
Boundary Refinement in Delaunay Mesh Generation Using Arbitrarily
Ordered Vertex Insertion

Extended Abstract

Démian M. Nave∗ Nikos Chrisochoides†

Abstract

In general, guaranteed-quality Delaunay meshing algo-
rithms are difficult to parallelize because they require
strictly ordered updates to the mesh boundary. We
show that, by replacing the Delaunay cavity in the
Bowyer-Watson algorithm with what we call the cir-
cumball intersection set, updates to the mesh can occur
in any order, especially at the mesh boundary.

To demonstrate this new idea, we describe a 2D con-
strained Delaunay meshing algorithm that does not en-
force strict ordering of vertex insertions near the mesh
boundary. We prove that the sequential version of this
algorithm generates a mesh in which the circumradius
to shortest edge ratio of every triangle is

√
2 or greater,

as long as every angle interior to the polygonal input do-
main is at least 90o. We briefly touch upon the parallel
version of this algorithm, but we relegate a more com-
plete discussion (with extension to 3D) to a forthcoming
paper.

1 Introduction

In our previous work [8], we developed and proved cor-
rect a guaranteed–quality parallel 3D Delaunay refine-
ment algorithm for polyhedral domains without obtuse
boundary angles. The proof of correctness requires a
preprocessing step which generates a dense surface mesh
on the boundary ∂Ω of an input domain Ω. This initial
surface mesh consists of boundary triangles and subseg-
ments whose circumradii and lengths are bounded by a
length proportional to the minimum local feature size
on Ω. Preprocessing ∂Ω in this way is required by the
proof of correctness to prevent concurrent vertex inser-
tions from violating the invariants of the corresponding
sequential algorithm (Section 2).

However, if there is a very large difference between
the minimum and maximum local feature size on Ω, the
initial surface mesh is significantly over-refined, result-
ing in an overly-dense (though not necessarily uniformly
dense) initial tetrahedral mesh. Although this mesh is

∗Pittsburgh Supercomputing Center, Carnegie Mellon Univer-
sity, Pittsburgh, PA, dnave@psc.edu

†Department of Computer Science, College of William & Mary,
Williamsburg, Va, nikos@cs.wm.edu

destined for parallel refinement, it would clearly be ad-
vantageous to avoid an overly dense mesh to begin with.
Furthermore, it is not obvious how to extend our pre-
vious algorithm to more complicated problems, such as
meshing domains with sharp angles [12, 4, 3] and gen-
erating meshes without slivers [7, 2].

In this paper, we achieve these results by replacing
the Delaunay cavity search of the Bowyer-Watson algo-
rithm [1, 14] with a search for a superset C of the Delau-
nay cavity that contains triangles whose circumscribing
2-balls (circumballs) intersect the circumball of the cor-
resonding triangle f . We show that, if the set C contains
certain encroached subsegments whose minimum-radius
(i.e. diametral) circumballs enclose v, then v should be
discarded and the midpoint of some encroached subseg-
ment should be added to the mesh instead.

In other words, we only need to examine a local region
of the mesh close to v (but potentially larger than the
Delaunay cavity) to determine if adding v to the mesh
would result in short edges being introduced into the
mesh. We can therefore avoid the usual requirement of
most existing Delaunay meshing algorithms [9, 10, 13]
that the subsegments (and subfacets in 3D [11, 8]) be
unencroached before adding new interior vertices into
the mesh.

We show that a simple 2D algorithm with this mod-
ification (Section 3) generates a constrained Delaunay
triangulation (CDT) [5] of the input domain in which
no triangle has a circumradius to shortest edge ratio
greater than

√
2. Further, as a result of allowing poorly-

shaped triangles to be refined in any order, this new al-
gorithm is straightforward to parallelize using some of
the proof machinery from our previous work [8] (Sec-
tion 4).

2 Strict Ordering, Violating Invariants

Sequential Delaunay meshing algorithms generally guar-
antee quality by enforcing a strict ordering of vertex
insertions near or on the domain boundary—it is this
strict ordering near the boundary that complicates par-
allel meshing algorithms. Far away from the boundary,
the meshing process requires no more than preventing
data structure inconsistency and maintaining the De-
launay property of the mesh [6].

