CPU cores each, totaling twelve cores and
96GB of RAM. For the Rigid and BSpline, we run the BRAINSFit module from
the terminal otherwise, Slicer’s GUI degrades the performance significantly. Table 2
from [28] illustrates the end-to-end execution time (including I/O) and the speed-up.
Slicer’s BRAINSFit module exhibits a real-time performance with twelve threads.
The BSpline is the fastest among all the methods requiring on average 12.25 seconds
to complete. Also, it is highly parallelizable, with an average speed-up of 6.54. The
corresponding values for the Rigid registration are 27.96 seconds and a speed-up of
5.32.

The Parallel APBNRR (in short PAPBNRR) refers to the additional paralleliza-
tion of APBNRR modules added and presented in [28] and bring the performance of
the adaptive physics-based method to nearly real-time. Nevertheless, our latest non-
rigid registration technology presented in detail in [28] provides the image align-
ments extremely fast (between 18.51s and 93.14s) for two reasons: (i) it requires
fewer adaptive iterations to register the MRI volumes compared to the APBNRR
method, and (ii) it exploits additional parallelism. Indeed, the PAPBNRR completes
the registration on average 47.04/43.03 ≈ 1.1 and 128.11/42.60 ≈ 3 times faster
than the PBNRR and APBNRR, respectively.

According to our study in [28], the combination of algorithms, software, and
hardware has significantly improved real-time results in 10 years since we started
this project. In 2015, a single high-performance computing workstation with 6 CPUs
at ODU (vs. 270 CPUs used at CWM in 2005-6) was on average 2.93 times more
accurate than BSpline, 3.12 times more accurate than PBNRR, and 3.78 times more
accurate than Rigid registration.

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 15

4.2 Grid Computing Resources

Before the widespread use of multi-core CPUs and heterogenous workstations (or
nodes) the HPC community experimented with Grid Computing, which has since
evolved into Cloud Computing. This idea gained popularity around 2008, the same
year the first draft of this chapter was written.So during that time, the HPC com-
munity invested significant effort in developing standards and software for Grid
computing, deploying production grid systems worldwide and porting applications
on those systems. One such production system under continuous improvement and
development is USA-based TeraGrid [89]. As of May 2007, TeraGrid was connect-
ing 11 high-end computational sites within the USA, providing “...more than 250
TFLOPS of computing capability and more than 30 petabytes of storage” and there-
fore making TeraGrid ...“ the world’s largest supercomputer (at that point), most
comprehensive distributed cyberinfrastructure for open scientific research” [89].
Around 2008, TeraGrid connected 11 computational centers to provide a cumulative
peak performance of 1124 teraflops.

Using the Grid infrastructure for NRR DDDAS had two major advantages. First,
the implementation is not restricted to run on a specific cluster resource. With the
multiple computing centers participating in TeraGrid, temporary resource outages
are more feasible. Second, complex image processing methods, like NRR, often
require the proper setting of many parameters to achieve optimum accuracy. Iden-
tification of such parameter combinations is a non-trivial task. One approach to se-
lecting the optimum parameter combination is to use speculative computation [63],
when multiple instances of NRR are computed in parallel with different param-
eter settings. In this regard, we have developed initial accuracy assessment solu-
tions [38] to facilitate intra-operative speculative NRR over the Grid. In out Grid
NRR DDDAS, we leverage the CoW-based implementation, augment it with the
automatic error estimation, and develop a framework for the speculative execution
of NRR on the TeraGrid.

While TeraGrid resources could be accessed directly for individual job submis-
sion and data transfer, doing this manually on a large scale or as part of workflow ex-
ecution is not practical. We adopted Swift workflow scripting and management sys-
tem [106] to implement and deploy NRR workflow. Swift has been developed and
evaluated to support grid implementations based on Globus Toolkit, which allows
to use this system without any modifications to schedule workflows on TeraGrid.
SwiftScript, the scripting language used for workflow definition, is a powerful way
of abstracting interaction of the processing tasks, which allows defining composite
data inputs, and dependencies between the processing tasks and provides familiar
control structures like loops and conditional structures, which allow flexible control
over workflow definition and execution.

Fault tolerance and dynamic load balancing are important characteristics of NRR
DDDAS. Swift implements basic fault tolerance of workflow execution at the indi-
vidual task level, which is critical for NRR computations. If a particular task fails
to deliver the output, Swift will re-schedule its execution, possibly on a different
site. The Swift infrastructure also provides task-level load-balancing. The execu-

16 Chrisochoides et al.

tion traces for the same computational task are continuously collected and used to
dynamically select the best-performing site when the task is scheduled again.

Swift provides the means to define and execute the workflow, which consists of
individual processing tasks. Each of the processing tasks must be available as an ex-
ecutable at each of the sites that will be involved in the workflow computation. The
details of running a specific task are provided to Swift in the so-called translation
catalog available at the client (submission) site. The translation catalog contains
the identifier of the remote site where the executable is installed and the optional
information on its invocation.

Smooth&Rescale

floSmooth

Flo img

pointSelection Block Matching

HistogramMatching

Smooth&Rescale

refSmooth

Ref img

EdgeDetection

floSmoothHM EdgeDetection floEdges Assessment

refEdges

psFlo
Mask

Mesh

SolverBM Output

sOutput

Assessment Report

Fig. 6 NRR workflow diagram for single registration execution (shaded are the time-critical com-
ponents of the workflow).

The NRR workflow diagram of a single NRR procedure, together with the ac-
curacy assessment module, is shown in Figure 6. The block-matching task is paral-
lelized using MPI and deployed on the TeraGrid sites for remote parallel execution.
The other workflow components are executed on the local resources (single node of
the CWM SciClone cluster). This NRR workflow corresponds to the base case for
computation supported by the cluster-based implementation we discussed earlier,
augmented with the accuracy assessment module. The accuracy assessment module
of the Grid-based NRR DDDAS was developed separately [38]. This module allows
to estimate the registration error automatically. The construction of the workflow for
speculative execution is straightforward with the scripting capabilities of Swift. This
allows us to study some parameters’ impact on registration accuracy.

