A Framework for Parallel Unstructured Grid
Generation for Practical Aerodynamic Simulations

George Zagaris*f
College of William and Mary, Williamsburg, VA 23185

Shahyar Z. Pirzadeh?
NASA Langley Research Center, Hampton, Virginia 23681

Nikos Chrisochoides®
College of William and Mary, Williamsburg, VA 23185

A framework for parallel unstructured grid generation targeting both shared memory
multi-processors and distributed memory architectures is presented. The two fundamen-
tal building-blocks of the framework consist of: (1) the Advancing-Partition (AP) method
used for domain decomposition and (2) the Advancing Front (AF) method used for mesh
generation. Starting from the surface mesh of the computational domain, the AP method
is applied recursively to generate a set of sub-domains. Next, the sub-domains are meshed
in parallel using the AF method. The recursive nature of domain decomposition naturally
maps to a divide-and-conquer algorithm which exhibits inherent parallelism. For the par-
allel implementation, the Master/Worker pattern is employed to dynamically balance the
varying workloads of each task on the set of available CPUs. Performance results by this
approach are presented and discussed in detail as well as future work and improvements.

I. Introduction

ARALLEL unstructured grid generation is not a new area in the field of applied Computational Fluid

Dynamics(CFD). Although modern flow-solvers are parallelized and extensively utilized for routine CFD
analysis, grid generation, a pre-processing step, still remains serial for most production environments. There
is vast literature on techniques and algorithms, as well as, the issues and challenges related to parallel
unstructured grid generation. In practice however, parallel grid generation, for end-to-end parallel CFD
simulations, is still an open problem to date. For an in depth review, the interested reader is referred to a
recent survey' on parallel mesh generation methods.

Lohner et al. proposed a scheme for Parallel Advancing front? that is based on the subdivision of the
background grid. This scheme was determined by the authors to be inadequate for a production environment?
and a new scheme was proposed. The new scheme employs the oct-tree®:® as an auxiliary data structure
to parallelize grid generation at each front. A more recent publication® demonstrates the extension of this
approach to Reynolds-Average Navier-Stokes (RANS) parallel unstructured grid generation and applicability
of this approach in aerodynamic simulations. However, further improvements are necessary for this approach
to exhibit better scalability. As the authors note, small imbalances between workloads incur heavy CPU
penalty and decrease in performance.?

De Cougny and Shephard propose an oct-tree based technique” for parallel mesh generation. They build
an oct-tree and decompose the entire domain. Octants that are interior to the domain are meshed using
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template subdivisions and the octants that intersect the domain boundaries are meshed using the advancing
front. However, a shortcoming of this approach is that meshing the interface can create difficulties and a
re-partitioning strategy is required” . Furthermore, the point distribution and thus size and shape of the
mesh elements created by this approach is constrained by the oct-tree vertices and the template subdivisions.
Consequently, this approach is not practical for generating anisotropically stretched grids which are desired
for aerodynamic simulations.

Several methods based on partitioning a coarse mesh® ! have also been presented. In these methods, a
coarse mesh is decomposed into several sub-domains. Next, the boundaries of the sub-domains are refined
and then each sub-domain is meshed in parallel using a conventional off-the-shelf mesh generation method.
The benefit of this approach is that it circumvents the difficulty of decomposition of an empty domain.
Instead, the coarse mesh is partitioned using conventional graph partitioning methods such as the METIS!?
graph partitioning library. However, a shortcoming of this approach is that: (1) the method introduces
artifacts at the partition interfaces which are not desirable for solving Partial Differential Equations (PDEs)
and (2) this approach is subject to under-refinement and over-refinement. Furthermore, the method is not
suited for Reynolds-Average Navier-Stokes (RANS) grid generation schemes that are essential in state of the
art aerodynamic simulations.

A domain decomposition method based on the medial axis was presented for 2D isotropic grid
generation. While this approach seems promising, its extension to 3D is non-trivial primarily due to the
computational complexity of the method in 3D. Furthermore, in the context of complex, real-world aerody-
namic simulations substantial work is required in order to extend this work for (1) anisotropically ”stretched”
grids and (2) RANS grid generation methods.

