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Abstract

In general, guaranteed-quality Delaunay meshing algo-
rithms are difficult to parallelize because they require
strictly ordered updates to the mesh boundary. We
show that, by replacing the Delaunay cavity in the
Bowyer-Watson algorithm with what we call the cir-
cumball intersection set, updates to the mesh can occur
in any order, especially at the mesh boundary.

To demonstrate this new idea, we describe a 2D con-
strained Delaunay meshing algorithm that does not en-
force strict ordering of vertex insertions near the mesh
boundary. We prove that the sequential version of this
algorithm generates a mesh in which the circumradius
to shortest edge ratio of every triangle is v/2 or greater,
as long as every angle interior to the polygonal input do-
main is at least 90°. We briefly touch upon the parallel
version of this algorithm, but we relegate a more com-
plete discussion (with extension to 3D) to a forthcoming

paper.

1 Introduction

In our previous work [8], we developed and proved cor-
rect a guaranteed—quality parallel 3D Delaunay refine-
ment algorithm for polyhedral domains without obtuse
boundary angles. The proof of correctness requires a
preprocessing step which generates a dense surface mesh
on the boundary 9f2 of an input domain 2. This initial
surface mesh consists of boundary triangles and subseg-
ments whose circumradii and lengths are bounded by a
length proportional to the minimum local feature size
on 2. Preprocessing 02 in this way is required by the
proof of correctness to prevent concurrent vertex inser-
tions from violating the invariants of the corresponding
sequential algorithm (Section [2)).

However, if there is a very large difference between
the minimum and maximum local feature size on €2, the
initial surface mesh is significantly over-refined, result-
ing in an overly-dense (though not necessarily uniformly
dense) initial tetrahedral mesh. Although this mesh is
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destined for parallel refinement, it would clearly be ad-
vantageous to avoid an overly dense mesh to begin with.
Furthermore, it is not obvious how to extend our pre-
vious algorithm to more complicated problems, such as
meshing domains with sharp angles [12] 4, [3] and gen-
erating meshes without slivers [7] 2].

In this paper, we achieve these results by replacing
the Delaunay cavity search of the Bowyer-Watson algo-
rithm [l [14] with a search for a superset C of the Delau-
nay cavity that contains triangles whose circumscribing
2-balls (circumballs) intersect the circumball of the cor-
resonding triangle f. We show that, if the set C contains
certain encroached subsegments whose minimum-radius
(i.e. diametral) circumballs enclose v, then v should be
discarded and the midpoint of some encroached subseg-
ment should be added to the mesh instead.

In other words, we only need to examine a local region
of the mesh close to v (but potentially larger than the
Delaunay cavity) to determine if adding v to the mesh
would result in short edges being introduced into the
mesh. We can therefore avoid the usual requirement of
most existing Delaunay meshing algorithms [9, [10, [13]
that the subsegments (and subfacets in 3D [I1], [§]) be
unencroached before adding new interior vertices into
the mesh.

We show that a simple 2D algorithm with this mod-
ification (Section [3)) generates a constrained Delaunay
triangulation (CDT) [5] of the input domain in which
no triangle has a circumradius to shortest edge ratio
greater than /2. Further, as a result of allowing poorly-
shaped triangles to be refined in any order, this new al-
gorithm is straightforward to parallelize using some of
the proof machinery from our previous work [8] (Sec-

tion .

2 Strict Ordering, Violating Invariants

Sequential Delaunay meshing algorithms generally guar-
antee quality by enforcing a strict ordering of vertex
insertions near or on the domain boundary—it is this
strict ordering near the boundary that complicates par-
allel meshing algorithms. Far away from the boundary,
the meshing process requires no more than preventing
data structure inconsistency and maintaining the De-
launay property of the mesh [6].



In particular, most existing algorithms require that
subsegments and subfacets in the surface mesh be un-
encroached before new interior vertices can be added o
the mesh. Not adhering to this order can cause a viola-
tion of the primary invariant of these algorithms: that
no edge in the resulting mesh is shorter than some char-
acteristic length over the domain (e.g. the local feature
size, 1fspeq(p) [9]).
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Figure 1: A typical invariant is wviolated. d =
mingyeq 1£s(p) and dy > dv/2. €” is encroached upon
by input vertex x, but this is not resolved before adding
v to the mesh. Consequently, v encroaches upon the
subsegment e with |e| < 2-d, violating a typical invari-
ant that encroached subsegments have length greater
than 2 - d.