We considered the impact of varying the block size and outlier rejection rate on
the accuracy of NRR on retrospective clinical data. Table 3 summarizes the im-
provement in accuracy evaluated at the expert-selected anatomical landmarks with
the optimum combination of these two parameters compared to their default set-
tings. Based on the experimental data, in most cases, good registration accuracy
is achieved using the default parameters suggested by Clatz et al. [24]. However,
in Case 3, the improvement in registration accuracy was significant. In both cases,
however, there were landmark points where registration errors exceeded voxel di-

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 17

Table 3 Absolute improvement in accuracy (mm) evaluated at selected landmarks using optimal
values of block size and outlier rejection rate.

Case 1 2 3 4 5 6 7 8 9 10 11 12
1 0.2 0.1 0.2 0.2 0.3 0.1 0.3 0.4 0.0 0.2 0.2 0.3
2 0.2 0.0 0.0 0.0 0.2 0.3 0.3 0.2 0.5 0.3 0.1 0.2
3 0.6 1.0 0.2 2.9 0.0 0.1 0.3 – – – – –
4 0.9 0.8 0.2 0.4 0.7 0.5 0.7 0.4 0.3 0.7 0.7 –
5 0.0 0.3 0.0 0.0 0.8 0.5 0.4 0.0 0.3 0.4 – –
6 0.2 0.1 0.2 0.1 2.0 0.1 0.0 0.1 – – – –

mensions. The analyzed data also suggests that the optimum value of outlier re-
jection is varied in different locations of the image. For example, if we consider
landmarks 5 and 12 in Case 1, the optimal combination of the studied parameters
differs in each case, as shown in Figure 7.

5 10 15 20 25 30 35 40 45 50
outlier rejection rate, %

0

1

2

3

4

5

6

er
ro

r,
 m

m

block 5x5x5
block 7x7x7
block 9x9x9
block 11x11x11

5 10 15 20 25 30 35 40 45 50
outlier rejection rate, %

0

1

2

3

4

er
ro

r,
 m

m

block 5x5x5
block 7x7x7
block 9x9x9
block 11x11x11

Fig. 7 Influence of the block size and rejection rate on landmark error: case 1, landmark 5 (left),
and case 1, landmark 12 (right).

4.3 Graphical Processing Units

Graphics Processing Unit (GPU), an inexpensive, single-chip, massively parallel
architecture, has shown higher throughput and performance per dollar orders than
traditional CPUs. In addition, a GPU can be easily deployed in the Operating Room
as a co-processor of the CPU without hindering routine surgical operations. Around
2008, researchers have made efforts to accelerate NRR using GPU [94, 86, 100, 70].
However, to satisfy the requirement for the accuracy and real-time in the clinic, a
more advanced GPU-based NRR is imperative.

The workflow implementation of NRR DDDAS allows us to use the best par-
allelization strategies for individual components. The block matching component
is embarrassingly parallel, which makes it highly amenable to GPU parallelization.

18 Chrisochoides et al.

0

500

1000

1500

2000

2500

3000

3500

4000

Image Block Size

R
u
n
 T

im
e
(s

)

CPU
GPU

27x27x2721x21x2117x17x1711x11x119x9x97x7x75x5x5 0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

Thread block size

K
e
rn

e
l
ru

n
 t
im

e
(s

)

12.2

15.8
8x8x2

16x4x2

Fig. 8 Parallel block matching execution time on CPU vs. GPU (Left) and the effect of GPU thread
configuration on the performance of the block matching kernel code (Right).

We use CUDA programming model [91] to develop the GPU implementation of this
component. CUDA organizes GPU threads in the grid, which is an array of blocks
and each block is an array of threads. The kernel is the core code to be executed
on each thread, which performs on different data sets using its ID in a SIMD fash-
ion. CUDA programming model can be treated as two levels loop: block level and
thread level. In the following code, the outer loop can be parallelized using GPU
on the thread block level. Computation of the similarity metric for an image block
(inner loop) is parallelized on GPU thread level, while the similarity metric compu-
tation is done on CPU:

1: for each image block f blk in floating image do
2: define search window sw in fixed image
3: for each image block tblk in sw do
4: calculate similarity s between f blk and tblk
5: end for
6: find the maximum s and corresponding displacement
7: end for

This GPU-based implementation of block matching can gain a speedup of about
10, as we show in Figure 8, compared to CPU. The speed-up is measured at seven
different image block sizes. Figure 8 clearly shows that GPU running time increases
linearly as we increase the block size, but CPU exhibits a super linear behavior.

Optimization of GPU codes is particularly important since there are numerous
parameters of the execution environment, which can affect performance. Significant
evidence exists that there can be orders of magnitude performance differences de-
pending on the level of optimization for GPU implementations [10, 95, 96]. The
search space generated by the execution configuration is so large that finding the
optimal parameters by trial and error is not practical. Several studies (around 2008)
tackled this problem through empirical search-based approaches [96, 84]. We utilize
the method provided in [84] to optimize the GPU execution configuration for block
matching and improve speedup further, as shown in Figure 8 (right). We observe
a speedup of about 30 when comparing optimized and non-optimized implementa-
tions.

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 19

5 Deep Learning Model Architecture

Through the evolution of Grid Computing to Cloud computing and advances in
AI, we have made significant progress in improving the accuracy and execution
time of NRR by leveraging Machine Learning for Patient-Specific search of NRR
parameters. In this section, we summarize our work appeared in [3], where we have
presented a model that uses a deep feedforward neural network trained on data from
past APBNRR executions. The model takes fourteen parameters as input, including
twelve APBNRR parameters with a very large range of possible values and two
additional patient-specific parameters. The output is a predicted Hausdorff distance
of the registered preoperative image. The idea is to replace speculative executions
over the Grid (now Cloud) we described earlier in Section 4.2. The twelve APBNRR
parameters are the half block size Bs, the half window size Ws in the axial, coronal,
and sagittal direction, the fraction Fs to select the image blocks, the number of
approximation (outlier rejection) steps Nrej, the number of interpolation steps Nint,
the maximum number of adaptive iterations N(iter,.max), the minimum number of
blocks with a zero correspondence N(b0,min), and the percentage of rejected outlier
blocks Fr. The two patient-specific parameters are the location of the tumor in the
brain (lobe-wise) and the degree of brain deformation, which can be directly inferred
from the rigid registration error. These two parameters improve model performance
by providing additional cues for the neural network to learn and fine-tune the model
for a specific patient during an IGNS session.