Galtier and George'S presented a method of pre-partitioning a surface mesh by triangulating calculated
surfaces that intersect the boundaries of the domain. A similar method has also been presented by Ivanov
et. al'” and Larwood et. al.'® However, the applicability of these methods to anisotropic and RANS grids
has not been studied.

The focus of this paper is the design and implementation of a framework for parallel unstructured grid
generation using VGRID:'% 20 NASA’s unstructured grid generator. The framework presented in this paper
is based on two fundamental building blocks: (1) the Advancing Partition (AP) method®!'2?2 and (2) the
Advancing Front (AF) grid generation algorithm.?324 Both techniques are implemented within NASA’s
unstructured grid generator VGRID and integrated in the present framework for parallel unstructured grid
generation. The AP method creates sub-domains by inserting interfaces that physically divide the domain
which are part of the final grid. Next, the AF algorithm is applied in parallel to mesh the sub-domains.
Importantly, the AP method utilizes the AF method to create the cells at the interface based on the same
sizing function and quality metrics as the grid generation process. Consequently, the cells created at the
interface contain no artifacts and are, by construction, compatible with the sizing function used for grid
generation. Furthermore, the quality of the final grid generated in parallel is equivalent to the quality of the
corresponding grid obtained by the serial code. This paper serves as a progress report on the current state
of the framework and future directions for improvement and further research.

13-15

II. Parallel Unstructured Grid Generation Framework

The framework can be logically viewed as a system-of-systems consisting of five basic components. Figure
1 shows the basic component architecture of the framework.

At the top level, the parallel application layer implements a Master/Worker algorithm?® which drives the
entire process. The parallel application layer utilizes the mobile task support layer, which is built on top of
the Message Passing Interface (MPI), to send and receive tasks between the master process and the worker
processes.

The VGRID layer provides functionality for the two fundamental operations: domain decomposition and
grid generation. The implementation consists of two algorithms:

1. The Advancing Front (AF) Algorithm: The AF algorithm generates a volume mesh in a domain defined
by a boundary triangulation (surface mesh). The initial front consists of the boundary faces. Then,
the front advances iteratively towards the interior of the domain by adding new cells (tetrahedra) in
the field and redefining the current front. The front advances until there are no more faces left on the
front. For the details of the AF algorithm the interested reader is referred to references [23,24].
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Figure 1. Basic component architecture of the parallel framework

2. The Advancing Partition (AP) Algorithm: The AP algorithm is based on the AF method. AP de-
composes a domain defined by a boundary triangulation in two sub-domains. This process involves
generating an interface or separator which physically decouples the domain. The interface is defined by
a layer of cells (tetrahedra) along an imaginary partition plane located at the center of mesh density.
The cells at the interface are generated using the AF algorithm described earlier. However, in this
case, the faces on the front are restricted only to the faces intersecting the partition plane. For the
details of the AP algorithm the interested reader is referred to references [21,22].

The three main support processes for the two building blocks of the framework are: (1) AP for domain
decomposition, (2) AF for mesh generation and (3) POSTGRID for post-processing the grid and completing
any remaining unmeshed regions. Two types of interfaces between the parallel application layer and the
VGRID Layer are supported in the current implementation of the framework: (a) system calls to the
Operating System (OS) kernel for creating a new address space for the corresponding VGRID process,
and (b) the Network File System (NFS) interface, for communicating input and output to and from the
corresponding VGRID process.
There are four design considerations for implementation of a parallel grid generation framework:

1. Stability: The size and shape of the cells at the interface must be compatible with the sizing function
used by the grid generation process.

2. Scalability: Serial parts of the code must be efficient or parallelized such that the parallel performance
is not deteriorated.

3. Code re-use: The framework must enable the integration of off-the-shelf components.
4. Load Balancing: The computation time must be equalized on each CPU.