Consider a typical 2D algorithm [9] that enforces two
invariants: (i) refined subsegments have length at least
2-d, and (ii) refined triangles have a radius greater than
dv/2, where d = min,cq 1fs(p). Figure || depicts what
happens if vertices inserted near the boundary are not
properly ordered. A new vertex v is added to the mesh
to refine a poorly-shaped triangle, but because v is too
close to the subsegment e, subsegment e with |e| < 2-d
is created and is encroached upon by v, violating the
first invariant described above.

In many respects, this is an implementation issue,
since we could enforce this precondition on vertex inser-
tions with an oracle that, for each new vertex v, answers
the query “does v encroach upon an already encroached
subsegment e?” If such a subsegment e does exist, then
v would be discarded and e would be refined instead.

The Delaunay cavity can serve this purpose when sub-
segments are unencroached before vertices are inserted.
It is not difficult to show that subegments encroached
upon by v appear on the boundary of the Delaunay cav-
ity for v, and thus could be checked before adding v to
the mesh.

However, in the case of arbitrarily ordered vertex in-
sertions, such an oracle is probably difficult to imple-
ment and would almost certainly be inefficient, partic-
ularly for parallel meshing. We have therefore devised
a way to answer this query by searching the mesh in
a region near a to-be-added vertex v. In the following

section, we describe our approach within the context of
a simple guaranteed-quality 2D Delaunay meshing algo-
rithm.

3 A Naturally Parallelizable 2D Meshing Algorithm

Let Q be a polygonal input domain with boundary 952,
possibly with interior, non-degenerate segment-bounded
holes. Assume that no interior angle in 052 is less than
90°, and let d be the minimum distance (through 2) be-
tween any two non-incident vertices or segments in 92.
The output of Algorithm [1]is a mesh M(KC, D) compris-
ing two simplicial complexes: K, containing vertices and
subsegments, and D, containing vertices, edges, and tri-
angles. Upon completion, each subsegment e € K has
length at least d, and each triangle f € D has a circum-
radius to shortest edge ratio (ratio(f)) no greater than
V2.

In the algorithm that follows, we use Os to mean the
minimum-radius open 2-ball (circumball) circumscrib-
ing the vertices of s. For example, if e is a subsegment,
then Oe is the open 2-ball having e as a diameter. | - |
means “area of.”

Algorithm 1 Create a 2D CDT M (K, D). M consists

solely of triangles f with ratio(f) < v/2. The triangles

refined by Main Loop can be chosen in any order.

SeqArbitrarilyOrdered2D(§2)

Input: Polygonal domain 2 C R2 with no interior an-
gle less than 90°.

Output: M(K, D), a constrained Delaunay mesh such
that Vf € D, ratio(f) < V2

Initialize M:

Let K and D be the boundary and interior triangula-
tions of the CDT of €.

Main loop:
while 3f € D and ratio(f) > v/2 do

Refine(f)
end while

Refine(f):
¢ « circumcenter(f)
C={geD> |ognofl >0}
if e =e(u,v) € (CNK)>:c€ 0ceAu,v € Of then
Insert the midpoint of e into K and D
else

Insert ¢ into D
end if

Note that no particular order is imposed on the tri-
angles chosen for refinement. Further, all decisions re-
garding mesh boundary updates are confined to a region
of the mesh near each newly inserted vertex. The key
to these properties lies in the set of triangles C whose



circumballs intersect the circumball of a to-be-refined
triangle f. If ¢ is the circumcenter of f, then C is a su-
perset of the set of triangles (the Delaunay cavity) whose
circumballs enclose CE| Note that the computation of C
replaces the usual Delaunay cavity computation, and
that we have a secondary step to actually insert ¢ into
the mesh ]

le’] > 2lel

Figure 2: Case (1.7). v cannot encroach upon e without
the circumball of radius dy > dv2 intersecting both ¢’
and the circumball of the triangle containing e’. The
algorithm does not insert v in this case, so the problem
depicted in Figure [1| cannot occur.

The following lemma establishes the correctness of Al-
gorithm

Lemma 1 Let d = min,ecq 1£s(p). Then following in-
variants hold after each iteration through Main Loop:

1. FEach refined subsegment has length at least 2 - d.

2. FEach refined subfacet has circumradius greater than

dv/2.

Proof. [Sketch] We show by contradiction that each
invariant holds:

Invariant 1: each refined subsegment e has length |e| >
2-d.