The neural network was implemented using Keras [18] on a TensorFlow backend
[1]. It consists of four hidden, fully connected layers, each comprised of 128 neu-
rons. We used ReLU [7] as the activation function and stochastic gradient descent
with Nesterov momentum [93] for optimization. We chose to use SGD because it has
been shown to lead to better generalization compared to adaptive gradient optimiz-
ers such as Adam, due to its tendency to converge to better global minima [68]. No
dropout layers or methods of preventing overfitting were used, as the training data is
complex and highly variated. Furthermore, the feature selection in parallel mode is
non-deterministic, meaning that the same input parameters can yield different out-
puts in every execution, further reducing the ability of the model to “memorize” the
training data and overfit to the training set. The neural network was built in an iter-
ative fashion, wherein at each iteration, a new patient case was added (consisting of
data from about 100,000 APBNRR executions) and the network’s hyperparameters
and architecture were tuned to reduce the loss marked in the previous iteration.

5.1 Deep Learning APBNRR

The deep learning portion of APBNRR takes place before the actual execution of
APBNRR. APBNRR inputs the parameter sets predicted by the deep learning model
to result in the lowest Hausdorff distances. A visualization of how the deep learning
model works is shown in Figure 9. The neural network is given as input each param-

20 Chrisochoides et al.

Fig. 9 Deep learning portion of APBNRR registration.

eter set in a pool consisting of patient-specific parameter sets, which was produced
by augmenting a base, general parameter set pool. We have created tools that do this
automatically. The neural network iterates through each parameter set and outputs
the Hausdorff distance of the registered image that APBNRR would produce if this
parameter set were utilized. Out of all those predictions, the lowest ones are com-
piled in a file and can be used as input to APBNRR. This process takes about 15
seconds.

The deep learning model takes input parameter sets from a pool specific to each
patient. This is an augmented version of a base, general parameter pool, which has
been enhanced to include two patient-specific features: the tumor’s location in the
brain and the size of the deformation, as can be derived from the rigid registration er-
ror. In our experiments, the patient-specific features have yielded significantly better
results.

We encountered a couple of important challenges while constructing the deep
learning model. The first is that APBNRR is non-deterministic due to the parallel
feature selection algorithm. Given two identical parameter sets, APBNRR will yield
two registered images with different Hausdorff distances. This non-determinism
leads to a degree of “randomness” in results, which hinders the ability of the neu-
ral network to predict the Hausdorff distances correctly. Unfortunately, there is no
practical solution to this issue other than amassing more training data to “average
out” this randomness, leading us to the second challenge: collecting training data
takes a long time. To gather training data, we must run APBNRR for every parame-
ter set in an exhaustive pool for every additional patient case we want to include in
our training set. Evaluating a single case exhaustively (1 million executions) takes
about 1-2 months, depending on the severity and size of the brain tumor.

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 21

5.2 Final Experimental Evaluation

This section summarizes our findings in [3] and a summary in [32]. Our data set for
the model consists of medical resonance images from thirteen patient cases provided
by the Huashan Worldwide Medical Center and Brigham and Women’s Hospital of
Harvard University and output data from over 2.6 million executions of APBNRR,
collected over five months. Eleven of the thirteen cases were used for training (2.4
million parameter sets) and two for evaluation (200,000 parameter sets). APBNRR
was executed with arrays of 120 parameter sets on a supercomputing cluster, utiliz-
ing 450 CPU cores and over 4 TB of RAM. The total computing time required for
the executions was approximately 3600 hours.

We used the deep learning model to achieve a training root mean squared error
(RMSE) of 1.41 and an evaluation RMSE of 1.21 for predicted Hausdorff distances.
For further evaluation, utilizing the trained model, we again executed APBNRR
for the 13 cases, using the top 120 parameter sets predicted by the model for each
case to yield the lowest Hausdorff distances. The best results of those executions are
displayed in Table of Figure 10, along with the results from several other registration
methods as a comparison. The best results from the APBNRR parameter sweeps that
were used for generating our dataset are also displayed as a reference of what could
have been the lowest Hausdorff distance value.

Fig. 10 Shows the thirteen patient cases that consist of our data set and the results (measured
as the Hausdorff distance in mm) achieved with various methods of registration, including with
APBNRR using deep learning and APBNRR using a parameter sweep. Cases with numbers 1-11
were used for training, and 12, and 13 were used for evaluation.)

On average, APBNRR with deep learning is 8.45 times better than rigid reg-
istration, 6.71 times better than B-Spline registration, and 7.9 times better than
PBNRR. Overall, APBNRR with deep learning leads to superior results (for tested

22 Chrisochoides et al.

cases) than any of the registration methods noted above. Choosing the correct pa-
rameters for medical image registration is a difficult task, as there are many (usually
infinite) possible values and combinations of parameters that can lead to better or
worse results. The deep learning portion of the APBNRR framework makes this
faster and easier by greatly limiting the set of possible optimal parameters for each
patient, moving APBNRR one step closer to being utilized in a real-time setting
where registration accuracy and speed are critical.

6 Discussion

We have briefly described the use of Dynamic Data Driven Application Systems
for Image-Guided Neurosurgery, enabled by the advances in medical image acqui-
sition, parallel/distributed computing, Machine Learning, and algorithmic changes
in [27, 28, 35] the original NRR method presented in [24]. This DDDAS concept,
for the first time in clinical practice [19, 4], helped us to complete and present
non-rigid registration results to neuro-surgeons [4] at BWH during tumor resection
procedures using image landmark tracking across the entire brain volume. This is
accomplished in three phases:

• Phase I: Reduced the total response time of the time-critical computation com-
ponent to about 35 sec, delivering an effective speedup of nearly 100 compared
to the original implementation [24]. To achieve this, we used remotely (at CWM)
several CoWs with a total of 269 processors [19] (the data transfer from CWM
to the operating room in BWH takes between 3 to 5 min). Our data suggest that
we improved the accuracy of the NRR method by performing speculative execu-
tion [40] on the TeraGrid, which was capable of delivering about 250 TFLOPS.
This computing power translates into tens of thousands of registrations (with
different parameters) in almost real-time if there was proper coordination with
all sides to avoid scheduling conflicts. However, this requires the availability of
a network connection between the operating room and remote computing re-
sources. Also, the imaging data must be anonymized before transfer to address
confidentiality concerns.