The present implementation of the framework addresses the stability and code-re-use considerations
and, in part, provides acceptable load balancing and scalability. In particular, the stability consideration is
satisfied a priori by the AP method since the metrics for quality, size and shape used to generate cells at the
interface are the same as the metrics used by the AF algorithm during the grid generation process. Code
re-use is achieved by integrating off-the-shelf VGRID components, and Load Balancing is partially addressed
by the Master/Worker algorithm in addition to AP’s built-in load estimation/balancing component. In the
current implementation the scalability consideration is not fully addressed for two main reasons: (1) not all
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serial parts of the code are parallelized and (2) the amount of exploitable concurrency varies over the life
of the process. The bottlenecks and potential improvements in the current implementation are discussed in
detail in the results section.

II.A. Implementation

From the implementation perspective, the framework can be viewed as an integrated, pipelined, system
of modules. Modules were written using the C4++2% and Fortran90 programming languages, and MPI?7 was
used for parallel programming. Figure 2 shows a functional flow block diagram of the framework.

Geometry
Definition (IGES
.......... GridTool urface definition
& Sources

Parallel Domain
Decomposition

Parallel Volume
Mesh Generation

Surface mesh
Sub-domains

Volume mesh
Sub-domains

Figure 2. Functional flow block diagram of the parallel framework

The geometry model is given in the Initial Graphics Exchange Specification (IGES) format which is
widely used within the CFD community. The pre-processing utility code GridTool?® is used to bridge the gap
between CAD and the input to the underlying grid generator system VGRID. This is a user-interactive step
by which the user defines the surfaces (patches) of the geometry to be meshed and the source elements?%:3°
which determine the grid distribution. After the surfaces and source elements are defined, a surface mesh is
generated using VGRID sequentially.

Level O
2-way concurrency Level 1
4-way concurrency Level 2

OSurface Mesh . Interface . Sub-domain

Figure 3. Logical hierarchical view of the domain decomposition

Next, the computational domain defined by the surface mesh is decomposed in two sub-domains by the
AP method. The AP method is applied recursively to generate more sub-domains. Figure 3 shows a logical
hierarchical view of the domain decomposition. At each level I € {0,1,2,..., N} there are 2 sub-domains
and 2! — 1 interfaces, where [ is level of decomposition. The desired level of decomposition is prescribed by
the user as input. Figures 4(a) and 4(b) demonstrate the principle idea using a simple box configuration.

The recursive strategy for domain decomposition naturally maps to a divide-and-conquer algorithm, i.e.,
each decomposition step breaks the problem into a smaller sub-problem which can be solved independently.
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(a) (b)

Figure 4. Example domain decomposition using the AP method on a simple box configuration (a) decomposition at
level 1 (b) decomposition at level 2

Furthermore, the potential concurrency in this strategy is obvious. Since domain decomposition and mesh
generation require only local operations at the sub-domain level, sub-domains can be processed concurrently
as indicated in Figure 3. At level zero, the domain 2 defined by the surface mesh is decomposed into two
sub-domains 21, )5 utilizing one CPU. At level one, the sub-domains 2; and €, are further decomposed
concurrently utilizing two CPUs. Notably, the amount of available concurrency doubles at each level of
decomposition. After a domain is decomposed to the desired level, the sub-domains are meshed independently
and in parallel. The final mesh is then composed by merging the sub-grids and interfaces.

For the parallel implementation, the Master/Worker pattern is selected in light of its programming
ease, dynamic load-balancing and applicability to both distributed memory and shared-memory hardware
architectures. At a high level, the Master/Worker consists of two logical processes: (a) the Master process
which creates a set of tasks and dynamically assigns them to the worker processes in a First-Come-First-
Serve (FCFS) fashion and (b) the Worker process which receives tasks and performs the computations.
The mobile task support layer is implemented on top of MPI as a programming abstraction to facilitate
sending and receiving of the tasks. In the present implementation, there are four types of tasks: (1) domain
decomposition task, (2) mesh generation task, (3) acknowledgment task and (4) termination task.

