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Summary. Mesh generation is a critical component for many (bio-)engineering ap-
plications. However, parallel mesh generation codes, which are essential for these
applications to take the fullest advantage of the high-end computing platforms, be-
long to the broader class of adaptive and irregular problems, and are among the
most complex, challenging, and labor intensive to develop and maintain. As a re-
sult, parallel mesh generation is one of the last applications to be installed on new
parallel architectures. In this paper we present a way to remedy this problem for
new highly-scalable architectures. We present a multi-layered tetrahedral/triangular
mesh generation approach capable of delivering and sustaining close to 1018 of con-
current work units. We achieve this by leveraging concurrency at different granu-
larity levels using a hybrid algorithm, and by carefully matching these levels to the
hierarchy of the hardware architecture. This paper makes two contributions: (1) a
new evolutionary path for developing multi-layered parallel mesh generation codes
capable of increasing the concurrency of the state-of-the-art parallel mesh generation
methods by at least 10 orders of magnitude and (2) a new abstraction for multi-
layered runtime systems that target parallel mesh generation codes, to efficiently
orchestrate intra- and inter-layer data movement and load balancing for current and
emerging multi-layered architectures with deep memory and network hierarchies.

1 Introduction

The complexity of programming adaptive and irregular applications on archi-
tectures with hierarchical communication networks of processors is an order
of magnitude higher than on sequential machines, even for parallel mesh gen-
eration algorithms/codes which can be mapped directly on multi-layered ar-
chitectures. Automatically exploiting concurrency for irregular and adaptive
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computation like Delaunay mesh generation is more complex than exploit-
ing concurrency for regular (or array-based) and non-adaptive computations.
Static analysis can not be used for adaptive and irregular applications like
parallel mesh generation [28]. In [1, 34] we introduced a speculative (or op-
timistic) method for parallel Delaunay mesh generation which was recently
adopted by the parallel compilers community [29, 36] to study abstractions for
parallelization of adaptive and irregular applications. This technique has two
major problems for high-end computing: (1) although it works reasonably well
for the shared memory model, it is communication intensive for distributed
memory machines; and (2) its concurrency can be limited by the problem size
at the faster (and thus smaller) shared memory layer of the hierarchy.

In this paper we address both problems using a hybrid multi-layer ap-
proach which is based on a decoupled approach [30] at the larger (and slower)
layers, an extension of an out-of-core weakly coupled method [26, 27] at
the intermediate layers, and a speculative or optimistic but tightly-coupled
method [1] at the faster (shared memory) layers (i.e., multi-core). The out-
of-core layer utilizes additional disk storage and makes it possible to free the
main memory for the storage of data used only in the current computation.
In addition, we extend our runtime system [3] to efficiently manage both
intra- and inter-layer communication in the context of data migration due to
load balancing and migration of data/tasks between layers and between nodes
across the same layer.

We expect that this paper can have an impact in two different areas: (1)
Mesh Generation: we present the first highly scalable parallel mesh generation
method capable to provide and sustain concurrency on the order of 1018. (2)
Engineering Applications: for the first time we provide unprecedented scal-
ability for large-scale field solvers for applications like the direct numerical
simulations of turbulence in cylinder flows with very large Reynolds num-
bers [18] and coastal ocean modeling for predicting storm surge and beach
erosion in real-time [44]. In these applications three-dimensional simulations
are conducted using two-dimensional meshes in the xy-plane which are repli-
cated in the z-direction in the case of cylinder flows or using bathe-metric
contours in the case of coastal ocean modeling. In addition, this method can
be extended for Advancing Front Techniques. The approach we develop is in-
dependent of the geometric dimension (2D or 3D) of the mesh. Although the
mesh-generation-specific domain decomposition has been developed only for
2D, a similar argument applies to 3D with the use of alternative decomposi-
tions, e.g., graph partitioning implemented in the Zoltan package [16].

This paper is organized as follows. In Section 2 we review the related prior
work. In Section 3 we describe the organization of our Multi-Layered Run-
time System. In Section 4 we present the proposed Multi-Layered Parallel
Mesh Generation algorithm. In Section 5 we put the runtime system and the
parallel mesh generation algorithm together. Section 5.1 contains our prelim-
inary performance data, and Section 6 concludes the paper.
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2 Background

In this section we present an overview of parallel mesh generation approaches
related to the method we present in this paper. In addition we review parallel
runtime systems related to our runtime system PREMA (Parallel Runtime
Environment for Multicomputer Applications) which we extend to handle
multi-layered applications.