• Phase II: Eliminated the use of Grid and lately Cloud computing for the specu-
lative execution of PBNRR by using much cheaper hardware that can be located
nearby the operating room. Our results in the CRTC indicate that it is possible
to complete the time-critical component of non-rigid registration within a minute
—save another 3 to 5 minutes for the data transfer— using a single (or two,
for fault-tolerance) high-end workstations with NVIDIA GeForce 8800 GT GPU
and 2 x Intel Core2 Duo CPU 3.16GHz. We believe in using current and emerg-
ing heterogeneous hardware architectures and the coordinated use of Cloud (or
TeraGrid when performing these studies). Our results show that GPU provides
excellent computing capabilities without sacrificing the result’s accuracy.

• Phase III: Improved the accuracy of the original NRR method by extending
the NRR model to incorporate adaptivity to improve accuracy and replaced the

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 23

expensive speculative execution of multiple NRRs (from Phase I & II) with ma-
chine learning to improve both accuracy and performance. Our results indicate
that the APBNRR with deep learning is 8.45 times better than rigid registration,
6.71 times better than B-Spline registration, and 7.9 times better than PBNRR
(outcome of Phase I and II). A key element for evaluating the performance of
APBNRR is determining optimal input parameters. Optimal input parameters
are usually in our base parameter pool’s first 800 – 39,000 parameter-sets. De-
termining optimal input parameters by doing a parameter sweep utilizing arrays
of 120 jobs over the Cloud would take an estimated 33 minutes – 27 hours. This
high variability is not acceptable in a neurosurgery session. Deep learning offers
significant speedups in this area by allowing the user to limit the parameter pool
to a custom value. By using deep learning, we could evaluate fewer parameter
sets, potentially completing APBNRR in 5 minutes on moderate CoWs (5 to 10
HPC nodes) while also producing good results.

This Chapter presented only a few of the most important findings and results.
However, several efforts at CRTC alone address other aspects like: (1) robust and
real-time image-to-mesh (I2M) conversion [44, 92, 64, 65, 42, 21, 43, 47, 48, 59, 77,
8, 15, 16, 51, 50, 53, 52, 54, 78, 17, 55, 56, 49, 57, 29, 58, 31, 46, 29, 30, 60], (2)
more accurate computation of Hausdorf Distance [13, 41], (3) parallel Euclidean
Distance Transform, which is critical for parallel I2M conversion [98], and many
preliminary efforts that lead to the findings presented in this Chapter and we list
them here for completeness without expanding on them [6, 45, 22, 20, 74, 75, 104,
76, 83, 72, 81, 79, 73, 80, 82, 28, 61, 33, 85, 66, 34, 35, 12, 32]

7 Conclusion and Future Work

Choosing the correct parameters for medical image registration is a difficult task,
as there are many (usually infinite) possible values and combinations of parame-
ters that can lead to better or worse results. The deep learning portion of the APB-
NRR framework makes this easier by greatly limiting the set of possible optimal
parameters for each patient, moving APBNRR one step closer to being utilized in a
real-time setting where registration accuracy and speed are critical.

Operating rooms, like Advanced Multi-modality Image Guided Operating (AMIGO)
[87] suite, provide new capabilities to improve intra-operative image guidance. Ad-
vances in high-performance and distributed tools for image analysis, like the NRR
DDDAS we presented in this chapter, will be essential to meet the ever-increasing
computational demands of such environments. DDDAS will be critical in health
care, among other areas, where this concept proved successful [88, 37].

Within AMIGO’s workflow, APBNRR execution takes place after the intraop-
erative MR phase and is meant to assist in tumor and residual tumor assessment
due to the ability of APBNRR to perform well in the context of tumor resection.
The registered intraoperative image with the tumor resected allows the neurosur-
geon to evaluate better how well the tumor has been resected. The time window

24 Chrisochoides et al.

for APBNRR to execute as part of this workflow is a few minutes. As such, on top
of accuracy, speed is also critical. Deep learning solves the problem of limiting the
parameter pool that needs to be evaluated, but some issues with APBNRR need to
be resolved. One of the most important is the dependence of APBNRR performance
on the tumor size. The larger the tumor, the more time it takes for APBNRR to exe-
cute. Furthermore, the more adaptive iterations APBNRR goes through, the longer
the execution. We have seen an execution time ranging from 5 to 30 minutes –for
large and deep brain tumors, with parameter sets having more adaptive iterations
and slower execution than those with lower ones but better registration accuracy on
average. This suggests we still need to evaluate deep learning APBNRR on how it
would perform in a real-world setting. Specifically, we will look at how APBNRR
would perform in the brain tumor resection workflow in AMIGO, which represents
an ideal setting for using APBNRR.

Deep learning APBNRR takes us a step closer to enabling NRR to be used in
real-world scenarios. However, some issues must be resolved before that can hap-
pen. First, more training data must be collected for the deep learning model to offer
more accurate predictions. Second, work needs to be done to enable the deep learn-
ing model to generate a parameter pool that is limited in size and can also be eval-
uated rapidly. Finally, the performance of APBNRR needs to be further improved
and extensively evaluated for deep tumors which involve very large brain deforma-
tion. Finally, the overall performance of deep learning APBNRR depends on the
computational resources available. In particular, the more computational resources
available, the larger the parameter pool of the best parameter sets predicted by the
neural network can be. As a result, there is a greater chance of achieving better
accuracy and performance.

Acknowledgments

The Richard T. Cheng Endowment supports NC. AF, YL, AK, and NC were partly
supported by the NSF grants CCS-0719929, CCS-0750901, CCF-0833081, CCF-
1439079, and the John Simon Guggenheim Memorial Foundation. AF was sup-
ported in part by a grant from Brain Science Foundation. AF was supported in
part by a grant from Brain Science Foundation. RK, AG, and PB were supported
in part by NIH grants: U41 RR019703, P01 CA67165, NIH R01NS049251, NIH
5R01EB027134, and NCIGT P41EB015898. This research was supported by an
allocation through the TeraGrid Advanced Support Program. This work was per-
formed [in part] using computational facilities at the College of William and Mary
and Old Dominion University, which were enabled by grants from Sun Microsys-
tems, the National Science Foundation, and Virginia’s Commonwealth Technology
Research Fund. We also thank Dr. Frederica Darema for her hard work laying the
foundation, building a DDDAS community, and encouraging us to present our work
in this Volume.