1

In particular, most existing algorithms require that
subsegments and subfacets in the surface mesh be un-
encroached before new interior vertices can be added o
the mesh. Not adhering to this order can cause a viola-
tion of the primary invariant of these algorithms: that
no edge in the resulting mesh is shorter than some char-
acteristic length over the domain (e.g. the local feature
size, lfsp∈Ω(p) [9]).

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � � df

v
d

|e’’| < 8d

|e’| < 4d

x

|e| < 2d

Figure 1: A typical invariant is violated. d =
minp∈Ω lfs(p) and df > d

√
2. e′′ is encroached upon

by input vertex x, but this is not resolved before adding
v to the mesh. Consequently, v encroaches upon the
subsegment e with |e| < 2 · d, violating a typical invari-
ant that encroached subsegments have length greater
than 2 · d.

Consider a typical 2D algorithm [9] that enforces two
invariants: (i) refined subsegments have length at least
2 ·d, and (ii) refined triangles have a radius greater than
d
√

2, where d = minp∈Ω lfs(p). Figure 1 depicts what
happens if vertices inserted near the boundary are not
properly ordered. A new vertex v is added to the mesh
to refine a poorly-shaped triangle, but because v is too
close to the subsegment e′′, subsegment e with |e| < 2 ·d
is created and is encroached upon by v, violating the
first invariant described above.

In many respects, this is an implementation issue,
since we could enforce this precondition on vertex inser-
tions with an oracle that, for each new vertex v, answers
the query “does v encroach upon an already encroached
subsegment e?” If such a subsegment e does exist, then
v would be discarded and e would be refined instead.

The Delaunay cavity can serve this purpose when sub-
segments are unencroached before vertices are inserted.
It is not difficult to show that subegments encroached
upon by v appear on the boundary of the Delaunay cav-
ity for v, and thus could be checked before adding v to
the mesh.

However, in the case of arbitrarily ordered vertex in-
sertions, such an oracle is probably difficult to imple-
ment and would almost certainly be inefficient, partic-
ularly for parallel meshing. We have therefore devised
a way to answer this query by searching the mesh in
a region near a to-be-added vertex v. In the following

section, we describe our approach within the context of
a simple guaranteed-quality 2D Delaunay meshing algo-
rithm.

3 A Naturally Parallelizable 2D Meshing Algorithm

Let Ω be a polygonal input domain with boundary ∂Ω,
possibly with interior, non-degenerate segment-bounded
holes. Assume that no interior angle in ∂Ω is less than
90o, and let d be the minimum distance (through Ω) be-
tween any two non-incident vertices or segments in ∂Ω.
The output of Algorithm 1 is a meshM(K,D) compris-
ing two simplicial complexes: K, containing vertices and
subsegments, and D, containing vertices, edges, and tri-
angles. Upon completion, each subsegment e ∈ K has
length at least d, and each triangle f ∈ D has a circum-
radius to shortest edge ratio (ratio(f)) no greater than√

2.
In the algorithm that follows, we use ©s to mean the

minimum-radius open 2-ball (circumball) circumscrib-
ing the vertices of s. For example, if e is a subsegment,
then ©e is the open 2-ball having e as a diameter. | · |
means “area of.”

Algorithm 1 Create a 2D CDTM(K,D). M consists
solely of triangles f with ratio(f) ≤

√
2. The triangles

refined by Main Loop can be chosen in any order.
SeqArbitrarilyOrdered2D(Ω)
Input: Polygonal domain Ω ⊂ <2 with no interior an-

gle less than 90o.
Output: M(K,D), a constrained Delaunay mesh such

that ∀f ∈ D, ratio(f) ≤
√

2

Initialize M:
Let K and D be the boundary and interior triangula-
tions of the CDT of Ω.