2.1 Related Work in Parallel Mesh Generation

There are three conceptually different approaches to mesh generation. Delau-
nay meshing methods (see [20] and the references therein) use the Delaunay
criterion for point insertion during refinement. Advancing front meshing tech-
niques (see e.g. [39]) build the mesh in layers starting from the boundary of
the geometry. Some of the advancing front methods use the Delaunay prop-
erty for point placement, but no theoretical guarantees are usually available.
Adaptive space-tree meshing (see e.g. [33]) is based on adaptive space subdivi-
sion (e.g., adaptive octree, or body-centric cubic lattice), and can be flexible
in the definition of the meshed object geometry (e.g., implicit geometry repre-
sentation). Certain theoretical guarantees on the quality of the mesh created
in such a way are provided by some of the methods in this group.

A comprehensive review of parallel mesh generation methods can be found
in [14]. In this section we review only those methods related to parallel De-
launay mesh generation. The problem of parallel Delaunay triangulation of a
specified point set has been solved by Blelloch et al. [4]. A related problem
of streaming triangulation of a specified point set was solved by Isenburg et
al [21]. In contrast, Delaunay refinement algorithms work by inserting addi-
tional (so-called Steiner) points into an existing mesh to improve the quality
of the elements. In Delaunay mesh refinement, the computation depends on
the input geometry and changes as the algorithm progresses. The basic oper-
ation is the insertion of a single point which leads to the removal of a poor
quality tetrahedron and of several adjacent tetrahedra from the mesh and to
the insertion of several new tetrahedra. The new tetrahedra may or may not
be of poor quality and, hence, may or may not require further point inser-
tions. We and others have shown that the algorithm eventually terminates
after having eliminated all poor quality tetrahedra, and in addition the termi-
nation does not depend on the order of processing of poor quality tetrahedra,
even though the structure of the final meshes may vary [11, 12, 30]. Therefore,
the algorithm guarantees the quality of the elements in the resulting meshes.

The parallelization of Delaunay mesh refinement codes can be achieved by
inserting multiple points simultaneously. If the points are far enough from each
other, as defined in [11], then the sets of tetrahedra influenced by their inser-
tion are sufficiently separated, and the points can be inserted independently.
However, if the points are close, then their insertion needs to be serialized be-
cause of possible violations of the validity of the mesh or of the Delaunay prop-
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erty. One way to address this problem is to introduce runtime checks [29, 34]
which lead to the overheads due to locking [1] and to rollbacks [34]. Another
approach is to decompose the initial geometry [31] and apply decoupled meth-
ods [20, 30]. The third approach presented in [8, 9, 11] is to use a judicious way
to choose the points for insertion, so that we can guarantee their independence
and thus avoid runtime data dependencies and overheads. In [9] we presented
a scalable parallel Delaunay refinement algorithm which constructs uniform
meshes, i.e., meshes with elements of approximately the same size and in [11]
we developed an algorithm for the construction of graded meshes. The work
by Kadow and Walkington [23, 24] extended [4, 5] for parallel mesh gener-
ation and further eliminated the sequential step for constructing an initial
mesh, however, all potential conflicts among concurrently inserted points are
resolved sequentially by a dedicated processor [23].

In summary, in parallel Delaunay mesh generation methods we can explore
concurrency at three levels of granularity: (i) coarse-grain at the subdomain
level, (ii) medium-grain at the cavity level (this is a common abstraction for
many different mesh generation methods), and (iii) fine-grain at the element
level. The fine-grain can only increase the concurrency by a factor of three or
four in two or in three dimensions, respectively. However, a detailed profiling
of our codes revealed that up to 24.5% of the cycles is spent on synchroniza-
tion operations, for both the protection of work-queues and for tagging each
triangle upon checking it for inclusion in a cavity. Synchronization is always
limited among the two or three threads co-located on the same core, and
memory references due to synchronization operations always hit in the cache.
However, the massive number of processed triangles results in a high percent-
age of cumulative synchronization overhead. We will revisit the fine-grain level
when there is better hardware support for synchronization.