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 25

References

1. Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

2. American Brain Tumor Association. Facts & statistics, 2008. http://www.abta.
org/siteFiles/SitePages/5E8399DBEEA8F53CBBBBF212C63AE113.pdf,
accessed 23 Dec 2008.

3. Angelos Angelopoulos and Nikos Chrisochoides. Deep learning real-time adaptive physics-
based non-rigid registration for accurate geometry representation of brain in modeling defor-
mation during glioma resection. 2019.

4. N. Archip, O. Clatz, S. Whalen, D. Kacher, A. Fedorov, A. Kot, N. Chrisochoides, F. Jolesz,
A. Golby, P.M. Black, and S.K. Warfield. Non-rigid alignment of preoperative MRI, fMRI,
and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-
guided neurosurgery. NeuroImage, 35:609–624, 2007.

5. N. Archip and I.-F. Talos. Spl brain tumor resection image dataset, 2007. http://www.
spl.harvard.edu/publications/item/view/541.

6. Neculai Archip, Andriy Fedorov, Bryn Lloyd, Nikos Chrisochoides, Alexandra Golby, Peter
Black, and Simon K. Warfield. Integration of patient specific modeling and advanced image
processing techniques for image-guided neurosurgery. In SPIE Medical Imaging, pages 422–
429, 2006.

7. Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep
neural networks with rectified linear units, 2018.

8. Michel Audette, Andrey Chernikov, and Nikos Chrisochoides. A review of mesh generation
for medical simulators. 2011. Chapter in Handbook of Real-World Applications in Modeling
and Simulations.

9. Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, Adrian V. Dalca, and John Guttag. An
unsupervised learning model for deformable medical image registration. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE, jun 2018.

10. M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. A compiler framework for optimization of affine loop nests for gpgpus. In
ICS’08: Proceedings of the 22nd Annual International Conference on Supercomputing, page
225–234, 2008.

11. A. Belguelin, J. Dongarra, A. Geist, R. Manchek, S. Otto, and J. Walpore. Pvm: Experiences,
current status, and future direction. In Supercomputing ’93 Proceedings, pages 765–766,
1993.

12. Joi Best, Kevin Garner, Daming Feng, Fotios Drakopoulos, Yixun Liu, and Nikos Chriso-
choides. Image-to-mesh conversion tool for image-driven simulations (paper). In Virginia
Space Grant Consortium, 2019.

13. Eric Billet, Andriy Fedorov, and Nikos Chrisochoides. The use of robust local hausdorff
distances in accuracy assessment for image alignment of brain mri. Insight Journal, 2008.

14. R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk: An effi-
cient multithreaded runtime system. In Proceedings of the 5th Symposium on Principles and
Practice of Parallel Programming, pages 55–69, 1995.

15. Andrey Chernikov and Nikos Chrisochoides. Multi-tissue tetrahedral image-to-mesh conver-
sion with guaranteed quality and fidelity. SIAM Journal on Scientific Computing, 33:3491–
3508, 2011.

16. Andrey Chernikov and Nikos Chrisochoides. Tetrahedral image-to-mesh conversion for
biomedical applications. In ACM Conference on Bioinformatics, Computational Biology
and Biomedicine, pages 125–134, Chicago, IL, August 2011.

17. Andrey Chernikov, Panagiotis Foteinos, Yixun Liu, Michel Audette, Andinet Enquobahrie,
and Nikos Chrisochoides. Tetrahedral image-to-mesh conversion approaches for surgery
simulation and navigation. Image-Based Geometric Modeling and Mesh Generation, pages

26 Chrisochoides et al.

69–84, 2013. Lecture Notes in Computational Vision and Biomechanics (Yongjie (Jessica)
Zhang, ed.).

18. Francois Chollet et al. Keras, 2015.
19. N. Chrisochoides, A. Fedorov, A. Kot, N. Archip, P.M. Black, O. Clatz, A. Golby, R. Kikinis,

and S.K. Warfield. Toward real-time image guided neurosurgery using distributed and Grid
computing. In Proc. of IEEE/ACM SC06, 2006.

20. Nikos Chrisochoides. Real-time non-rigid registration for igns: Mesh generation. Invited
Joint Seminar with Waterloo Institute for Health Informatics Research and The Center f,
March 2007.

21. Nikos Chrisochoides. Parallel mesh generation for medical image computing. In SIAM
Conference on Parallel Processing for Scientific Computing. SIAM, March 2008.

22. Nikos Chrisochoides, Andriy Fedorov, Andriy Kot, Neculai Archip, Daniel Goldberg-
Zimring, Dan Kacher, Stephen Whalen, Ron Kikinis, Ferenc Jolesz, Olivier Clatz, Simon K.
Warfield, Peter Black, and Alexandra Golby. Grid-enabled software environment for en-
hanced dynamic data-driven visualization and navigation during image-guided neurosurgery.
In International Conference on Computational Science (ICCS 2007), pages 980–987, 2007.

23. G.E. Christensen, M.I. Miller, M.W. Vannier, and U. Grenander. Individualizing neu-
roanatomical atlases using a massively parallel computer. Computer, 29(1):32–38, 1996.

24. O. Clatz, H. Delingette, I.-F. Talos, A. Golby, R. Kikinis, F. Jolesz, N. Ayache, and S.K.
Warfield. Robust non-rigid registration to capture brain shift from intra-operative MRI. IEEE
Trans. Med. Imag., 24(11):1417–1427, 2005.

25. H. Delingette and N. Ayache. Soft tissue modeling for surgery simulation, volume XII of
Handbook of Numerical Analysis: Special volume: Computational models for the human
body, pages 453–550. Elsevier, Netherlands, 2004.

26. C. DeLorenzo. Image-Guided Intraoperative Brain Deformation Recovery. PhD thesis, Yale
University, 2007.

27. Fotios Drakopoulos and Nikos Chrisochoides. A parallel adaptive physics-based non-rigid
registration framework for brain tumor resection. In VMASC 2014 Capstone Conference,
April 2014. Best paper in Medical Simulations.

28. Fotios Drakopoulos and Nikos Chrisochoides. Accurate and fast deformable
medical image registration for brain tumor resection using image-guided neuro-
surgery. Computer Methods in Biomechanics and Biomedical Engineering, 2015.
http://dx.doi.org/10.1080/21681163.2015.1067869.

29. Fotios Drakopoulos and Nikos Chrisochoides. Tetrahedral image-to-mesh conversion for
anatomical modeling and surgical simulations. In VMASC 2015 Capstone Conference, 2015.