The Master process includes two main data structures: (a) The task-queue which contains the list of tasks
(mesh generation or domain decomposition tasks) to be sent to a corresponding worker process and (b) the
cpu-pool which contains the list of CPU IDs corresponding to the available (currently idle) CPUs designated
as workers. These data structures are being updated throughout the parallel grid generation process.

The communication protocol between the Master and Worker processes consists of two asynchronous
messages. First, the Master initiates the communication by sending a task to a Worker. The task is either
a mesh generation task or a domain decomposition task. Second, the receiving Worker sends a signal to the
Master process to acknowledge completion of the corresponding task and gets back on the cpu-pool for later
assignment. For termination detection, a single termination task is sent from the Master process to each
Worker when all tasks are complete and all processes terminate.

In this paper, two distinct implementations of the framework are presented: (1) PVGRID1, which per-
forms the decomposition serially and mesh generation in parallel and (2) PVGRID2, which performs the
decomposition and mesh generation in parallel and asynchronously.

In PVGRID1, the Master process starts by performing the domain decomposition serially during which,
the worker processes remain idle. After all the sub-domains are generated, the Master process creates a queue
of mesh generation tasks corresponding to each sub-domain. Tasks are scattered on the set of available CPUs,
and then the Master process waits for an acknowledgment. As soon as an acknowledgment signal is received,
the corresponding process becomes available and the next task in the task-queue is assigned. This process is
repeated until the task-queue is empty. Lastly, the Master process sends a Termination task to each of the
worker processes to exit. A shortcoming of this implementation is that the potential concurrency during the
domain decomposition is not exploited.
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In contrast, PVGRID2 further exploits concurrency during domain decomposition. The task-queue is
initialized with domain decomposition at level zero and the cpu-pool contains the CPU IDs of all the worker
processes. The Master process assigns the next task in the task-queue to the next available Worker from the
cpu-pool. While the task-queue is empty, the Master process waits for acknowledgment. An acknowledgment
for completion of a domain decomposition task triggers the addition of new tasks in the task-queue. This is
an important distinction from PVGRID1 where no new tasks are added to the task-queue during the parallel
execution. There are two conditions for adding new tasks in the task-queue:

1. The sub-domains are at the desired level of decomposition prescribed by the user. In this case, two
new Mesh Generation tasks are added to the task-queue for mesh generation.

2. Otherwise, two new Domain Decomposition tasks are added to the task-queue to schedule the sub-
domains for decomposition.

Another significant difference between PVGRID1 and PVGRID2 is the criteria used for termination
detection. PVGRIDI terminates when the task-queue is empty. However, in PVGRID2, the task-queue
being empty does not imply that all the work has been done. Recall, an acknowledgment of a domain
decomposition task triggers the addition of new tasks in the task-queue. From the hierarchical process view,
shown in Figure 3, it is easy to see that the total number of tasks at a desired level of decomposition L is the
sum of the nodes in the hierarchy tree, given by Zf:o 2!, Hence, to detect termination, the master process
keeps a task counter denoted by C of all complete tasks. Then, the process described above is repeated
until the predicate C = Zf:o 2! is satisfied, i.e., all tasks are complete. Lastly, the Master process sends a
Termination task to each of the worker processes to exit. As the results demonstrate in Section III, further
exploiting concurrency in PVGRID2 provides substantial improvements in the performance.

ITI. Results

Four sample configurations were employed for testing the present parallel grid generation framework
and its performance: (1) a Simple Box configuration, (2) a Sphere-in-box configuration, (3) a transport
wing/fuselage (DLR-F6) configuration and (4) a generic business jet configuration. For the performance
evaluation of parallel computations, we measure and compare the speedup defined as, % where T is the
sequential execution time and T}, is the parallel execution time. The speedups are compared for two imple-
mentations, PVGRIDI and PVGRID2. The Mercury cluster on TeraGrid,?! supported by the NCSA3? at the
University of Illinois at Urbana-Champaign, was chosen as the target platform for this evaluation. Mercury
is an IBM TA-64 Linux cluster equipped with 887 IBM dual-core Itanium 2 (@1.3/1.5GHz) processors with

4GB or 12GB of memory per node.