2.2 Related Work in Parallel Runtime Systems

Because of the irregular and adaptive nature of parallel mesh generation we
wish to optimize, we restrict our discussion in this section to software systems
which dynamically balance application workload and we use the following
six important criteria: (1) Support for data migration. Migrating processes
or threads adds to the complexity of the runtime system, and is often not
portable. Migrating data, and thereby implicitly migrating computation is
a more portable and simple solution. (2) Support for explicit message pass-
ing. Message passing is a programming paradigm that developers are familiar
with, and the Active Messages [43] communication paradigm we use is a log-
ical extension to that. Explicit message passing is also attractive because it
does not hide parallelism from the developer. (3) Support for a global name-
space. A global name-space is a prerequisite for automatic data migration;
applications need the ability to reference data regardless of where it is in the
parallel system. (4) Single-threaded application model for inter-layer interac-
tions. Presenting the developer with a single-threaded communication model
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between layers greatly reduces application code complexity and development
effort. (5) Automatic load balancing. The runtime system should migrate data
or computation transparently and without intervention from the application.
(6) Customizable data/load movement/balancing. It cannot be said that there
is a “one size fits all” load balancing algorithm; different algorithms perform
well in different circumstances. Therefore, developers need the ability to eas-
ily develop and experiment with different application- and machine-specific
strategies without the need to modify their application code.

Systems such as the C Region Library (CRL) [22] implement a shared
memory model of parallel computing. Parallelism is achieved through accesses
to shared regions of virtual memory. The message passing paradigm we employ
explicitly presents parallelism to the application. In addition, PREMA does
not make use of copies of data objects, removing much of the complexity
involved with data consistency and read/write locks. In [17, 42] the authors
propose the development of component-based software strategies and data
structure neutral interfaces for large-scale scientific applications that involve
mesh manipulation tools.

Zoltan [15] and CHARM++ [25] are two systems with similar character-
istics to PREMA. Zoltan provides graph-based partitioning algorithms and
several geometric load balancing algorithms. Because of the synchronization
required during load balancing, Zoltan behaves in much the same way as other
stop-and-repartition libraries, whose results are presented in [2]. CHARM++
is built on an underlying language which is a dialect of C++, and provides ex-
tensive dynamic load balancing strategies. However, the pick-and-process mes-
sage loop guarantees that entry-point methods execute “sequentially and with-
out interruption” [25]. This may lead to a situation in which coarse-grained
work units may delay the reception of load balancing messages, negating their
usefulness, as was seen with the single-threaded PREMA results presented
in [2]. The Adaptive Large-scale Parallel Simulations (ALPS) library [7] is
based on a parallel octree mesh redistribution and targets hexahedral finite
elements, while we focus on tetrahedral and triangular elements.

3 Multi-Layered Runtime System

The application we target (parallel mesh generation) naturally lends itself to
a hierarchical partitioning of work (specifically: domain, subdomain, indepen-
dent subdomain region, and cavity). At the first two levels of this hierarchy,
we use the concept of mobile object , or Mobile Work Unit (MWU), as an ab-
straction for work partitioning. MWU is a container, which is not attached to
a specific processing element, but, as its name suggests, can migrate between
address spaces of different nodes. Work processing is facilitated by means of
sending mobile messages, which are directed to MWUs. As we showed in [3],
this abstraction is extremely convenient for the development of mesh genera-
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Fig. 1. Left: an abstraction for the hierarchical design of one runtime system layer.
The layers are arranged vertically, such that the arrows represent the transfer of data
between the adjacent layers. Right: a 2-layer instantiation of the proposed design
which we tested using traditional out-of-core parallel mesh generation methods [26,
27].

tion codes, and is indispensable for one of the most challenging problems in
parallel mesh generation: dynamic data/load movement/balancing.

Deep memory and network architecture hierarchies are intrinsic to the
state-of-the-art High Performance Computing (HPC) systems. Based on our
experience, MWU abstraction is effective in handling data movement, work
distribution and load-balancing across a single layer of the HPC architecture
hierarchy (among the nodes and disk storage units), while large-to-small work
subdivision vertically aligns with the hierarchy of the architecture: mesh sub-
domains, for meshes with over 1018 elements, can be too large to fit in memory,
while cavities can be processed concurrently at the level of a CPU core at a
lower communication/synchronization cost. The objective of the multi-layered
runtime system design is to provide communication and flow control support
to leverage the hierarchical structure of both the application work partitioning
and HPC architecture.