30. Fotios Drakopoulos and Nikos Chrisochoides. Lattice-based multi-tissue mesh generation
for biomedical applications. Brigham and Women’s Hospital & Harvard Medical School,
April 2016. SPL25.

31. Fotios Drakopoulos, Ricardo Ortiz, Andinet Enquobahrie, and Nikos Chrisochoides. Image-
to-mesh conversion for arteriovenous malformation surgical simulators. In 13th U.S. Na-
tional Congress on Computational Mechanics, July 2015. Biomechanics Modeling: Ad-
vances and Applications to Real-World Problems.

32. Fotios Drakopoulos, Christos Tsolakis, Angelos Angelopoulos, Yixun Liu, Chengjun Yao,
Kyriaki Rafailia Kavazidi, Nikolaos Foroglou, Andrey Fedorov, Sarah Frisken, Ron Kikinis,
Alexandra Golby, and Nikos Chrisochoides. Adaptive physics-based non-rigid registration
for immersive image-guided neuronavigation systems. Frontiers in Digital Health, February
2021.

33. Fotios Drakopoulos, Michael Weissberger, Kathryn Holloway, and Nikos Chrisochoides.
Biomechanical deformable registration for deep brain stimulation. In VMASC 2016 Cap-
stone Conference, Suffolk,VA, April 2016.

34. Fotios Drakopoulos, Chengjun Yao, Yixun Liu, and Nikos Chrisochoides. An evaluation of
adaptive biomechanical non- rigid registration for brain glioma resection using image-guided
neurosurgery. In MICCAI Computational Biomechanics for Medicine CBM XI Workshop,
Athens, Greece, October 2016.

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 27

35. Fotios Drakopoulos, Chengjun Yao, Yixun Liu, and Nikos Chrisochoides. An evaluation of
adaptive biomechanical non-rigid registration for brain glioma resection using image-guided
neurosurgery. Computational Biomechanics for Medicine, pages 111–122, May 2017.

36. Tom Eelbode, Jeroen Bertels, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Biss-
chops, and Matthew B. Blaschko. Optimization for medical image segmentation: Theory and
practice when evaluating with dice score or jaccard index. IEEE Transactions on Medical
Imaging, 39(11):3679–3690, nov 2020.

37. Sai Ravela Alex J. Aved Erik P. Blasch, Frederica Darema. Handbook of Dynamic Data
Driven Applications Systems. Springer Cham, 2022.

38. A. Fedorov, E. Billet, M. Prastawa, A. Radmanesh, G. Gerig, R. Kikinis, S. K. Warfield, and
N. Chrisochoides. Evaluation of brain MRI alignment with the robust Hausdorff distance
measures. In Proc. of ISVC 2008, pages 594–603, 2008.

39. A. Fedorov and N. Chrisochoides. Tetrahedral mesh generation for non-rigid registration of
brain MRI: Analysis of the requirements and evaluation of solutions. In Proc. of the 17th
International Meshing Roundtable, pages 55–72, 2008.

40. A. Fedorov, B. Clifford, S.K. Warfield, R. Kikinis, and N. Chrisochoides. Non-rigid reg-
istration for image-guided neurosurgery on the TeraGrid: A case study. Technical Report
WM-CS-2009-05, Department of Computer Science, College of William and Mary, 2009.

41. Andriy Fedorov, Eric Billet, Marcel Prastawa, Alireza Radmanesh, Guido Gerig, Ron Kiki-
nis, Simon K. Warfield, and Nikos Chrisochoides. Evaluation of brain mri alignment with the
robust hausdorff distance measures. In 4th International Symposium on Visual Computing,
pages 594–603. Springer, 2008.

42. Andriy Fedorov and Nikos Chrisochoides. Adaptive mesh refinement for non-rigid registra-
tion of brain mri. In 8th World Congress on Computational Mechanics, 2008.

43. Andriy Fedorov and Nikos Chrisochoides. Tetrahedral mesh generation for non-rigid regis-
tration of brain mri: Analysis of the requirements and evaluation of solutions. In International
Meshing Roundtable, number 17, pages 55–72, October 2008.

44. Andriy Fedorov, Nikos Chrisochoides, Ron Kikinis, and Simon K. Warfield. Tetrahedral
mesh generation for medical imaging. In 8th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI 2005), 2005.

45. Andriy Fedorov, Nikos Chrisochoides, Ron Kikinis, and Simon K. Warfield. An evaluation
of three approaches to tetrahedral mesh generation for deformable registration of brain mr
images. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
pages 658–661, 2006.

46. Daming Feng, Christos Tsolakis, Andrey Chernikov, and Nikos Chrisochoides. Scalable 3d
hybrid parallel delaunay image-to-mesh conversion algorithm for distributed shared memory
architectures. In 24th International Meshing Roundtable, Austin, Texas, October 2015.

47. Panagiotis Foteinos, Andrey Chernikov, and Nikos Chrisochoides. Toward real time image
to mesh conversion for non rigid registration. In IEEE International Conference on Bioin-
formatics & Biomedicine, November 2009. refereed.

48. Panagiotis Foteinos, Andrey Chernikov, and Nikos Chrisochoides. Guaranteed quality tetra-
hedral delaunay meshing for medical images. In 7th International Symposium on Voronoi Di-
agrams in Science and Engineering, pages 215–223, Laval University, Quebec City, Canada,
June 2010.

49. Panagiotis Foteinos, Andrey Chernikov, and Nikos Chrisochoides. Guaranteed quality tetra-
hedral delaunay meshing for medical images. Computational Geometry: Theory and Appli-
cations, 47:539–562, 2014.

50. Panagiotis Foteinos and Nikos Chrisochoides. A dynamic parallel 3d delaunay triangulation.
In International Meshing Roundtable, pages 9–26, October 2011.

51. Panagiotis Foteinos and Nikos Chrisochoides. High-quality multi-tissue mesh generation
for finite element analysis. In MeshMed, Workshop on Mesh Processing in Medical Image
Analysis (MICCAI), pages 18–28, September 2011.

52. Panagiotis Foteinos and Nikos Chrisochoides. Dynamic parallel 3d delaunay triangulation.
In International Meshing Roundtable, pages 3–20, Paris, France, 2012. Springer Berlin Hei-
delberg.