ITI.A. Simple Box Configuration

This geometry is defined by a cube and contains a single point source for defining the grid length-scales
such that the grid distribution is uniform. A uniform mesh, consisting of 23 million elements, was generated
for this configuration. The domain defined by the surface mesh was decomposed into 128 sub-domains,
and the experiments were conducted by varying the number of processors from 2 to 64. Sample partitions
obtained from this configuration are illustrated in Figure 5. Figures 6 (a) and 6 (b) show a comparison of the
speedups and execution times obtained from PVGRID1 and PVGRID2. Furthermore, Table 1 summarizes
the quantitative performance results. The maximum speedup, with respect to the sequential execution time
of VGRID, obtained from PVGRIDI is 7 and 20 for PVGRID2 using 64 CPUs. A notable observation
from the speedup results in Table 1 is that PVGRID2 scales better as the number of processors increases.
In particular, beyond 16 processors, PVGRIDZ2 is about three times faster than PVGRIDI1. As discussed
earlier, PVGRID2 exploits more concurrency in the domain decomposition which substantially improved
the scalability and performance. However, the amount of work, i.e., the number of sub-domains that can
be processed concurrently, varies during the parallel domain decomposition phase. Consequently, while the
number of sub-domains is smaller than the total number of CPUs, some CPUs remain idle. This is one of
the main reasons why the scalability of the current implementation is sub-linear even for the ideal scenario
where the geometry is a cube and the mesh is uniform, and thus the load is balanced.
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Figure 5. Sample partitioning of the simple box configuration
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Figure 6. Performance plots for the Simple Box configuration (a) Comparative speedup plot of PVGRID1 (Serial
Decomposition) and PVGRID2 (Parallel Decomposition) using 2-64 processors. (b) Comparative plot of the execution
times of PVGRID1 (Serial Decomposition) and PVGRID2 (Parallel Decomposition) using 2-64 processors.

III.B. Sphere-in-box Configuration

This configuration consists of a spherical geometry positioned at the center of a cubical domain. A single
sphere source is used to define non-uniform grid distribution in the field. The domain defined by the surface
mesh was partitioned into 128 sub-domains and the performance measurements were made for up to 64
CPUs. In contrast to the Simple Box configuration, the final mesh is non-uniform and consists of 12 million
elements. Figures 7(a) and 7(b) show sample partitions obtained for this configuration. Performance results
are illustrated in Figures 8(a) and 8(b). Table 2 summarizes the quantitative performance measurements
obtained using this configuration. For this case, the maximum speedup obtained was 13.76 using PVGRID2
for 64 CPUs. However, in comparison to the Simple Box configuration, the speedup of PVGRID2 is much
smaller. This result is attributed mainly to two reasons: (1) The mesh is non-uniform and hence there
are imbalances and (2) the problem size for this case, i.e. the number of elements in the mesh, is much
smaller in comparison to the Simple Box case. As it is demonstrated in the Discussion section, scalability is
proportional to the problem size. Generally, larger problems exhibit more scalability.
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Table 1. Quantitative Performance Results for the Simple Box Configuration using PVGRID1 (Serial Decomposition)
and PVGRID2 (Parallel Decomposition) in comparison with the serial version of the code VGRID.

CPUs | VGRID (s) | PVGRIDL1 (s) | PVGRID2 (s) | PVGRID1 Speedup | PVGRID2 Speedup

(T5/Tp) (T5/T)

1 11627.01 N/A N/A N/A N/A

2 N/A 7287.02 7145.44 1.59 1.63

4 N/A 4403.88 3593.22 2.64 3.24

8 N/A 2942.73 1834.08 3.95 6.34

16 N/A 2207.84 1072.66 5.27 10.84

32 N/A 1834.02 699.193 6.33 16.63

64 N/A 1652.42 560.572 7.04 20.74
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Figure 7. Sample partitioning of the Sphere-in-box configuration (a) Top-left and bottom-left partitions (b) Close-up
view of the sample partitions
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Figure 8. Performance plots of the Sphere-in-Box configuration (a) Plot of the speed-up obtained for 2-64 processors
from PVGRID1 (Serial Decomposition) and PVGRID2 (Parallel Decomposition) (b) Comparative plot of the execution
times of PVGRID1 and PVGRID2 using 2-64 processors.