In our previous work on runtime systems we explored various possibilities
for the design and the implementation of load-balancing on a Cluster of Work-
stations (CoW) [3]. In this paper, our design approach is based upon three
levels of abstraction, as shown in Fig. 1(left). At the lowest level, there is na-
tive communication infrastructure, which is the foundation for implementing
the concept and basic MWU handling routines (migration and MWU-directed
communication). Given the ability to create and migrate MWUs, the schedul-
ing framework implements high-level logic by monitoring the status of the
system and the available objects, and rearranges them accordingly across the
processing elements horizontally, or moving them up and down the vertical
hierarchy. An important feature of the design is the MWU-directed commu-
nication. The life cycle of an MWU is determined by the messages (mostly,
work requests) it receives from other MWUs and processing elements, and the
status of the system. Depending on its status, availability of work, as well as
the degree and nature of concurrency which can be achieved, an MWU can be
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“retired” to a lower level (characterized by lower degree of concurrency, when
no work is pending for MWU, or when there are no resources to keep it at the
current layer), or “promoted” to an upper layer (e.g., due to availability of
resources or request for fast synchronization due to unresolved dependencies).

As a specific example of how multi-layered design can be realized, we im-
plemented a two-layered framework based on the abstract design presented
above (see Fig. 1, right). The top layer is an expanded version of the PREMA
system [3]. The native communication can be either one among ARMCI [35],
MPI or TCP sockets. The abstraction of mobile work units is realized by
MOL [13], and high-level MWU scheduling is determined by the dynamic
load-balancing policies implemented within the Implicit Load-balancing Li-
brary [3]. Overall, this layer is responsible for the maintenance of a balanced
work distribution across a single layer of nodes.

4 Multi-Layered Parallel Mesh Generation

Figure 2 presents the pseudo-code for the multi-layered (hybrid) parallel mesh
generation algorithm. It starts with the initial Planar Straight Line Graph
(PSLG) X which defines the domain Ω and the user-defined bounds on
circumradius-to-shortest edge length ratio and on the size of the elements.
First, we apply a Domain Decomposition procedure [31] to decompose Ω into

N non-overlapping subdomains: Ω =
⋃N

i=1 Ωi with the corresponding PSLGs
Xi, where N is the number of computational clusters. Then the boundary of
each Ωi is discretized using the Parallel Domain Delaunay Decoupling (PD3)
procedure [30] such that subsequent refinement is guaranteed not to introduce
any additional points on subdomain boundaries. Next each subdomain rep-
resented by Xi is loaded onto a selected node from cluster i. Then {Xi} are
further decomposed using the same method [31] into even smaller subdomains.
However, in this case the boundaries of the subdomains are not discretized
since PD3 uses the worst case theoretical bound on the smallest edge length,
which generally leads to over-refined meshes in practice. Instead, we use Par-
allel Constrained Delaunay Meshing (PCDM) algorithm/software [10] which
at the cost of some communication introduces points on the boundaries as
needed. Specifically, we use its out-of-core implementation (OPCDM) [27].
In addition we take advantage of the shared memory offered by multi-core
systems and use the multi-threaded algorithm/implementation we presented
in [1]. The meshes produced by the Multithreaded PCDM (MPCDM) algo-
rithm are not constrained by the artificial subdomain boundaries and therefore
generally have an even smaller number of elements than the meshes produced
by the PD3 algorithm.
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ScalableParallelDelaunayMeshGeneration(X , ρ̄, Ā)
Input: X is the PSLG which defines the domain Ω

ρ̄ is the upper bound on circumradius-to-shortest edge length ratio
Ā is the upper bound on element size

Output: A distributed Delaunay mesh M which respects the bounds ρ̄ and Ā
1 Use MADD(X , N) to decompose the domain into subdomains

represented by {Xi}, i = 1, . . . , N , where N is the number of clusters
2 Use PD

3({Xi}, ρ̄, Ā), to refine the boundaries of Xi

3 Load each of the Xi, i = 1, . . . , N , to a node ni in cluster i
4 do on every node ni simultaneously
5 Use MADD(Xi, Mi) to decompose each subdomain

into even smaller subdomains Xij , j = 1, . . . , Mi

6 Distribute the subdomains Xij , j = 1, . . . , Mi, among Pi nodes in cluster i
7 do on every node in cluster i simultaneously
8 Use OPCDM({Xij}, ρ̄, Ā) to refine the subdomains
9 enddo