Main loop:
while ∃f ∈ D and ratio(f) >

√
2 do

Refine(f)
end while

Refine(f):
c← circumcenter(f)
C = {g ∈ D 3: |©g ∩©f | > 0}
if ∃e = e(u, v) ∈ (C ∩K) 3: c ∈ ©e∧ u, v 6∈ ©f then

Insert the midpoint of e into K and D
else

Insert c into D
end if

Note that no particular order is imposed on the tri-
angles chosen for refinement. Further, all decisions re-
garding mesh boundary updates are confined to a region
of the mesh near each newly inserted vertex. The key
to these properties lies in the set of triangles C whose

2

circumballs intersect the circumball of a to-be-refined
triangle f . If c is the circumcenter of f , then C is a su-
perset of the set of triangles (the Delaunay cavity) whose
circumballs enclose c.1 Note that the computation of C
replaces the usual Delaunay cavity computation, and
that we have a secondary step to actually insert c into
the mesh.2

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

df

≤d |e| < 2d

v

≥|e’| 2|e|

g

Figure 2: Case (1.i). v cannot encroach upon e without
the circumball of radius df > d

√
2 intersecting both e′

and the circumball of the triangle containing e′. The
algorithm does not insert v in this case, so the problem
depicted in Figure 1 cannot occur.

The following lemma establishes the correctness of Al-
gorithm 1:

Lemma 1 Let d = minp∈Ω lfs(p). Then following in-
variants hold after each iteration through Main Loop:

1. Each refined subsegment has length at least 2 · d.

2. Each refined subfacet has circumradius greater than
d
√

2.

Proof. [Sketch] We show by contradiction that each
invariant holds:

Invariant 1: each refined subsegment e has length |e| ≥
2 · d.

Assume that the first failure of the algorithm is a sub-
segment e with |e| < 2 · d. The vertex v causing the
refinement of e cannot be in K, since all vertices in K
are at least d from the midpoint of e. Therefore, v is
a triangle circumcenter that either (i) was successfully
added to the mesh in a previous iteration, or (ii) was
not added to the mesh in the current iteration because
it encroached upon e. In either case, the circumradius
of the refined triangle f was greater than d

√
2, other-

wise refining f would have been the first failure of the
invariants.

Case (i): v is an existing interior mesh vertex (this fail-
ure is depicted in Figure 1):

1Unlike the Delaunay cavity of c, the boundary of C is not
necessarily pointwise-convex with respect to c.

2The Delaunay cavity is a subset of C, though, so it need not
be computed separately as suggested here.

At the time v was added to the mesh, there was a tri-
angle g that contained the subsegment e′ ⊃ e but did
not appear in the set C of triangles whose circumballs
intersect ©f (otherwise, v would not have been added
to the mesh). This implies that the circumball of the
triangle g containing e′ did not intersect ©f . However,
radius(f) > d

√
2 and v is within d of e′ (it is enclosed

by ©e by assumption), which implies that ©f intersects
©g (Figure 2). However, this means that g must have
appeared in C, a contradiction. Therefore, this case can-
not occur.

Case (ii): v is the circumcenter of triangle f that was
not added to the mesh in the current iteration:

Because D is constrained Delaunay, v would be too far
away to encroach upon e unless ©f enclosed a vertex u
of e. However, the algorithm checks for this and would
not have refined e, so this is a contradiction.

Since both cases result in a contradiction, Invariant
1 must hold after each iteration of Main Loop. This
ensures that no subsegment shorter than d is ever intro-
duced into the mesh.

Invariant 2: each refined subfacet f has radius(f) >
d
√

2.

Assume the first failure is the refinement of a triangle
f with radius(f) ≤ d

√
2. Because this is the first fail-

ure, every subsegment has length at least d (Invariant
1), and every edge resulting from inserting a triangle
circumcenter has length greater than d

√
2. Therefore,

the shortest edge of f must have length at least d, so
ratio(f) ≤

√
2. But, f would have been refined only

if ratio(f) >
√

2, a contradiction. Therefore, this case
cannot occur. �

This proof shows that the invariants hold throughout
the algorithm, which allows us to prove the following
properties of the resulting mesh:

Theorem 1 Algorithm SeqArbitrarilyOrdered2D ter-
minates, and the resulting mesh M has the following
properties:

1. The length of every edge in M is at least d.

2. For every triangle f ∈M, ratio(f) ≤
√

2.

3. The minimum triangle angle is 20.7o.

Proof. Note that exactly one new vertex is added to
the mesh each time through Main Loop. From Lemma 1,
we know that no two vertices of the mesh are ever closer
than d, therefore the algorithm must terminate since
only finitely many edges of length d can be placed within
Ω (a finite area). Termination is enough to guarantee
the bound on triangle circumradius to shortest edge ra-
tio, and the bound on the minimum angle follows. �

3

4 A Brief Note on Parallelization

The follwing observation is a direct consequence of
Lemma 1:

Corollary 2 ([8]) The correctness of SeqArbitrarily-
Ordered2D does not depend on the order in which any
two triangles are refined in Main Loop.