III.C. Wing/Fuselage DLR-F6 Transport

The DLR-F6 is a generic transport geometry model consisting of a wing and fuselage. Due to geometric
symmetry, only half the configuration is modeled. A total of 74 line and point sources are used to define the
grid distribution in the field. The domain defined by the surface mesh was decomposed into 128 sub-domains
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Table 2. Quantitative Performance Results for the Sphere-in-Box configuration using PVGRID2 (Parallel Decomposi-
tion) in comparison with the serial version of the code VGRID.

CPUs | VGRID (s) | PVGRID2 (s) | PVGRID2 Speedup (%)
1 4300.5 N/A N/A
2 N/A 3630.84 1.18
4 N/A 1425.9 3.02
8 N/A 968.97 4.44
16 N/A 649.74 6.62
32 N/A 407.515 10.55
64 N/A 312.555 13.76

and the final mesh consisted of 32 million elements. Figure 9 shows the surface mesh and sample partitions
for the DLR-F6 wing/fuselage configuration (Note, the wing is not shown in Figure 9 for visual clarity).
Performance measurements for up to 64 processors were obtained as presented in Figures 10 (a) and 10 (b).
Furthermore, quantitative performance results, obtained for this configuration, are summarized in Table 3.
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Figure 9. Sample partitions of the DLR-F6 wing/fuselage configuration.

III.D. Generic Business Jet

This geometry includes a wing and a fuselage along with a pylon and a flow-through nacelle. As with in
the DLR-F6 case, only half the geometry is modeled due to symmetry. A total of 134 line and point sources
are used to define the grid distribution for this example. This case is employed to explore the feasibility of
the present framework on more complex geometries than the previous cases. A mesh consisting of 25 million
elements was generated for the Generic Business Jet configuration. The domain defined by the surface mesh
was partitioned into 128 sub-domains and the performance measurements were produced by varying the
number of processors from 2 to 64. Sample partitions using this configuration are illustrated in Figures 11
(a) and 11 (b). For visualization purposes, a coarser mesh was used to produce these figures. Performance
results are presented in Figures 12 (a) and 12 (b). A summary of the quantitative performance results is
presented in Table 4.
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Figure 10. Performance plots using the DLR-F6 wing/fuselage configuration (a) Comparative speedup plots using
PVGRID1 (Serial Decomposition) and PVGRID2 (Parallel Decomposition) (b) Comparative plots of the execution
times for PVGRID1 and PVGRID2.

Table 3. Quantitative Performance Results for the DLR-F6 wing/fuselage configuration PVGRID2 (Parallel Decom-
position) in comparison to the serial version of the code VGRID.

CPUs | VGRID (s) | PVGRID2 (s) | PVGRID2 Speedup ()

1 17745.61 N/A N/A
2 N/A 10471 1.69
4 N/A 5569.33 3.19
8 N/A 3155.44 5.62
16 N/A 1904.48 9.32
32 N/A 1275.42 13.91
64 N/A 1087.04 16.32

(a)

Figure 11. Sample partitions of the Generic Business Jet configuration (a) Partition consisting of the wing and front
part of the fuselage (b) Partition consisting of the flow-through nacelle and tail of the fuselage

IV. Discussion

The results presented earlier demonstrated the applicability of the current framework for parallel unstruc-
tured grid generation. However, a notable characteristic of the performance measurements obtained using
the current implementation of the framework is that the speedup lacks the desired level of scalability and
performance. This section presents the performance bottlenecks and shortcomings identified in the current
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Figure 12. Performance plots using the Generic Business Jet configuration (a) Comparative speedup plots using

PVGRID1 (Serial Decomposition) and PVGRID2 (Parallel Decomposition) (b) Comparative plot of the execution
times of PVGRID1 and PVGRID2.