10 enddo

OPCDM({Xk}, ρ̄, Ā)
11 Let Q be the set of subdomains that require refinement
12 Q← {Xk}, Qo ← ∅
13 while Q ∪Qo 6= ∅
14 X ← Schedule(Q, Qo)
15 MPCDM(X , ρ̄, Ā)
16 Update Q (the operation of finding any new subdomains that need

refinement, e.g., after receiving messages, and inserting them into Q)
17 endwhile

MPCDM(X , ρ̄, Ā)
18 Construct M = (V, T ) an initial Delaunay triangulation of X
19 Let PoorTriangles be the set of poor quality triangles in T

with respect to ρ̄ and Ā
20 while PoorTriangles 6= ∅
21 Pick {ti} ⊆ PoorTriangles

22 do using multiple threads simultaneously
23 Compute the set of Steiner points P = {pi} corresponding to {ti}
24 Compute the set of Steiner points P ′ ⊆ P which encroach upon constrained edges
25 P ← P \ P ′

26 Replace the points in P ′ with the corresponding segment midpoints
27 Compute the set of cavities C = {C (p) | p ∈ P ∪ P ′},

where C (p) is the set of triangles whose circumscribed circles include p
28 if C create conflicts
29 Discard a subset of C and the corresponding points from P ∪ P ′

such that there are no conflicts
30 endif

31 BowyerWatson(V , T , p), ∀p ∈ P ∪ P ′

32 RemoteSplitMessage(p), ∀p ∈ P ′

33 enddo

34 Update PoorTriangles

35 endwhile

Schedule(Q, Qo)
36 while Q 6= ∅
37 X ← pop(Q)
38 if X is in-core return X else ScheduleToLoad(X ), push(Qo, X ) endif

39 endwhile

40 X ← pop(Qo)
41 if X is in lower-layer or out-of-core Load(X ) endif

42 return X

BowyerWatson(V , T , p)
43 V ← V ∪ {p}
44 T ← T \ C (p) ∪ {(pξ) | ξ ∈ ∂C (p)},

where (pξ) is the triangle obtained by connecting point p to edge ξ

Fig. 2. The multi-layered parallel mesh generation algorithm.
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Fig. 3. (Left) Thick lines show the decoupled decomposition of the geometry
into 8 high level subdomains which are assigned to different clusters. Medium lines
show the boundaries between the subdomains assigned to separate nodes within
a cluster. Thin lines show the boundaries between individual subdomains assigned
to the same node. (Right) Parallel expansion of multiple cavities within a single
subdomain using the MPCDM algorithm.

4.1 Domain Decomposition Step

We use the Medial Axis Domain Decomposition (MADD) algorithm/software
we presented in [31]. MADD can produce domain decompositions which satisfy
the following three basic criteria: (1) The boundary of the subdomains create
good angles, i.e., angles no smaller than a given tolerance Φo, where the value
of Φo is determined by the application which uses the domain decomposition.
(2) The size of the separator should be relatively small compared to the area
of the subdomains. (3) The subdomains should have approximately equal size,
area-wise. This approach is well suited for both uniform and graded domain
decomposition. Before the subdomains become available for further processing
by the PCDM method they are discretized using the pre-processing step from
PD3 [30, 32] which guarantees that any Delaunay algorithm can generate a
mesh on each of the subdomains in a way that does not introduce any new
points on the boundary of the subdomains (i.e., the algorithm terminates
and can guarantee conformity and Delaunay properties without the need to
communicate with any of the neighbor subdomains).

4.2 Parallel Delaunay Mesh Generation Step

We use two different approaches, for different layers of the multi-layered archi-
tecture: (1) combine a coarse- and medium-grain (speculative-based) approach
which is designed to run on a multi-core processor and (2) combine coarse-
and coarser-grain which is designed after the traditional out-of-core PCDM
method, for a multi-processor node as well as a cluster of nodes. First we
describe the in-core PCDM method [10]. The PSLGs for all subdomains are
triangulated in parallel using well understood sequential algorithms, e.g., de-
scribed in [37, 40]. Each triangulated subdomain contains the collections of
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the constrained edges, the triangles, and the points. For the point insertion,
we use the Bowyer-Watson (B-W) algorithm [6, 45]. The constrained (bound-
ary) segments are protected by diametral lenses [38], and each time a segment
is encroached, it is split in the middle; as a result, a split message is sent to
the neighboring subdomain [10]. PCDM is designed to run on multi-processor
nodes and clusters of nodes, i.e., it uses the message passing paradigm. Each
process lies in its own address space and uses its own copy of a custom mem-
ory allocator. Second, the time corresponding to low aggregation decreases as
we increase the number of processors; this can be explained by the growth
of the utilized network and, consequently, the aggregate bandwidth. Similar
studies for new HPC architectures need to be repeated and this parameter
will be adjusted accordingly i.e., this parameter is machine specific.