Assume that the first failure of the algorithm is a sub-
segment e with |e|] < 2-d. The vertex v causing the
refinement of e cannot be in K, since all vertices in K
are at least d from the midpoint of e. Therefore, v is
a triangle circumcenter that either (i) was successfully
added to the mesh in a previous iteration, or (i) was
not added to the mesh in the current iteration because
it encroached upon e. In either case, the circumradius
of the refined triangle f was greater than dv/2, other-
wise refining f would have been the first failure of the
invariants.

Case (i): v is an existing interior mesh vertex (this fail-
ure is depicted in Figure :

1Unlike the Delaunay cavity of ¢, the boundary of C is not
necessarily pointwise-convex with respect to c.

2The Delaunay cavity is a subset of C, though, so it need not
be computed separately as suggested here.

At the time v was added to the mesh, there was a tri-
angle g that contained the subsegment ¢’ D e but did
not appear in the set C of triangles whose circumballs
intersect Of (otherwise, v would not have been added
to the mesh). This implies that the circumball of the
triangle g containing e’ did not intersect Of. However,
radius(f) > dv/2 and v is within d of ¢’ (it is enclosed
by Oe by assumption), which implies that O f intersects
0g (Figure . However, this means that g must have
appeared in C, a contradiction. Therefore, this case can-
not occur.

Case (ii): v is the circumcenter of triangle f that was
not added to the mesh in the current iteration:

Because D is constrained Delaunay, v would be too far
away to encroach upon e unless Of enclosed a vertex u
of e. However, the algorithm checks for this and would
not have refined e, so this is a contradiction.

Since both cases result in a contradiction, Invariant
1 must hold after each iteration of Main Loop. This
ensures that no subsegment shorter than d is ever intro-
duced into the mesh.

Invariant 2: each refined subfacet f has radius(f) >

dv/2.

Assume the first failure is the refinement of a triangle
f with radius(f) < dv/2. Because this is the first fail-
ure, every subsegment has length at least d (Invariant
1), and every edge resulting from inserting a triangle
circumcenter has length greater than dv/2. Therefore,
the shortest edge of f must have length at least d, so
ratio(f) < v/2. But, f would have been refined only
if ratio(f) > v/2, a contradiction. Therefore, this case
cannot occur. U

This proof shows that the invariants hold throughout
the algorithm, which allows us to prove the following
properties of the resulting mesh:

Theorem 1 Algorithm SeqArbitrarilyOrdered2D ter-
manates, and the resulting mesh M has the following
properties:

1. The length of every edge in M is at least d.
2. For every triangle f € M, ratio(f) < /2.

3. The minimum triangle angle is 20.7°.

Proof. Note that exactly one new vertex is added to
the mesh each time through Main Loop. From Lemmall]
we know that no two vertices of the mesh are ever closer
than d, therefore the algorithm must terminate since
only finitely many edges of length d can be placed within
Q (a finite area). Termination is enough to guarantee
the bound on triangle circumradius to shortest edge ra-
tio, and the bound on the minimum angle follows. O



4 A Brief Note on Parallelization

The follwing observation is a direct consequence of
Lemma [T}

Corollary 2 ([8]) The correctness of SeqArbitrarily-
Ordered2D does not depend on the order in which any
two triangles are refined in Main Loop.

This is in fact the only statement in our previous se-
ries of proofs [8] whose correctness is directly dependent
upon the behavior of the sequential meshing algorithm.
We therefore make the following conjecture that ParAr-
bitrarilyOrdered2D, a parallel version of algorithm Al-
gorithm [I] is correct:

Conjecture 1 Algorithm  ParArbitrarilyOrdered2D
terminates, and the distributed mesh has the same prop-
erties as those guaranteed by SeqArbitrarilyOrdered2D.

Unlike in our previous work, this conjecture does not
require a potentially expensive preprocessing step, due
to the definition of the circumball intersection set and
the proof of Lemma [T}

5 Conclusions and Future Work

Our primary contribution in this paper is the introduc-
tion of the circumball intersection set, which permits
arbitrarily ordered vertex insertions, and, consequently,
yields a naturally parallelizable sequential guaranteed-
quality 2D meshing algorithm (Algorithm. Moreover,
we believe that the circumball intersection set will al-
low us to easily parallelize a wide range of other 3D
Delaunay-based meshing algorithms, in particular those
that prevent slivers and those that can handle sharp
boundary angles.
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