Table 4. Quantitative Performance Results for the Generic Business Jet configuration using PVGRID2 (Parallel De-
composition) with respect to the serial code VGRID.

CPUs | VGRID (s) | PVGRID2 (s) | PVGRID2 Speedup (%)

1 11797.7 N/A N/A
2 N/A 6894.7 1.71
4 N/A 4782.08 2.47
8 N/A 2662.36 4.43
16 N/A 2062.2 5.72
32 N/A 1521.15 7.76
64 N/A 962.35 12.26

implementation as well as the degree to which the four parallel design considerations, i.e., Stability, Code
re-use, Scalability, and Load Balancing, are satisfied.

IV.A. Stability and Code Re-use

The Stability and Code re-use design considerations are interrelated and are the two most important
driving parameters for the design phase. Intuitively, the biggest benefit of code re-use is to reduce the
implementation time and cost by integrating existing components. However, in our experience code re-use is
also the means by which the stability consideration is satisfied. Re-using the existing functionality of the AF
kernel in the AP method, used for domain decomposition, enabled the generation of interfaces or separators
that are compatible with the same metrics for quality, size and shape used for grid generation by the AF
method. Hence, the stability and code re-use considerations are satisfied in the current implementation of
the parallel framework.

IV.B. Load Balancing

Load Balancing is addressed, in part, by the Master/Worker model and by a load estimation algorithm built
in the AP method for positioning partition interfaces. Figure 13 shows the grid element distribution among
sub-grids obtained for the examples presented. As illustrated, the number of points and elements on each
sub-domain vary greatly which can negatively affect load balancing and, thus, the speedup performance.
Partitioning an empty (unmeshed) domain such that the load on each sub-domain is balanced is a very
difficult problem. Further investigation and extension of the present framework is planned for future work.
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IV.C. Scalability

In PVGRID2, scalability is partially addressed by exploiting more concurrency in the domain decomposi-
tion phase. However, a notable characteristic of the performance measurements on the examples presented
earlier is that the speedup is sub-linear and beyond 8 CPUs there are little practical performance benefits.

The following paragraphs present the identified shortcomings and potential improvements in the current
implementation of the framework.

1V.C.1. Concurrency of the Domain Decomposition

As discussed earlier, PVGRID2 exploits more concurrency in the domain decomposition phase. However,
an inherent performance bottleneck is that the exploitable concurrency for domain decomposition varies at
each level of decomposition. As indicated in Figure 3, there is little or no exploitable concurrency at the
topmost levels. Concurrency doubles at each level of decomposition. Hence, at the topmost level utilization
of resources is low, i.e., most processes are idle waiting for work. Utilization increases as the amount of
concurrency increases at later levels.

Furthermore, decomposing a (single) sub-domain is performed serially. The complexity of generating an
interface is the same as with the mesh generation process (since the AP method utilizes the AF method for
generating the interface). By Amdahl’s law? it is known that the serial parts of the program can significantly
constrain the speedup that can be achieved by adding more CPUs. The serial decomposition part constrains
how fast resources can be utilized and the speedup obtained as the number of CPUs increases.

There are two potential improvements to exploit more concurrency for the Domain Decomposition:

1. Decomposing a domain into N sub-domains instead of 2 (at each level). By this approach, N-way
concurrency is attained at each level of decomposition which enables resources to be utilized faster.

2. Exploit shared-memory parallelism, i.e., using threads, for domain decomposition. In contrast to the
current approach where cells at the interface(s) are introduced one-by-one, exploiting shared-memory
parallelism enables multiple cells to be introduced concurrently. Consequently, the execution time for
generating the interface(s) is reduced and resources can be utilized faster.