Next we describe the two variations of PCDM we use for the multi-layered
algorithm of Figure 2. First, we use the Out-of-Core (OPCDM) approach (line
8 of the hybrid algorithm) [27] which utilizes the bottom layer of the HPC
architectures, i.e., the processing units with the large storage devices. Before
processing a subdomain (using MPCDM) in the main loop we check whether
the next subdomain in queue is in-core and mark it as sticky if it is or post a
non-blocking load request for that subdomain. Second, after all bad triangles
for a subdomain are processed we check whether the next subdomain in queue
is in-core. If it is not we push it back in queue and examine the next. If we
cannot find an in-core subdomain we load the next subdomain in queue with
a blocking call. It should be noted that the Run-Time System (RTS) marks
subdomains with multiple incoming messages as sticky and may attempt to
prefetch them. Additionally, when processing incoming messages (when the
application is polling), the RTS first executes messages addressed to in-core
subdomains regardless of the order in which messages were received (the order
of the messages sent to the same subdomain is preserved). The execution order
of the subdomains does not affect neither correctness/quality nor termination
for our algorithm.

Second, the Multithreaded (MPCDM) approach (line 15 of the multi-
layered algorithm) [1] which targets the top layer of the HPC architecture,
i.e., utilizes the fastest processing unit (hardware supported threads of cores).
The threads create and refine individual cavities concurrently, using the B-
W algorithm. MPCDM is synchronization-intensive mainly because threads
need to tag each triangle while working on a cavity, to detect conflicts during
concurrent cavity triangulation. Each subdomain is divided up into distinct
areas (in order to minimize conflicts and overheads due to rollbacks), and
the refinement of each area is assigned to a single thread. The decomposition
is performed by equipartitioning — using straight lines as separators (strip-
partitioning) that form a rectangular parallelogram enclosing the subdomain.
Despite being straightforward and computationally inexpensive, this type of
decomposition can introduce load imbalance between threads for irregular
subdomains. The load imbalance can be alleviated by dynamically adjusting
the position of the separators at runtime. The size of the queues (private and
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shared — of triangles that intersect the thread-separator) of bad quality tri-
angles is proportional to the work performed by each thread. Large differences
in the populations of queues of different threads at any time during the re-
finement of a single subdomain are a safe indication of load imbalance. Such
events are, thus, used to trigger the load balancing mechanism. Whenever the
population of the queues of a thread becomes larger than (100 / Number of
Threads)% compared with the population of the queues of a thread process-
ing a neighboring area, the separator between the areas is moved towards the
area of the heavily loaded thread.

5 Putting It All Together

In this Section we present the highlights of the implementation for the multi-
layered algorithm. The following implementation details are pertinent to the
description of the runtime system, which we discussed previously: (1) hier-
archical decomposition of work into MWUs, (2) interaction of the algorithm
implementation with those units (via run-time system API), and (3) the man-
agement of MWUs by the run-time system.

The construction and the registration of the MWUs with the runtime
system take place immediately after the decomposition of the input domain
in line 5 of the algorithm, see Figure 2. A subdomain has dependencies on the
neighboring subdomains, which share a common boundary, and may require
coordination in order to process points inserted at that boundary. After the
subdomains are defined, their movement, work processing, and communication
(i.e., delivery of the Split messages) are handled transparently by the runtime
system. The work processing is implemented in two mobile message handlers:
subdomain refinement and split point processing subroutines.

We approach the issue of load-balancing across the nodes by using the dy-
namic load-balancing framework of PREMA [3]. Intra-layer object migration
is triggered by the imbalance of work assigned to different subdomains due to
different levels of refinement, different domain geometry, and, consequently,
different rates of split messages arriving at each subdomain. Inter-layer mi-
gration of the MWUs is required for the efficient memory utilization, and
the ability of the given layer to handle larger problem sizes. Scheduling of
the MWUs between the PREMA and the OoCS follows the scheme described
in the previous Section. The complex issue we will have to resolve, for truly
(i.e., greater than two layers of processors) multi-layered architectures like
the HTMT Petaflops design [41], is how to handle guaranteed delivery of the
mobile messages in the causal order. With current two-layered architectures
this is not a problem.