28 Chrisochoides et al.

53. Panagiotis Foteinos and Nikos Chrisochoides. High-quality multi-tissue mesh generation
for finite element analysis. Image-Based Geometric Modeling and Mesh Generation, pages
161–172, 2012. Editor Yongjie (Jessica) Zhang.

54. Panagiotis Foteinos and Nikos Chrisochoides. Multi-dimensional image-to-mesh conver-
sion on massively parallel systems. In Challenges in Massively Parallel Simulations using
Unstructured Meshes, SIAM Conference on Parallel Processing for Scientific Computing,
February 2012.

55. Panagiotis Foteinos and Nikos Chrisochoides. 4d space-time delaunay meshing for medical
images. In International Meshing Roundtable, pages 223–240. Springer International, 2013.

56. Panagiotis Foteinos and Nikos Chrisochoides. High quality real-time image-to-mesh conver-
sion for finite element simulations. In 27th ACM International Conference on Supercomput-
ing (ICS’13), pages 233–242, Eugene, Oregon, June 2013.

57. Panagiotis Foteinos and Nikos Chrisochoides. High quality real-time image-to-mesh conver-
sion for finite element simulations. Journal on Parallel and Distributed Computing, 74:2123–
2140, 2014.

58. Panagiotis Foteinos and Nikos Chrisochoides. 4d space-time delaunay meshing for medical
images. Engineering with Computers, 31:499–511, July 2015. doi:10.1007/s00366-014-
0380-z.

59. Panagiotis Foteinos, Yixun Liu, Andrey Chernikov, and Nikos Chrisochoides. An evaluation
of tetrahedral mesh generation for non-rigid registration of brain mri. In Computational
Biomechanics for Medicine V, 13th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) Workshop, pages 126–137, September 2010.

60. Kevin Garner, Fotios Drakopoulos, and Nikos Chrisochoides. Towards distributed 3d adap-
tive anisotropic image-to-mesh conversion for biomedical applications. In NanoBioTech
2023, July 2023.

61. Kevin Garner, Daming Feng, Fotios Drakopoulos, Yixun Liu, and Nikos Chrisochoides.
Image-to-mesh conversion tool. In 24th International Meshing Roundtable, October 2015.

62. A.J. Golby, R.A. Poldrack, J. Illes, D. Chen, J.E. Desmond, and J.D. Gabrieli. Memory later-
alization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia, 43(8):855–
863, 2002.

63. F. Ino, K. Ooyama, and K. Hagihara. A data distributed parallel algorithm for nonrigid image
registration. Parallel Computing, 31(1):19–43, 1 2005.

64. Bhautik Joshi, Andriy Fedorov, Nikos Chrisochoides, Simon K. Warfield, and Sebastien
Ourselin. Application-driven quantitative assessment of approaches to mesh generation. In
IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 1160–
1163, 2007.

65. Bhautik Joshi, Andriy Fedorov, Nikos Chrisochoides, Simon K. Warfield, and Sebastien
Ourselin. A quantitative assessment of approaches to mesh generation for surgical simu-
lation. Engineering with Computers, 24:417–430, 2008.

66. Melina Kazakidi, Fotios Drakopoulos, Chander Sadasivan, Nikos Chrisochoides, John Eka-
terinaris, and Baruch B. Lieber. Numerical simulation of cerebral aneurysm by flow diver-
sion. In European Congress on Computational Methods in Applied Sciences and Engineer-
ing, June 2016. Workshop on Simulation of Cardiovascular Procedures and Devices.

67. Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. Deep learning applications in medical
image analysis. IEEE Access, 6:9375–9389, 2018.

68. Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switch-
ing from adam to sgd, 2017.

69. Julian Krebs, Tommaso Mansi, Boris Mailhé, Nicholas Ayache, and Hervé Delingette. Un-
supervised probabilistic deformation modeling for robust diffeomorphic registration, 2018.

70. D. Levin, D. Dey, and P. Slomka. Acceleration of 3d, nonlinear warping using standard video
graphics hardware: implementation and initial validation. Comput Med Imaging Graph,
28(8):471–483, 2004.

71. H. Lippman and F. Kruggel. Quasi-real-time neurosurgery support by MRI processing via
grid computing. Neurosurg. Clin. N. Am., 16(1):65–75, 2005.

Non-Rigid Registration for Brain Tumor Resection in Image-Guided Neurosurgery 29

72. Yixun Liu and Nikos Chrisochoides. Using k-means clustering and mi for non-rigid regis-
tration of mri and ct. In International Workshop on Machine Learning in Medical Imaging
(MLMI), the 13th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), September 2010.

73. Yixun Liu and Nikos Chrisochoides. Heterogeneous biomechanical model on correcting
brain deformation induced by tumor resection. In Computational Biomechanics for Medicine
Workshop CBM7, 2012.

74. Yixun Liu, Andriy Fedorov, Ron Kikinis, and Nikos Chrisochoides. Real-time non-rigid
registration of medical images on a cooperative parallel architecture. In IEEE International
Conference on Bioinformatics & Biomedicine, pages 401–404, November 2009.

75. Yixun Liu, Andriy Fedorov, Ron Kikinis, and Nikos Chrisochoides. Non-rigid registration
for brain mri: Faster and cheaper. International Journal of Functional Informatics and Per-
sonalized Medicine (IJFIPM), 3:48–57, 2010.

76. Yixun Liu, Andriy Fedorov, Ron Kikinis, and Nikos Chrisochoides. A novel point based
non-rigid registration method and its application for brain shift. In SPIE Medical Imaging,
2010.

77. Yixun Liu, Panagiotis Foteinos, Andrey Chernikov, and Nikos Chrisochoides. Multi-tissue
mesh generation for brain images. In International Meshing Roundtable, number 19, pages
367–384, October 2010.

78. Yixun Liu, Panagiotis Foteinos, Andrey Chernikov, and Nikos Chrisochoides. Mesh
deformation-based multi-tissue mesh generation for brain images. Engineering with Com-
puters, 8:305–318, October 2012.

79. Yixun Liu, Andriy Kot, Fotios Drakopoulos, Andriy Fedorov, Andinet Enquobahrie, Olivier
Clatz, and Nikos Chrisochoides. An itk implementation of physics-based non-rigid registra-
tion method. Insight Journal, 2012.