12 of 16

American Institute of Aeronautics and Astronautics



1V.C.2. Interpolation of Background Sources

A shortcoming of the off-the-shelf approach of parallelization employed in the present framework is that
the serial code is not fully parallelized. At a high level, the serial code for volume mesh generation works as
follows: For every face on the front, interpolate the grid spacing from the background sources. The algorithm
to implement this operation consists of two nested loops: (a) an outer-loop over all the faces on the current
front and (b) an inner-loop over all the sources. Note, that the number of faces on the front changes and
the number of sources is constant throughout the process. Further, the domain decomposition described in
this work essentially reduces the number of faces on the front, i.e., the number of iterations of the outer-
loop. However, the number of iterations in the inner-loop is constant for all the sub-domains. Hence,
the serial code is not fully parallelized. Since, the execution time of the inner-loop is serial and constant
regardless of the decomposition, the serial parts of the code deteriorate the performance gained by adding
more CPUs. Thus, the number of sources, i.e., the number of iterations of the inner-loop, has an effect in
the overall performance. Table 5 summarizes the speedup obtained from a variety of configurations and the
corresponding number of sources. As illustrated, a large number of sources can greatly affect the speedup
of the parallel application. Since sources can be interpolated independently, the inner-loop can be easily

Table 5. Summary of speedups for a variety of configurations in relation to the number of sources

Configuration | Number of Sources | Maximum Speedup

Simple Box 1 20.74
Sphere-in-box 1 13.76
DLR-F6 74 16.32
Business Jet 134 12.26

parallelized in order to eliminate the serial parts of the algorithm and further improve the performance.

IV.C.3. VGRID Interface

In the present implementation, the parallel framework creates a VGRID process using a system kernel call.
Moreover, input and output to VGRID is accomplished via the Network File System (NFS) as indicated in
Figure 1. This approach introduces the following overheads:

1. creation of a new address space for the VGRID process.
2. reading files from NFS and initializing data-structures.
3. writing files to NFS.

Better interfacing with VGRID eliminates these performance impediments. An Application Programming
Interface (API) for VGRID resolves these issues by:

1. integrating VGRID’s functionality within a single address space, and

2. allowing data communication through function calls instead of the file system.
Furthermore, appropriate error handling can easily be enabled via an API with appropriate return codes
from the function calls.
IV.C.4. Problem Size

Another parameter that has an effect on the performance of parallel computations is the size of the
problem, i.e., the mesh size in terms of the number of cells and points in the mesh. Generally, larger problems
exhibit more scalability. In other words, grids of larger sizes have more performance gains when using more
CPUs. Figure 14 demonstrates this observation using the Simple Box configuration. The experiment on this
configuration, presented earlier, gave a speedup of 20 using 64 CPUs for a grid of 23 million cells. Increasing
the grid size to 100 million cells with the same number of processors and partitions, produced a speedup
of 30 (see Figure 14). Decomposition of larger problems yields sub-domains with more work to compensate
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for the under utilization of resources at earlier stages of decomposition (due to the insufficient amount of
exploitable concurrency which was discussed earlier).

For a given problem size, there is an upper-bound on the number of CPUs that can be effectively utilized.
In most practical CFD settings, there is no need for an excessive number of processors for grid generation
purposes. In practice, a few partitions and processors (on the order of 10) are usually sufficient. The
performance of the present parallel framework, for the example configurations presented in this paper, is
reasonable in the range of 2 to 10 processors.

V. Concluding Remarks

In this preliminary report, the design and implementation of a framework for parallel unstructured grid
generation is presented. While the applicability of the present approach for CFD simulations is demonstrated
on a number of sample grids, the scalability performance of the current implementation require further im-
provements. The performance of the current implementation in practice, where 2 to 10 processors are utilized
for grid generation purposes, is reasonable. The Scalability of the current implementation however, beyond
16 processors, may be low depending on the problem size. The most important performance drawbacks
identified in the current implementation are:

1. Workload imbalances between sub-domains which deteriorate the performance.

2. Inherently insufficient exploitable concurrency during the early stages of domain decomposition which
leads to under utilization of resources.

3. Parts of the code that remain serial, in particular source interpolation.

4. Overhead for process creation, file I/O and data-structure initialization due to inefficient coupling
between the parallel application layer and the VGRID layer.

Future work is focused on further improving the scalability of the current implementation by addressing the
above issues.
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