5.1 Preliminary Data

In this Section we report some of the preliminary results for the implementa-
tions of the three individual levels of the proposed hybrid algorithm: Domain
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Decomposition, Coarse+medium granularity (PCDM) and Coarse+coarser
granularity (OPCDM). We evaluated the performance of the Domain Decom-
position procedure on the fastest platform we had in our availability (dual
Intel Pentium 3.6GHz). For the evaluation of the performance of the upper
two levels of the algorithm (coarse+medium and coarse+coarser, i.e., tradi-
tional out-of-core) we used a cluster consisting of four IBM OpenPower 720
nodes. The nodes are interconnected via a Gigabit Ethernet network. Each
node consists of two 1.6 GHz Power5 processors, which share eight GB of
main memory. Each physical processor is a chip multiprocessor (CMP) inte-
grating two cores. Each core, in turn, supports simultaneous multithreading
(SMT) and offers two execution contexts. As a result, eight threads can be
executed concurrently on each node. The two threads inside each core share
a 32 KB, four-way associative L1 data cache and a 64 KB, two-way associa-
tive L1 instruction cache. All four threads on a chip share a 1.92 MB, 10-way
associative unified L2 cache and a 36 MB 12-way associative off-chip unified
L3 cache. The results for each of the three levels are as follows:

Domain Decomposition Given the Chesapeake Bay model, we can se-
quentially decompose it using MADD into two subdomains in less than 0.5
seconds. This model is defined by 13,524 points and has 26 islands (i.e., quite
complex geometry and resolution), see Figure 4. These two subdomains can be
distributed to two cores and decomposed in parallel into four subdomains in
less than 0.5 seconds. If we continue this way by building a logical binary tree
over 1012 cores, the model can be decomposed into 1012 (or approximately
240) coarse grain subdomains in less than 40 seconds, assuming that half of
this time is spent on communication. All subdomains satisfy the properties
required by the Parallel Constrained Delaunay Mesh (PCDM) generation al-
gorithm which we apply on each of these subdomains.

Coarse+medium granularity On the medium grain level, the PCDM
method can expose up to 8 × 105 potential concurrent cavity expansions per
subdomain [1]. This level of the algorithm was evaluated (see Table 1) on the
pipe model, see Figure 3. In each configuration we generate as many trian-
gles as possible, given the available physical memory and the number of MPI
processes and threads running on each node. The times reported for parallel
PCDM executions include pre-processing time, domain decomposition, MPI
bootstrap time, data loading and distribution, and the actual computation
(mesh generation) time. We compare the execution time of parallel PCDM
with that of the sequential execution of PCDM and with the execution time of
Triangle [37], the best known sequential implementation for Delaunay mesh
generation which has been heavily optimized and manually fine-tuned. For
sequential executions of both PCDM and Triangle the reported time includes
data loading and mesh generation time. On a single processor, we can sig-
nificantly improve the performance attained by using a single core, compared
with the coarse-grain only implementation. In the fixed problem size, it proves
29.4% faster than coarse-grain when one MPI process is executed by a sin-
gle core and 10.2% faster when two MPI processes correspond to each core
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Fig. 4. (Top) The Chesapeake Bay model decomposed into 1024 subdomains that
are mapped onto eight clusters of a multi-layered architecture. The assignment of
subdomains to clusters is shown with different colors. The use of PD

3 eliminates
communication between clusters, however, the use of the multi-layered PCDM in
each of the original subdomains requires inter-layer communication and some syn-
chronization at the top level. (Bottom) Part of the Chesapeake Bay model meshed
in a way that satisfies conformity and Delaunay properties; thus, correctness and
termination can be mathematically guaranteed.
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(one per SMT context). In the scaled problem size the corresponding perfor-
mance improvements are in the order of 31% and 12.7% respectively. More-
over, coarse+medium grain PCDM outperforms on a single core the optimized,
sequential Triangle by 15.1% and 13.7% for the fixed and scaled problem sizes
respectively. On the fine grain level, the element-level concurrency allows us
to process three or four elements concurrently (in 2D and 3D respectively),
bringing the total potential concurrency to over 1018.