This is in fact the only statement in our previous se-
ries of proofs [8] whose correctness is directly dependent
upon the behavior of the sequential meshing algorithm.
We therefore make the following conjecture that ParAr-
bitrarilyOrdered2D , a parallel version of algorithm Al-
gorithm 1 is correct:

Conjecture 1 Algorithm ParArbitrarilyOrdered2D
terminates, and the distributed mesh has the same prop-
erties as those guaranteed by SeqArbitrarilyOrdered2D.

Unlike in our previous work, this conjecture does not
require a potentially expensive preprocessing step, due
to the definition of the circumball intersection set and
the proof of Lemma 1.

5 Conclusions and Future Work

Our primary contribution in this paper is the introduc-
tion of the circumball intersection set, which permits
arbitrarily ordered vertex insertions, and, consequently,
yields a naturally parallelizable sequential guaranteed-
quality 2D meshing algorithm (Algorithm 1). Moreover,
we believe that the circumball intersection set will al-
low us to easily parallelize a wide range of other 3D
Delaunay-based meshing algorithms, in particular those
that prevent slivers and those that can handle sharp
boundary angles.

References

[1] A. Bowyer. Computing Dirichlet tessellations. The
Computer Journal, 24(2):162–166, 1981.

[2] S.-W. Cheng and T. K. Dey. Quality meshing with
weighted delaunay refinement. In 13th ACM-SIAM
Symposium on Discrete Algorithms, pages 137–146,
2002.

[3] S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray.
Quality meshing for polyhedra with small angles. In
20th Annual Symposium on Computational Geometry,
2004.

[4] S.-W. Cheng and S.-H. Poon. Graded conforming de-
launay tetrahedralization with bounded radius-edge ra-
tio. In 14th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 295–304. Society for Industrial and Ap-
plied Mathematics, 2003.

[5] L. P. Chew. Constrained delaunay triangulations. Al-
gorithmica, 4:97–108, 1989.

[6] N. Chrisochoides and D. Nave. Parallel Delaunay
mesh generation kernel. In special issue of Interna-
tional Journal for Numerical Methods in Engineering,
58(2):161–176, 2003.

[7] X.-Y. Li and S.-H. Teng. Generating Well-Shaped de-
launay meshes in 3D. In 12th ACM-SIAM Symposium
on Discrete Algorithms, pages 28–37, 2001.

[8] D. Nave, N. Chrisochoides, and L. P. Chew.
Guaranteed–quality parallel Delaunay refinement for
restricted polyhedral domains. Journal of Compu-
tational Geometry: Theory and Applications, 28(2-
3):195–215, June 2004. Also appears in 18th Annual
Symposium on Computational Geometry.

[9] J. Ruppert. A delaunay refinement algorithm for qual-
ity 2–dimensional mesh generation. Journal of Algo-
rithms, 18(3):548–585, 1995.

[10] J. R. Shewchuk. Delaunay Refinement Mesh Genera-
tion. PhD thesis, Carnegie Mellon University, School of
Computer Science, May 1997. Available as Technical
Report CMU–CS–97–137.

[11] J. R. Shewchuk. Tetrahedral mesh generation by De-
launay refinement. In 14th Annual Symposium on Com-
putational Geometry, pages 86–95, 1998.

[12] J. R. Shewchuk. Mesh generation for domains with
small angles. In Sixteenth Annual Symposium on Com-
putational Geometry, pages 111–112. ACM, 2000.

[13] D. Spielman, S.-H. Teng, , and A. Üngör. Delaunay
refinement: algorithms and analyses. In 11th Interna-
tional Meshing Roundtable, pages 205–217, 2002.

[14] D. F. Watson. Computing the n–dimensional Delaunay
tessellation with application to Voronoi polytopes. The
Computer Journal, 24(2):167–172, 1981.

4

	Introduction
	Strict Ordering, Violating Invariants
	A Naturally Parallelizable 2D Meshing Algorithm
	A Brief Note on Parallelization
	Conclusions and Future Work