80. Yixun Liu, Andriy Kot, Fotios Drakopoulos, Andriy Fedorov, Chengjun Yao, Andinet En-
quobahrie, Olivier Clatz, and Nikos Chrisochoides. An itk implementation of a physics-
based non-rigid registration method for brain deformation in image-guided neurosurgery.
Front. Neuroinform.,, 8, February 2014. doi: 10.3389/fninf.2014.00033.

81. Yixun Liu, Hui Xue, Christoph Guetter, Marie-Pierre Jolly, Nikos Chrisochoides, and Jens
Guehring. Moving propagation of suspicious myocardial infarction from delayed enhanced
cardiac imaging to cine mri using hybrid image registration. In IEEE International Sympo-
sium on Biomedical Imaging: From Nano to Macro, pages 1284–1288, March 2011.

82. Yixun Liu, Chengjun Yao, Fotios Drakopoulos, Jinsong Wu, Liangfu Zhou, and Nikos
Chrisochoides. A non-rigid registration method for correcting brain deformation induced
by tumor resection. Medical Physics, 41, August 2014. doi: 10.1118/1.4893754.

83. Yixun Liu, Chengjun Yao, Liangfu Zhou, and Nikos Chrisochoides. A point based non-rigid
registration for tumor resection using imri. In IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, pages 1217–1220, April 2010.

84. Yixun Liu, Eddy Z. Zhang, and Xipeng Shen. A cross-input adaptive framework for gpu
programs optimization. In 23rd IEEE IPDPS, 2009. accepted.

85. Shahram Mohrehkesh, Andriy Fedorov, Arun Brahmavar Vishwanatha, Fotios Drakopoulos,
Ron Kikinis, and Nikos Chrisochoides. Large scale cloud-based deformable registration
for image guided therapy. In International Workshop on Big Data Analytics for Smart and
Connected Health, Washington DC, June 2016.

86. Pinar Muyan-Ozcelik, John D. Owens, Junyi Xia, and Sanjiv S. Samant. Fast deformable
registration on the gpu: A cuda implementation of demons. In ICCSA ’08: Proceedings of
the 2008 International Conference on Computational Sciences and Its Applications, pages
223–233, Washington, DC, USA, 2008. IEEE Computer Society.

87. National Center for Image Guided Therapy. Advanced Multimodality Image Guided Oper-
ating (AMIGO) Suite, 2009. http://www.ncigt.org/pages/AMIGO.

88. National Science Foundation. DDDAS: Dynamic Data Driven Applications Systems, 2009.
http://www.nsf.gov/cise/cns/dddas/DDDAS_Appendix.jsp.

89. National Science Foundation. The TeraGrid project, 2009. http://www.teragrid.
org/.

30 Chrisochoides et al.

90. Fotis Drakopoulos Yixun Liu Christos Tsolakis Emmanuel Billias Olivier Clatz Nicholas Ay-
ache Alex Golby Peter Black Nikos Chrisochoides, Andrey Fedorov and Ron Kikinis. Real-
time dynamic data driven deformable registration for image-guided neurosurgery: Computa-
tional aspects. Frontiers in Digital Health, 2023.

91. NVIDIA Corporation. NVIDIA CUDA programming giude, 2008. Version 2.1.
92. Maria-Cecilia Rivara, Carlo Calderon, Andriy Fedorov, and Nikos Chrisochoides. Parallel

decoupled terminal-edge bisection method for 3d mesh generation. Engineering with Com-
puters, 22:111–119, 2006.

93. Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.
94. Antonio Ruiz, Manuel Ujaldon, Lee Cooper, and Kun Huang. Non-rigid registration for large

sets of microscopic images on graphics processors. J Sign Process Syst, 55(1-3):229–250,
April 2008.

95. S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W. Hwu. Op-
timization principles and application performance evaluation of a multithreaded gpu using
cuda. In PPoPP’08:Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, page 73–82, 2008.

96. S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A. Stratton, and W. W.
Hwu. Program optimization space pruning for a multithreaded gpu. In CGO’08: Proceedings
of the Sixth Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion,, page 195–204, 2008.

97. M. Snir, S. Otto, S. Huss-Lederman, and D. Walker. MPI The Complete Reference. The MIT
Press, 1998.

98. Robert Staubs, Andriy Fedorov, Leonidas Linardakis, Benjamin Dunton, and Nikos Chriso-
choides. Parallel n-dimensional exact signed euclidean distance transform. Insight Journal,
2006.

99. R. Stefanescu, X. Pennec, and N. Ayache. Parallel non-rigid registration on a cluster of
workstations. In Proc. of HealthGrid’03, 2003.

100. C. Vetter, C. Guetter, C. Xu, and R. Westermann. Non-rigid multi-modal registration on the
gpu. In Medical Imaging 2007: Image Processing, volume 6512, page 651228, 2007.

101. S. K. Warfield, M. Ferrant, X. Gallez, A. Nabavi, and F. A. Jolesz. Real-time biomechanical
simulation of volumetric brain deformation for image guided neurosurgery. In Supercom-
puting ’00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM),
page 23, Washington, DC, USA, 2000. IEEE Computer Society.

102. S. K. Warfield, F. A. Jolesz, and R. Kikinis. Real-time image segmentation for image-guided
surgery. In Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on Super-
computing (CDROM), pages 1–7, Washington, DC, USA, 1998. IEEE Computer Society.

103. S. K. Warfield, A. Nabavi, T. Butz, K. Tuncali, S. G. Silverman, P. Black, F. A. Jolesz, and
R. Kikinis. Intraoperative segmentation and nonrigid registration for image guided therapy.
In MICCAI ’00: Proceedings of the Third International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 176–185, London, UK, 2000. Springer-
Verlag.

104. Michael Weissberger, Yixun Liu, Joseph Han, and Nikos Chrisochoides. Multi-modal non-
rigid registration for image guided head and neck surgery. In American Rhinologic Society
Fall meeting, 2010.

105. I. Wu. Multilist Scheduling: A New Parallel Programming Model. PhD thesis, School of
Comp. Sci., Carnegie Mellon University, Pittsburg, PA 15213, July 1993.

106. Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova, I. Raicu, T. Stef-
Praun, and M. Wilde. Swift: fast, reliable, loosely coupled parallel computation. In Proc. of
2007 IEEE Congress on Services, pages 199–206, 2007.

107. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method: Its Basis and
Fundamentals. Butterworth-Heinemann, 2005.