Cores 1 2 4 6 8 10 12 14 16

Triangle Fixed 114.7
Coarse Fixed 124.1 63.8 32.5 23.3 18.0 14.6 12.8 10.8 10.7

Coarse Fixed (2/Core) 97.4 49.0 21.2 16.3 12.2 10.1 9.1 7.9 8.3
Coarse+Medium Fixed 87.5 44.7 22.8 16.7 12.9 10.6 9.4 9.1 8.0

Triangle Scaled 28.4
Coarse Scaled 31.0 32.2 32.5 35.6 37.1 36.6 38.3 37.6 41.8

Coarse Scaled (2/Core) 24.5 25.0 21.3 24.5 24.2 24.3 25.5 28.3 28.1
Coarse+Medium Scaled 21.4 22.5 22.8 25.5 26.7 27.1 27.8 29.9 30.4

Table 1. Execution times (in sec.) of the coarse grain and the coarse+medium grain
PCDM in 2D on a cluster of four IBM OpenPower 720 nodes. As a sequential refer-
ence we use either the single-thread execution time of PCDM or the execution time
of the best known sequential mesher (Triangle). Triangle quality in all tests is fixed
to 20◦ degrees minimum angle bound. We present coarse-grain PCDM results using
either one MPI process per core (Coarse) or one MPI process per SMT execution
context (Coarse (2/core)). 60M triangles are created in the fixed problem size ex-
periments. 15M triangles correspond to each processor core in the scaled problem
size experiments.

Coarse+coarser granularity Our evaluation (see Table 2) demon-
strated that OPCDM is an effective solution for solving very large problems
on computational resources with limited physical memory. We are able to gen-
erate meshes that otherwise would require 10 times the number of nodes using
in-core implementation. The performance of the implementation was evalu-
ated in 2D in terms of mesh generation speed2. We define per-processor mesh
generation (normalized) speed as the average number of elements generated
by a single processor over a unit time period, and it is given by V = N

T×P
, N

is the number of elements generated, P is the number of processors in the con-
figuration and T is execution time. We observe that the overhead introduced
by the out-of-core functionality is not large: the per-processor mesh genera-
tion speed is only 33% slower for the meshes that fit completely in-core. At

2To date, there is no agreed upon standard to evaluate the performance of out-
of-core parallel mesh generation codes. The existing metrics for in-core parallel al-
gorithms are not sufficient for this task.
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the same time, for the cases when we do use out-of-core functionality, up to
82% of disk I/O is overlapped with the computation.

Mesh size, number Normalized speed,
×106 triangles of nodes ×103 triangles per second

PCDM OPCDM(d) OPCDM(b)
158.25 8(1) 242.45 156.22 160.11
316.50 16(2) 240.54 160.20 165.06
633.07 32(4) 239.82 157.67 161.08

Table 2. Normalized speed (on a cluster of 4 IBM OpenPower 720 nodes) of
the PCDM in 2D with virtual memory and the OPCDM for problems that have
memory footprint twice as large as the available physical memory. OPCDM(d) and
OPCDM(b) refer to the experiments performed with the disk object manager and
the database object manager respectively.

6 Conclusions

We presented a multi-layered mesh generation algorithm capable to quickly
generate and sustain in the order of 1018 of concurrent work units with gran-
ularity large enough to amortize overhead for hardware threads on current
multi-threaded architectures. In addition we presented a multi-layered com-
munication abstraction and its implementation on current 2-layered multi-core
architectures. We used the resulting runtime system to implement a multi-
layered parallel mesh generation code on IBM OpenPower 720 nodes (two-
layered HPC architecture). The parallel mesh generation method/software
mathematically guarantees termination, correctness, and quality of the ele-
ments. The mathematical guarantees are crucial for the size of problems we
target, because even a single failure to solve a small subproblem my require
the recomputation of the whole problem. Our implementation indicates that:
(1) we pay very small overhead to generate very large number of concurrent
work units, (2) intra-layer communication overhead is very small [10], (4) very
large percentage (more than 80%) of inter-layer communication can be tol-
erated, (5) synchronization required only at the highest level where there is
very fast hardware support, (5) work load balancing can be handled transpar-
ently with small overhead [3] at the coarse-grain layer (6) load balancing at
the medium-grain layer can be handled easily and with low overhead within
the application and (7) our out-of-core subsystem allows us to significantly
decrease the processing times due to the reduction of wait-in-queue delays.
However, the more complex multi-core and multi-CPU multi-layered designs
will demand new hierarchical location management directories and policies,
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which will be a major future research effort (out of the scope of this paper)
related to the system design.
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