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Abstract We present an extension of an existing Parallel
Delaunay Refinement (PDR) method to be used for out-of-
core computing, thus allowing it to generate large meshes
using limited computing resources. We base our work on a
shared memory implementation of the PDR method. Also,
we are designing a distributed out-of-core algorithm which
would allow to compute very large meshes using supercom-
puters and COWs with limited resources.

Introduction

COWs and contemporary supercomputers provide large ag-
gregate memory and computing power. However, many appli-
cations do not require both types of resources in equal pro-
portions. Moreover, it is not unusual for memory-intensive
applications (e.g., mesh generation and refinement) to use hun-
dreds of nodes to utilize their memory rather than CPUs.
We see the solution in an out-of-core approach which already
demonstrated its effectiveness for wide variety of applications
[1, 2, 3, 4, 5], including out-of-core mesh generation [6, 7].

Here, we propose an extension to recently developed Parallel
Delaunay Refinement (PDR) method to allow it to be used for
generating large out-of-core meshes.

Parallel Delaunay Refinement

The Parallel Delaunay Refinement method is based on a

theoretical framework for constructing guaranteed quality De-

launay meshes in parallel [8]. The sequential Delaunay refine-

ment algorithms insert points at the circumcenters of triangles

of poor quality or unacceptable size. Two points are called

Delaunay-independent [9] iff they can be inserted concurrently

without destroying the conformity and Delaunay properties

of the mesh. The method provides a sufficient condition of

Delaunay-independence, which is based on the distance be-

tween points, i.e. two points are Delaunay-independent if the

distance between them is no less than 4r̄, where r̄ is an up-

per bound on triangle circumradius in the initial mesh. This

condition allows to avoid using expensive coloring techniques.

Its efficient implementation is based on the use of a coarse

auxiliary lattice, which is imposed over the triangulation do-

main in such a way that the circumcenters in non-adjacent

cells are a-priori Delaunay-independent. Processors are logi-

cally arranged into a two-dimensional grid, and each processor

is assigned some subset of cells for refinement. The parallel
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# of Time, sec. Time, sec. # of elements,
processors MPI OpenMP ×106

4 220.3 214.1 14.6

Table 1: Pipe cross-section, distributed (MPI) and shared
(OpenMP) memory implementations.

meshing in [8] is implemented by simultaneously shifting the

refinement focus by all processors, so that specific buffer cells

serve to separate the refinement zones. After every refinement

iteration, the triangles in buffer cells are exchanged between

neighboring processors and are used in subsequent refinement

steps. Data exchange is organized by shifting cells along verti-

cal, horizontal, and diagonal directions.

Shared Memory PDR

Multiprocessing (including support for multiple hardware
threads) is becoming very popular. Even small COWs and lap-
tops more and more often are capable of shared memory com-
puting which calls for development and use of parallel shared
memory algorithms. Here, we describe the Shared Memory
PDR (SPDR) method. It is similar to the original, except for
the following: (1) since all of the cells reside in the same mem-
ory there is no need for exchanging buffer cells, instead they
are referenced by different processors (2) consequently, no op-
erations associated with communication, such as packing and
merging of submeshes, are necessary in contrast to the original
algorithm. Evaluation showed (see Tab. 1) that performance
of the SPDR is very close to the original implementation.

Out-of-Core PDR

The Out-of-Core SPDR (OSPDR) algorithm addresses con-
structing large meshes with limited resources, this also applies
to using smaller amount of supercomputers’ resources to avoid
high wait-in-queue times.

While designing the OSPDR several assumptions were used,
including those derived from the original PDR method:

1. synchronization (between neighbors) is necessary between
the computational phases

2. all processors have access to any part of the mesh stored
on disk and the access time is the same

3. only a small fraction of the mesh can be loaded into the
system memory due to limited amount of the latter

4. disk access has the largest latency, therefore the aim of this
design is to minimize the number of accesses and overlap
them with computation whenever possible



Figure 1: Out-of-core schemes of top-level shifts (2 processors,
shared memory and disk)

The mesh is stored on disk in squares derived from imposing
an auxiliary lattice found in the original PDR implementation.
Other than the organization of shift the OSPDR is not different
from the original PDR.

There are four refinement steps in the PDR method with
data exchanges (shifts) in between. There are two distinct
types of shifts: diagonal and horizontal/vertical. We will focus
on each type regardless of direction, in particular horizontal
shift to the right and diagonal shift to the right and down.

Not all of the buffer cells shift simultaneously due to ma-
jority of them residing out-of-core. We call a shift of all cells
in a certain phase a top-level shift while keep the name ”shift”
for only those cells that currently are in-core. A top-level hori-
zontal shift to the right is performed in the following steps (see
Fig. 1.a):

• a consecutive horizontal strip of squares is loaded into the
memory

• refinement is performed followed by a shift; buffer cells
from the right-most square are stored in-core (unless it is
also the last square in the row, then no data is stored)

• the above steps are repeated for the rest of the row, ap-
plying the stored buffer cells as exchange data for the
left-most cells

• the above steps are repeated for all rows in the mesh (order
is not important)

A top-level diagonal shift to the right and down involves
vertical and diagonal shifts in addition to horizontal ones: all
right-most buffer cells shift to the right, all bottom-most cells

shift down and the right-most bottom-most cell shifts diago-
nally to the right and down. The top-level shift is performed
in the following steps (see Fig. 1.b):

• a consecutive horizontal strip of squares is loaded into the
memory

• refinement is performed followed by a shift; buffer cells
from the right-most square are stored in-core (unless it is
also the last square in the row, then no data is stored);
buffer cells from bottom-most squares (from all cells if it
is possible to load only one strip or less)

• the above steps are repeated for the rest of the row, ap-
plying the stored buffer cells as exchange data for the
left-most cells

• when the next strip is loaded the buffer cells stored for
the vertical part of the previous shift(s) are used with the
top-most cells during shift

• the above steps are repeated for all rows in the direction
of vertical component (here down) of top-level shift

Conclusion and Work in Progress

Our developments allow for greater flexibility in comput-

ing large meshes, namely it is virtually possible to generate

large meshes on desktop machines and even larger meshes us-

ing small COWs. We plan to finish the implementation and

evaluation of OSPDR as well as finish our work on distributed

memory version of out-of-core PDR method that allows for

even greater flexibility.
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